
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University 

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship 

Theses Electronic Theses and Dissertations 

2014 

Electromagnetic Modeling Of Coupled Transmission Lines For Electromagnetic Modeling Of Coupled Transmission Lines For 

Millimeter-Wave/Terahertz Circuits In 65 Nm Cmos Technology Millimeter-Wave/Terahertz Circuits In 65 Nm Cmos Technology 

Monique Danyell Kirkman-Bey 
North Carolina Agricultural and Technical State University 

Follow this and additional works at: https://digital.library.ncat.edu/theses 

Recommended Citation Recommended Citation 
Kirkman-Bey, Monique Danyell, "Electromagnetic Modeling Of Coupled Transmission Lines For Millimeter-
Wave/Terahertz Circuits In 65 Nm Cmos Technology" (2014). Theses. 226. 
https://digital.library.ncat.edu/theses/226 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital 
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie 
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu. 

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/226?utm_source=digital.library.ncat.edu%2Ftheses%2F226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu


Electromagnetic Modeling of Coupled Transmission Lines for Millimeter-Wave/Terahertz 

Circuits in 65 nm CMOS Technology 

Monique Danyell Kirkman-Bey 

North Carolina A&T State University 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Department: Electrical and Computer Engineering 

Major: Electrical Engineering 

Major Professor: Dr. Numan S. Dogan 

Greensboro, North Carolina  

2014 

 

 

  



i 

 

The Graduate School 

North Carolina Agricultural and Technical State University 

This is to certify that the Master’s Thesis of 

 

Monique Danyell Kirkman-Bey 

 

has met the thesis requirements of 

North Carolina Agricultural and Technical State University 

 

Greensboro, North Carolina 

2014 

 

Approved by: 

 

  
 

Dr. Numan S. Dogan 

Major Professor 

 

Dr. Zhijian Xie 

Committee Member 

 

Dr. Daniel Limbrick 

Committee Member 

 

Dr. Sanjiv Sarin 

Dean, The Graduate School 

 

Dr. John Kelly 

Department Chair 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Monique Danyell Kirkman-Bey 

2014 



iii 

 

Biographical Sketch 

 Monique Danyell Kirkman-Bey is the middle of three children and an only girl. In her 

younger years, she traveled the world as an Army brat. Around her 10
th

 birthday, she moved with 

her mom and brother to the Cabrini Green neighborhood of Chicago, Illinois. Her experiences in 

Cabrini Green motivated her to pursue higher education and a better quality of life. At an early 

age, Monique learned that she enjoyed disassembling and reassembling toys to understand their 

inner-workings, and building things with her hands. In middle school, she fell in love with 

computers and the possibilities they introduced. So, it wasn’t a difficult decision to pursue higher 

education in the field of Electrical and Computer Engineering. She earned her Bachelor of 

Science in Computer Engineering at Howard University in Washington, DC. During this time, 

she focused her efforts on Digital and Embedded Systems Design, and Reconfigurable 

Computing. Her Senior Design project was supported by Northrop Grumman and earned her 

group second place in the annual Senior Design Competition. After completing her bachelor’s 

degree, she moved to North Carolina to pursue a Master’s in Electrical Engineering at North 

Carolina Agricultural and Technical State University. During her master’s, Monique focused her 

efforts on analog and CMOS design in preparation for future work and to gain more in-depth 

knowledge of the topics pertinent to a successful Electrical and Computer Engineer. While 

completing her master’s, she worked as a Research Assistant supported by the Army Research 

Lab and Dr. Numan S. Dogan. She has published two papers with the Institute of Electrical and 

Electronics Engineers (IEEE), one of which is directly related to her thesis. She presented these 

works at the IEEE 2014 Southeast Conference in Lexington, KY. Monique currently holds 

memberships in the Society for Women Engineers (SWE), National Society for Black Engineers 

(NSBE), and IEEE. She is also a lifetime member of Tau Beta Pi Engineering Honor Society.  



iv 

 

Dedication 

I would like to dedicate this thesis to my son and my significant other. They are my 

biggest fans, my support system, and my motivation to continue to work toward my dreams 

every day. I would also like to dedicate this to my mother and father who have supported my 

efforts in every endeavor and only asked that I give it my all every time. 

 

 



v 

 

Acknowledgements 

 I would like to first thank my advisory committee for their guidance over the duration of 

this research and the Army Research Lab for the funding of both my master’s and my research. 

To my primary advisor, Dr. Dogan, thank you for the opportunity to do such groundbreaking 

research. I never expected to work in analog or CMOS design at the layout level. This experience 

has truly broadened my knowledge and helped me to become a better-rounded Electrical and 

Computer Engineer. Dr. Xie, thank you for your assistance throughout my research, especially 

during the writing phase of the thesis. Your feedback, suggestions, and willingness to read my 

paper over and over again were invaluable to me. You helped me more than I can express in 

words. I would also like to thank Dr. Marvin Aidoo, a member of the RF Micro Lab, and the 

research team in which I work, for all of his assistance. Without you, this work would not have 

been possible. You were always willing to help when I had trouble with simulations and results, 

and thoroughly explained concepts in terms that even I could understand.  

Several professors in the department of Electrical and Computer Engineering at North Carolina 

A&T State University also deserve recognition. First, Dr. Cory Graves introduced me to 

application development and made it possible for me to quickly process the large amounts of 

data I generated. Without this knowledge, processing and analyzing the 1 million data points 

would have taken over a month to complete instead of a few hours. Dr. Christopher Doss, thank 

you for your guidance and mentorship and always having your door open when I needed to talk 

about the stresses of graduate school and life. I would also like to thank Dr. Clay Gloster, who I 

met at Howard University. Dr. Gloster introduced me to the Electrical and Computer 

Engineering concepts I love. He remains a mentor, leads by example every day, and is a large 

part of the reason I chose to pursue graduate studies at North Carolina A&T State University.  



vi 

 

Table of Contents 

List of Figures .................................................................................................................. viii 

List of Tables ..................................................................................................................... xi 

Abstract ............................................................................................................................... 2 

CHAPTER 1 Introduction................................................................................................... 3 

CHAPTER 2 Differential Transmission Lines ................................................................... 4 

2.1 Overview of Coupled Structures ........................................................................... 4 

2.1.1 Excitation Modes. ........................................................................................ 5 

2.2 Evaluated Structures .............................................................................................. 5 

2.2.1 Coplanar Microstrips. .................................................................................. 5 

2.2.2 Coplanar Waveguides. ................................................................................. 5 

2.2.3 M1 Ground Plane. ....................................................................................... 6 

CHAPTER 3 Impact of Structural Variances on Differential Transmission Lines ............ 7 

3.1 Impact of Line Height ............................................................................................ 7 

3.2 Impact of Line Dimensions ................................................................................... 7 

3.3 Impact of M1 Ground Plane .................................................................................. 8 

CHAPTER 4 Experimental Procedure and Setup ............................................................. 10 

4.1 Modeling the Metal Stack .................................................................................... 10 

4.2 Modeling the Transmission Lines ....................................................................... 11 

4.2.1 Electromagnetic Simulation. ..................................................................... 11 

4.2.2 Electrical Model. ....................................................................................... 13 

4.2.3 Behavioral Model. ..................................................................................... 15 

CHAPTER 5 Results and Analysis ................................................................................... 16 

5.1 Electromagnetic Simulation Results .................................................................... 16 



vii 

 

5.1.1 Input Reflection. ........................................................................................ 16 

5.1.2 Port Isolation. ............................................................................................ 21 

5.1.3 Insertion Loss. ........................................................................................... 24 

5.2 Electrical Model Results ...................................................................................... 30 

5.2.1 Characteristic Impedance. ......................................................................... 30 

5.2.2 Capacitive Coupling between the Lines, C1. ............................................ 33 

5.2.3 Capacitive Coupling to Ground, C2. ......................................................... 36 

5.2.4 Inductive Coupling Coefficient, K. ........................................................... 39 

5.2.5 Series Inductance, L. ................................................................................. 42 

5.2.6 Series Resistance, R. .................................................................................. 45 

5.3 Behavioral Model Results .................................................................................... 48 

CHAPTER 6 Optimum Structures .................................................................................... 52 

6.1 Optimum Structures ............................................................................................. 52 

CHAPTER 7 Conclusions and Future Work .................................................................... 55 

7.1 Conclusions.......................................................................................................... 55 

7.2 Future Work ......................................................................................................... 56 

References ......................................................................................................................... 57 

Appendix ........................................................................................................................... 60 

  



viii 

 

List of Figures 

Figure 1. Line Coupling ...................................................................................................... 4 

Figure 2. Transmission Line Dimensions ........................................................................... 4 

Figure 3. Coplanar Waveguide ........................................................................................... 6 

Figure 4. Coplanar Microstrips with M1 Ground Plane ..................................................... 6 

Figure 5. Coplanar Waveguide with M1 Ground Plane ..................................................... 6 

Figure 6. Bottom-Up Experiment Process ........................................................................ 10 

Figure 7. Transmission Line Port Numbers ...................................................................... 12 

Figure 8. Electrical Model of Differential Transmission Lines ........................................ 13 

Figure 9. Waveguide: S11 Magnitude, 10 µm Lines, 100 GHz ......................................... 18 

Figure 10. Waveguide: S11 Magnitude, 10 µm Lines, 200 GHz ....................................... 18 

Figure 11. Microstrip: S11 Magnitude, 10 µm Lines, 100 GHz ........................................ 20 

Figure 12. Microstrip: S11 Magnitude, 10 µm Lines, 200 GHz ........................................ 20 

Figure 13. Waveguide: S21 Magnitude, 10 µm Lines, 100 GHz ....................................... 22 

Figure 14. Waveguide: S21 Magnitude, 10 µm Lines, 200 GHz ....................................... 22 

Figure 15. Microstrip: S21 Magnitude, 10 µm Lines, 100 GHz ........................................ 23 

Figure 16. Microstrip: S21 Magnitude, 10 µm Lines, 200 GHz ........................................ 24 

Figure 17. Waveguide: Loss by Frequency, 10 µm Lines, 5 µm Spacing ........................ 25 

Figure 18. CPW Loss by Line Width for 6, 7, and 8 µm Spacing .................................... 26 

Figure 19. Waveguide: Loss by Spacing, 10 µm Lines, 200 GHz ................................... 27 

Figure 20. Waveguide: Loss by Line Width, 5 µm Spacing, 200 GHz ............................ 27 

Figure 21. Microstrip: Loss by Frequency, 10 µm Lines, 5 µm Spacing ......................... 28 

Figure 22. Microstrip: Loss by Spacing, 10 µm Lines, 200 GHz ..................................... 29 



ix 

 

Figure 23. Microstrip: Loss by Line Width, 5 µm Spacing, 200 GHz ............................. 29 

Figure 24. Waveguide: Characteristic Impedance, 5 µm Lines, 100 GHz ....................... 31 

Figure 25. Waveguide: Characteristic Impedance, 5 µm Lines, 200 GHz ....................... 31 

Figure 26. Microstrip: Characteristic Impedance, 5 µm Lines, 100 GHz ........................ 32 

Figure 27. Microstrip: Characteristic Impedance, 5 µm Lines, 200 GHz ........................ 33 

Figure 28. Waveguide: Capacitive Coupling, 5 µm Lines, 100 GHz ............................... 34 

Figure 29. Waveguide:  Capacitive Coupling, 5 µm Lines, 200 GHz .............................. 34 

Figure 30. Microstrip: Capacitive Coupling, 5 µm Lines, 100 GHz ................................ 35 

Figure 31. Microstrip: Capacitive Coupling, 5 µm Lines, 200 GHz ................................ 36 

Figure 32. Waveguide: Capacitive Coupling to Ground, 5 µm Lines, 100 GHz.............. 37 

Figure 33. Waveguide: Capacitive Coupling to Ground, 5 µm Lines, 200 GHz.............. 37 

Figure 34. Microstrip: Capacitive Coupling to Ground, 5 µm Lines, 100 GHz ............... 38 

Figure 35. Microstrip: Capacitive Coupling to Ground, 5 µm Lines, 200 GHz ............... 39 

Figure 36. Waveguide: Inductive Coupling Coefficient, 5 µm Lines, 100 GHz .............. 40 

Figure 37. Waveguide: Inductive Coupling Coefficient, 5 µm Lines, 200 GHz .............. 40 

Figure 38. Microstrip: Inductive Coupling Coefficient, 5 µm Lines, 100 GHz ............... 41 

Figure 39. Microstrip: Inductive Coupling Coefficient, 5 µm Lines, 200 GHz ............... 42 

Figure 40. Waveguide: Series Inductance, 5 µm Lines, 100 GHz .................................... 43 

Figure 41. Waveguide: Series Inductance, 5 µm Lines, 200 GHz .................................... 43 

Figure 42. Microstrip: Series Inductance, 5 µm Lines, 100 GHz ..................................... 44 

Figure 43. Microstrip: Series Inductance, 5 µm Line Lines, 200GHz .............................. 45 

Figure 44. Waveguide: Series Resistance, 5 µm Lines, 100 GHz .................................... 46 

Figure 45. Waveguide: Series Resistance, 5 µm Lines, 200 GHz .................................... 47 



x 

 

Figure 46. Microstrip: Series Resistance, 5 µm Lines, 100 GHz ..................................... 47 

Figure 47. Microstrip: Series Resistance, 5 µm Lines, 200 GHz ..................................... 48 

Figure 48. Waveguide: Propagation Delay, 5 µm Lines, 100 GHz .................................. 49 

Figure 49. Waveguide: Propagation Delay, 5 µm Lines, 200 GHz .................................. 49 

Figure 50. Microstrip: Propagation Delay, 5 µm Lines, 100 GHz ................................... 51 

Figure 51. Microstrip: Propagation Delay, 5 µm Lines, 200 GHz ................................... 51 



xi 

 

List of Tables 

Table 1 Optimum Coplanar Waveguide Line Dimensions ............................................... 53 

Table 2  Optimum Coplanar Microstrip Line Dimensions ............................................... 53 



2 

 

Abstract 

This work assesses the operation of differential transmission lines between 100 GHz and 

200 GHz in a 65 nm CMOS process. The focus of this research is the impact of line dimensions 

and frequency on the odd-mode operation of coupled transmission lines. The research serves to 

identify a set of lines and line dimensions with high characteristic impedance, low loss, and 

minimal delay times. The following four coupled transmission line structures are assessed: 

coplanar waveguides, coplanar waveguides with a metal 1 ground layer, coplanar microstrips, 

and coplanar microstrips with a metal 1 ground plane. Simulation results from Sonnet and 

Cadence are presented. With these simulation results, overall trends of the losses, characteristic 

impedance, and delay of the lines are assessed. The results of this work yield a set of differential 

transmission lines with at least fifty ohm characteristic impedance, less than 1 decibel of loss, 

and propagation delay low enough to sustain a 100 - 200 GHz signal. 



3 

 

 

CHAPTER 1 

Introduction 

Transmission lines are an integral part of all analog and digital circuits as circuits cannot 

be completed without them. They serve the important role of carrying electrical signals from one 

component to another in larger systems. However, in most process design kits, transmission line 

models are not provided. So, in order to build a robust circuit, the limitations of the transmission 

lines carrying the signals need to be thoroughly explored and understood. It is imperative to 

accurately predict its behavior in the desired process and frequency range to ensure a working 

circuit. 

This work serves to identify the limitations of differential transmission lines for use in a 

65 nm circuit operating between 100 GHz and 200 GHz. In modeling these lines, attention is 

paid to the loss, electrical parameters (e.g. resistive, inductive, and capacitive values), 

characteristic impedance, and delay of the lines.  

The thesis is organized as follows. First, an overview of pertinent background 

information is discussed followed by an explanation of the experiment and a presentation of the 

results. In Chapter 2, coupled transmission lines and the areas of concern for the transmission 

line model is explored. Following the overview of relevant background information, Chapter 3 

presents a literature review of previous work on modeling differential lines. Chapter 4 presents 

the experimentation process. The SONNET and Cadence Virtuoso simulation results are 

discussed in Chapter 5 and the optimal structures and line dimensions for achieving the 

optimization goals are presented in Chapter 6. Lastly, conclusions and future work are found in 

Chapter 7.  



4 

 

 

CHAPTER 2 

Differential Transmission Lines 

2.1 Overview of Coupled Structures  

Differential lines are a subset of coupled structures. They can be coupled in one of two 

ways, as demonstrated in Figure 1 below.  

 

Figure 1. Line Coupling 

In Figure 1a, broadside coupling is displayed. Edge coupling can be seen in Figure 1b. 

Broadside coupled structures are typically implemented on separate metal layers within a metal 

stack, while edge-coupled structures are implemented on the same metal layer. This work 

focuses on modeling edge-coupled structures.  

The typical line dimensions of coupled lines are as shown in Figure 2. W represents the 

width of the signal line. H is the height from the substrate. S is the spacing between the lines. L 

(not shown) represents the length of the line. In this work, H and L are kept constant while W 

and S are varied.   

 

Figure 2. Transmission Line Dimensions 

Differential lines may be symmetric or asymmetric. Symmetric lines maintain identical 

widths for the length of the line while asymmetric lines are two lines of different widths. The 



5 

 

 

spacing between the lines can also be uniform or varied. These lines are referred to as uniformly 

or nonuniformly-coupled lines, respectively. The transmission lines studied in this work are 

symmetric uniformly-coupled lines.  

2.1.1 Excitation Modes. Coupled lines have two modes of excitation - even and odd. In 

even mode excitation, both transmission lines are at the same potential and the signal in both 

lines travel in the same direction. In odd mode excitation, the two lines are at equal, but opposite 

potentials and the signals in each line travel in the opposite direction of each other. The lines in 

this work are evaluated for odd mode behavior.  

2.2 Evaluated Structures 

The following two structures are considered: coplanar microstrip lines, and coplanar 

waveguides.  Each structure is also assessed with the addition of the metal 1 (M1) ground plane 

for a total of four evaluated structures.  

2.2.1 Coplanar Microstrips. Figure 2 in section 2.1 depicts a cross-section of two 

coplanar microstrip lines. Coplanar microstrip lines are a set of two or more conducting 

microstrips implemented on the same metal layer running parallel and adjacent to each other [1], 

as shown in Figure 1b. Typically, the width of the lines, spacing between the lines, and height of 

the line remain constant for the length of the lines.   

2.2.2 Coplanar Waveguides. Coplanar waveguides, first introduced in 1969 [2], consist 

of one or more conducting strips on a single plane running parallel and adjacent to each other 

with two ground lines running parallel and adjacent to the signal lines on a single plane. A cross-

section of a coupled coplanar waveguide can be seen in Figure 3.  

In a coplanar waveguide, the width of the ground line is typically equal to or slightly 

larger than the width of the signal lines. Previous research has shown that at lower frequencies, it 



6 

 

 

is beneficial to have the ground lines slightly larger than the width of the signal lines. In this 

work, increasing the width of the ground line presented minimal improvements. So, the width of 

the ground line and the signal lines are modeled with one variable, W. Additionally, the spacing 

between the signal lines, S, is modeled with the same variable as the spacing between the signal 

and ground lines. This is shown in Figure 3 where W represents the width of all lines and S 

represents the spacing between all lines.  

 

Figure 3. Coplanar Waveguide 

2.2.3 M1 Ground Plane. For each of the two structures, the impact of an additional 

ground plane is also considered. This ground plane is implemented on the lowest metal layer, 

M1, for each of the structures as shown in Figures 4-5. Then, the impact of this structural 

modification on the optimization goals is assessed.  

 

Figure 4. Coplanar Microstrips with M1 Ground Plane 

 

Figure 5. Coplanar Waveguide with M1 Ground Plane  



7 

 

 

CHAPTER 3 

Impact of Structural Variances on Differential Transmission Lines 

The objective in modeling the transmission lines is to optimize the loss, delay, and 

characteristic impedance of the line, and to understand the impact of line dimensions and 

frequency on these values. Past researchers have presented a multitude of methods for extracting 

the losses of the line [3]-[8], the characteristic impedance [9]-[10], and propagation through the 

line [11]-[12] in an effort to predict the behavior of the line prior to fabrication. It has been 

shown that line width, spacing between the lines, and distance to the ground level all have effects 

on the parameters this research strives to optimize. In the following sections, an overview of 

previous work on modeling the influence of the structural variances is reviewed. 

3.1 Impact of Line Height 

For high-frequency applications, it is best to implement the transmission line on the top 

metal layer. The additional layers of dielectric, and hence the increased distance between the 

transmission line and the lossy substrate, minimize the loss when transmitting signals through the 

lines. In addition to resulting in lower losses, the top metal implementation of the transmission 

line has direct impacts on the characteristic impedance of the lines. It has been shown that the top 

metal layer implementation allows the realization of higher transmission-line impedances than 

lower metal implementations [13]. For these reasons, the transmission lines modeled in this work 

are implemented on the uppermost metal layer of a 9-metal layer stack.  

3.2 Impact of Line Dimensions 

The user-defined dimensions of the transmission line, as shown in Figure 2 of section 2.1, 

also have varying impacts on the delay, characteristic impedance, and losses of the transmission 



8 

 

 

line. First, the width of the line has a direct impact on the line resistance [9]. Wider lines yield 

lower resistance, but at the cost of lower characteristic impedances [4].  

Spacing between the lines impacts the coupling between the lines, the characteristic 

impedance, and the capacitive loss of the lines. Wide spacing paired with narrow lines allow for 

high transmission-line impedance, as demonstrated in [14]. However, increased characteristic 

impedance leads to less coupling between the lines. The spacing also impacts the fringing 

capacitance, which is double its even-mode value in odd-mode operation. Decreased spacing 

leads to more capacitance, which negatively impacts the delay of the signal. This work serves to 

find optimal width and spacing combinations by exploring line widths and line spacing of 5 µm - 

10 µm.  

3.3 Impact of M1 Ground Plane 

The addition of the ground plane on the lowest metal layer, M1, also has implications on 

the design. Without the M1 ground plane, the transmission line is not only susceptible to its own 

losses, but also suffers from substrate coupling and is susceptible to the losses of the lossy 

substrate. Previous researchers were able to combat this without the M1 ground plane by 

maintaining narrower line widths and narrower spacing [14].  It has been shown that in this 

configuration, inductance becomes largely dependent on the line separation and capacitance is 

directly affected by the height of the line. Higher inductance values are achieved with increase 

spacing. If desired, higher capacitances are realized by implementing the transmission line on 

lower metal layers to decrease the height, resulting in a slow wave propagation, but lower loss.   

Although implementing the M1 ground plane shields the transmission line from the 

losses of the substrate, previous researchers found that with the M1 ground, series resistance is 

larger and inductance is lower [14] than they would be without the M1 ground. Researchers in 



9 

 

 

[14] found that in a coplanar waveguide, the addition of the M1 ground plane causes the return 

current to flow mainly through the ground plane, as opposed to through the ground lines. This 

structural difference enables the use of wider lines, allowing lower resistive loss to be realized. 

However, in area-constrained designs, the use of wider lines consumes more chip space and does 

not allow for a compact design. Additionally, wider lines lower characteristic impedance [4].  

Patterned ground lines were explored in [15] and [16], where the ground plane consisted 

of parallel coplanar ground lines that ran perpendicular to the conductor lines. The structure 

effectively reduced eddy current losses by ensuring that ground current only runs perpendicular 

to the current in the conductor lines. However, it was shown that beyond 10 GHz, these benefits 

were minimal. So, patterned ground lines are not explored in this work.  

 

  



10 

 

 

CHAPTER 4 

Experimental Procedure and Setup 

This work explores differential transmission lines for use in a circuit operating in the 

frequency range of 100 GHz – 200 GHz using a TSMC 65 nm CMOS process. A bottom up 

approach is applied in modeling the lines. The flowchart of the overall process is presented 

below in Figure 6.  These steps are further explained in the following sections. 

 

Figure 6. Bottom-Up Experiment Process 

4.1 Modeling the Metal Stack 

Prior to modeling the transmission lines, an accurate representation of the substrate stack 

on which the transmission lines will be implemented is needed. In modeling the stack, both 

Sonnet and Agilent Advanced Design System (ADS) software are used. ADS allows for a 



11 

 

 

substrate representation identical to that of the TSMC process design kit (PDK) due to the ability 

to change the location of the metal. For example, in ADS it is possible to place a metal in the 

substrate that intrudes up into the layer above or a metal that intrudes down into the layer below, 

such as in the PDK. However, the limitations of Sonnet software do not allow for such 

variations. In order to accurately represent the substrate in Sonnet, layers need to be lumped 

together, and effective dielectric constants and thicknesses need to be calculated. To ensure that 

the representation of the substrate in Sonnet is correct, S-parameter values are generated in both 

ADS and Sonnet and compared to ensure that the results are close. Additionally, the impact of 

modeling the lines with an expanded or lumped structure is also explored.  It is important to note 

that ADS is 2.5D software, while Sonnet is 3D software. So, variations in the results are 

expected. However, they are not expected to be large.  

4.2 Modeling the Transmission Lines 

As previously stated, in a typical PDK, transmission line models are not provided. So, it 

is important to model the transmission lines to get an accurate representation of their behavior 

prior to fabrication to avoid costly reruns.  

4.2.1 Electromagnetic Simulation. The first step of modeling the lines includes an 

electromagnetic simulation and the generation of S-parameter data. S-parameters allow for an 

understanding of the propagation of RF signals through a network. Using S-parameters, 

important characteristics of a network, e.g. input and output reflection, transmission gain/loss, 

and isolation between the ports, can be easily extracted.  

In this work, S-parameters for a 4-port differential network are generated to understand 

the response of the lines to differential stimulus. The port numbering of the 4-port network in 

Sonnet is shown in Figure 7. Although the focus of the work is on differential operation, 



12 

 

 

numbering the ports as follows in Sonnet allows for the generation of both common-mode and 

differential-mode data.  

 

Figure 7. Transmission Line Port Numbers 

In modeling the differential lines, the S-parameter values of concern are those that model 

the input and output reflection, input and output differential insertion loss, and isolation between 

the ports. These S-parameters are summarized below in equations (1)-(3) where Vr1, Vr2, and Vr3 

represent the reflected voltages at ports 1, 2, and 3, respectively. Z1, Z2, and Z3 are the 

impedances at ports 1, 2, and 3, respectively, and Vi1 is the incident wave at port 1. These 

quantities are then used to calculate S11, the input refection, S21, the isolation between the ports, 

and S31, the insertion loss. Since the transmission lines represent a reciprocal network and the 

lines are symmetric, S11 = S22. Hence, the input and output reflection are the same. Similarly, S31 

= S13, and S21 = S12.  

    
   

   
                (1) 

    √
  

  
 (
   

   
)        (2) 

    √
  

  
 (
   

   
 )      (3) 

S-parameters are most often expressed in decibels (dB), as shown in equation (4), where 

SXY represents a generic S-parameter quantity between port X and port Y. Insertion loss is 



13 

 

 

typically expressed as a positive dB quantity as shown in equation (5). In this work, all S-

parameter data is expressed in dB per unit length.  

    (  )         (   )      (4)  

               (  )          (   )     (5)  

4.2.2 Electrical Model. The results of the electromagnetic simulation are translated into 

an equivalent electrical model.  In this work, the electrical parameters of interest include the 

resistance (R), inductance (L), and capacitance (C) values, and the characteristic impedance 

these values yield. The lines are represented by the equivalent electrical model shown below in 

Figure 8.  

 

Figure 8. Electrical Model of Differential Transmission Lines  

Figure 8 shows a single section of a coupled line.  In reality, transmission lines are an 

infinite number of these sections serially connected. The resistance in the line is represented by 

R. The series inductance of the line is represented as L, with the mutual inductance between the 

lines represented by M. The capacitive components in the line are the coupling capacitance 

between the two signal lines and the coupling capacitance between the lines and the substrate, 

shown as C1 and C2, respectively.  

To estimate the electrical models, the Sonnet N-coupled line output is used. First, the 

accuracy of the N-coupled line output data is verified in ADS using the following line-fitting 



14 

 

 

method: ten sections of the equivalent circuit model, as shown in Figure 8, is simulated 

iteratively against the S-parameters generated in Sonnet using optimization and tuning. The 

iterations are continued until the RLC values of the equivalent circuit yield S-parameters that 

mimic the ones generated for the transmission line. These RLC values are then used as shown in 

equations (6) and (7) to calculate the characteristic impedance of the line, Z0, and are compared 

to the RLC and Z0 values generated in Sonnet. 

   √
     

      
      (6) 

  
 

√  
 
 

 
      (7) 

After verifying the Sonnet N-coupled line data, a parametric sweep of the width and 

spacing for values of 5 µm – 10 µm is completed for each of the structures in 10 GHz frequency 

bands from 100 GHz to 200 GHz. Recall that in the coplanar waveguide, the signal and ground 

widths are kept the same. Also, the separation between all lines is modeled with a single 

parameter. The height and length of the lines remain constant. The height is dictated by the 

TSMC PDK. The length is modeled at 100 µm. In varying the width of the lines and separation 

between them, this work seeks to identify the trends in coupling capacitance, inductance, 

resistance, and characteristic impedance of the lines as impacted by the width and spacing of the 

lines and operating frequency.  

The parametric sweep generates a total of 288 parameter files for each 10 GHz frequency 

band - 144 files for the electromagnetic simulation results, and 144 files for the electrical 

simulation results. Each parameter file includes 200 extraction points with either 3 or 6 data 

points of interest at each extraction point for the S-parameter and N-coupled line files, 

respectively. Due to this large amount of data, an application is developed to quickly extract the 

data from the output files. The application allows a user to import either a single parameter file, 



15 

 

 

or an entire directory of files. The points are then extracted from the parameter file(s) and 

exported in .csv file format for further analysis in Matlab or excel. Screenshots of the graphical 

user interface (GUI) and the complete code for this application can be found in the Appendix. 

4.2.3 Behavioral Model. Next, the results of the electrical modeling are used to model 

the behavior of the lines. To understand the behavior of the lines, Cadence Virtuoso is used to 

measure the propagation delay. In Cadence Virtuoso the mtline part is used and the Sonnet N-

coupled Line output file is specified as the mtline RLGC input. Since the lines will be applied to 

a circuit in which the lines operate in odd mode, the mtline part is excited differentially. A 

transient simulation is run and the time it takes for the input to reach the output is measured 

using the Cadence calculator delay function.  

  



16 

 

 

CHAPTER 5 

Results and Analysis 

As previously stated, the goal of the work is to understand how variations in line 

dimensions and operating frequency impact the electromagnetic, electrical, and behavioral 

aspects of transmission lines implemented in a 65 nm CMOS process. Below, the results of the 

simulations are presented.  

5.1 Electromagnetic Simulation Results  

5.1.1 Input Reflection. S11 is used to model the reflection of the input signal. In equation 

(1) of Section 4.2.1 it is shown that S11 is the ratio of the reflected signal to the incident signal. 

So, smaller S11 values are ideal as they indicate less of the signal being reflected at the input port. 

In the following section, S11 is plotted in millidecibels (mdB) per unit length. On the decibel 

scale, larger negative magnitudes of S11 are indicative of less reflection of the signal at the input. 

First, the input reflection in the coplanar waveguide is assessed. Then, the reflection in the 

coplanar microstrip lines is assessed and compared to the reflection in the coplanar waveguide. 

For both structures, the impact of the additional M1 ground plane on input reflection is also 

discussed.  

In the coplanar waveguide, input reflection is heavily impacted by the width of the lines, 

spacing between the lines, and frequency. For both the coplanar waveguide with the M1 ground 

plane (CPWM1) and the coplanar waveguide without the M1 ground plane (CPW), input 

reflection decreases with increases in line width, and increases with increases in frequency. 

Recall, in the coplanar waveguides the widths of the four lines are modeled with a single 

parameter. Likewise, the spacing between the four lines is modeled with a single parameter.  



17 

 

 

In the CPWM1, there is a noticeable change in the dependency on spacing and in the 

amount of reflection as compared to the CPW. However, the addition of the M1 ground plane is 

only apparent at line widths of 6 micron or greater. At 5 micron line widths, the value of S11 in 

the CPWM1 is identical to that seen in the 5 micron lines of the CPW. In the electromagnetic 

results that follow, all trends in the CPWM1 apply to line widths of 6-10 micron (µm).  

As stated, the M1 ground plane causes a discernable change in the input reflection. 

Without the M1 ground, input reflection in the coplanar waveguide is directly related to spacing. 

This can be seen in Figures 9 and 10 where S11 for the CPW becomes less negative with 

increases in spacing, indicating more reflection of the signal. With the addition of the M1 ground 

plane, input reflection displays an inverse relationship with the separation between the lines. As 

separation between the lines increases, input reflection decreases in the CPWM1. It can also be 

seen that for smaller spacing values, e.g. below 8.5 micron, the CPW displays less reflection than 

the CPWM1. Also, the CPWM1 shows less of a dependency on spacing than the CPW.  The 

impact of spacing and frequency on the CPW and CPWM1 can be seen in Figures 9 and 10, 

where S11 is plotted against spacing for 10 micron wide lines, at 100 GHz and 200 GHz 

respectively. The reflection in the CPW is plotted with a solid line while the reflection in the 

CPWM1 is plotted with a dashed line.  

Overall, the CPW boasts S11 values between -97.5 and -369 mdB/µm. The CPW yields 

S11 values in a range of -133 to -366 mdB/µm. 

 



18 

 

 

 

Figure 9. Waveguide: S11 Magnitude, 10 µm Lines, 100 GHz 

 

Figure 10. Waveguide: S11 Magnitude, 10 µm Lines, 200 GHz 

5 6 7 8 9 10
-340

-320

-300

-280

-260

-240

-220

-200

-180

S
1
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
-350

-300

-250

-200

-150

-100

S
1
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



19 

 

 

The input reflection increases directly with frequency in both the coplanar microstrips 

with the M1 ground plane (CPMM1) and the coplanar microstrips without the M1 ground 

(CPM). However, the dependency on width and spacing varies for the two structures. In the 

CPM, reflection decreases as width of the signal lines increase, and increases as spacing between 

the lines increase. Also, wider lines are more heavily impacted by spacing than narrower lines.  

In the CPMM1, the input reflection decreases overall when compared to the CPM. There 

is, however, an interesting impact of width and spacing on the input reflection. The input 

reflection in the CPMM1 lines of smaller widths does not display the same pattern of 

dependency on width and spacing as wider lines. In the 5-6 micron wide lines, input reflection 

decreases as width increases from 5 to 6 micron. However, in the 7-10 micron wide lines, 

reflection increases by as much as a third as the width of the lines increase. The dependency on 

spacing is also opposite at wider signal widths than the narrower widths. In Figures 11 and 12, 

the input reflection’s dependency on spacing and frequency for the CPM and CPMM1 can be 

seen. The CPM is plotted with a solid line and the CPMM1 is plotted with a dashed line for a 

line width of 10 µm at 100 GHz and 200 GHz respectively.  

Compared to the waveguide, the microstrips show more reflection when the M1 ground is 

removed. However, the addition if the M1 ground causes the microstrips to show a slight 

improvement in input reflection over the waveguide. In the CPM, the simulated S11 values are 

between -80.3 and -163 mdB/µm. The CPMM1 displays input reflection between -156 and -367 

mdB/µm. 

 



20 

 

 

 

Figure 11. Microstrip: S11 Magnitude, 10 µm Lines, 100 GHz 

 

Figure 12. Microstrip: S11 Magnitude, 10 µm Lines, 200 GHz 

5 6 7 8 9 10
-230

-220

-210

-200

-190

-180

-170

-160

-150

-140

S
1
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
-170

-160

-150

-140

-130

-120

-110

-100

S
1
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



21 

 

 

5.1.2 Port Isolation. S21 is used to model the isolation between the ports. See Figure 7 of 

section 4.2.1 for the port numbering. In modeling isolation between the ports, S21 is plotted in 

mdB/µm, and hence, larger negative quantities are ideal. This displays more isolation between 

the ports and indicates that an input signal on one line has less of an impact on the signal in the 

second line. Port isolation in the waveguides is discussed first. Then, isolation in the microstrips 

are discussed and compared to isolation in the waveguides.  

In both the coplanar waveguides, isolation between the ports decreases with increases in 

frequency. This can be seen in Figures 13 and 14 where S21 for the CPW and CPWM1 is plotted 

for 10-micron-wide lines at 100 GHz and 200 GHz respectively. In the CPW, isolation between 

the ports improves with both increases in spacing and width. However, isolation is more heavily 

impacted by spacing between the lines than it is by the width of the lines. As spacing increases 

from 5 to 10 micron for a constant width, S21 improves by approximately 15 mdB/µm. However, 

as width increases from 5 to 10 micron with constant spacing, port isolation only improves by 

1.8 mdB/µm. Recall that spacing between the four lines is modeled with a single parameter in 

the waveguides. The widths of the four lines are also modeled with a single parameter.  

In the CPWM1, the addition of the ground plane is again unapparent until line width 

reaches 6 micron. In the CPWM1 lines of 6-10 micron width, the addition of the M1 ground 

plane causes a noticeable improvement in isolation between the ports. Similar to the CPW, 

isolation between the ports improves as both width and spacing increases in the CPWM1. 

However, isolation in the CPWM1 displays a more heavy dependence on spacing than in the 

CPW. This can be seen in Figures 13 and 14, where the S21 plot against spacing for the CPWM1 

has a larger negative slope than the line for the CPW. Overall, S21 in the CPWM1 ranges from -

154 to -275 mdB/µm while S21 in the CPW ranges from -97.4 to -173 mdB/µm. 



22 

 

 

 

Figure 13. Waveguide: S21 Magnitude, 10 µm Lines, 100 GHz 

 

Figure 14. Waveguide: S21 Magnitude, 10 µm Lines, 200 GHz 

5 6 7 8 9 10
-280

-260

-240

-220

-200

-180

-160

-140

S
2
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
-240

-220

-200

-180

-160

-140

-120

-100

S
2
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



23 

 

 

In the CPM, isolation between the ports is minimally impacted by the width of the lines. 

Isolation improves as spacing increases and worsens as frequency increases. This can be seen in 

Figures 15 and 16 where 10-micron-wide microstrip lines are plotted against spacing at 100 GHz 

and 200 GHz respectively for the CPM and CPMM1. 

In the CPMM1, the addition of the M1 ground yields an overall improvement in the 

isolation between the ports. The CPMM1 displays the same pattern of dependency on width, 

spacing and frequency as the CPM. However, the coplanar microstrips with the M1 ground plane 

are more heavily impacted by spacing than the coplanar microstrips without the M1 ground. 

Overall, the CPM and CPMM1 displays better isolation between the ports than the CPW and 

CPWM1, respectively. In the CPM, simulated values of S21 are between –81.3 and –149 

mdB/µm. In the CPMM1, isolation between the ports has simulated values between -145 and -

273 mdB/µm. 

 

Figure 15. Microstrip: S21 Magnitude, 10 µm Lines, 100 GHz 

5 6 7 8 9 10
-280

-260

-240

-220

-200

-180

-160

-140

-120

S
2
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



24 

 

 

 

Figure 16. Microstrip: S21 Magnitude, 10 µm Lines, 200 GHz 

5.1.3 Insertion Loss. S31 is used to model the transmission/insertion loss in the lines. 

Ideally, S31 will display values closer to 0, indicating a larger amount of the input signal reaching 

the output. In the discussion that follows, first the insertion loss in the CPW and CPWM1 are 

discussed. Then, the insertion loss in the CPM and CPMM1 are discussed and compared to the 

loss in the CPW and CPWM1.  

In both the CPW and CPWM1, insertion loss increases as frequency increases. This can 

be seen in Figure 17, where the loss in the waveguides is plotted against frequency for 10-

micron-wide lines with 5 micron spacing. The solid lines represent the loss in the CPW. The 

dashed lines represent the loss in the CPWM1. 

5 6 7 8 9 10
-240

-220

-200

-180

-160

-140

-120

-100

-80

S
2
1
 M

ag
ni

tu
de

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



25 

 

 

 

Figure 17. Waveguide: Loss by Frequency, 10 µm Lines, 5 µm Spacing 

Width and spacing have an interesting impact on the transmission of the signal in the 

CPW. Overall, loss decreases as the width of the lines decrease. However, narrower spaced lines 

are more heavily impacted by width of the lines than wider spaced lines. Recall, the spacing 

between all lines is the same and the widths of all lines are the same. For line widths below 7.8 

micron, insertion loss increases linearly with increases in spacing. However, when line width 

increases above 7.8 micron, this no longer applies. This is due to the fact that as spacing 

increases, the loss decreases at a slower rate with increases in line width. This can be seen in 

Figure 18 where the loss is plotted for line spacing values of 5, 6, and 7 micron at 200 GHz 

against signal line width. It can be seen that above 7.8 micron line width, the loss in the lines 

separated by 5 micron is larger than the loss of the lines separated by 6 micron. At 10 micron line 

width, the loss in the lines with 6 µm spacing approaches the loss in the lines separated by 7 µm.  

100 120 140 160 180 200
2

2.5

3

3.5

4

4.5

5

5.5

In
se

rt
si

o
n 

L
os

s 
M

ag
n
it

ud
e 

(m
il

li
d
ec

ib
el

s/
m

ic
ro

n
)

Frequency (GHz)

 

 
No M1

M1



26 

 

 

 

Figure 18. CPW Loss by Line Width for 6, 7, and 8 µm Spacing 

In the CPWM1, there is an overall decrease in loss compared to the CPW. The addition 

of the M1 ground also causes a change in the dependency on spacing and width. In the CPWM1, 

insertion loss displays an inverse relationship with spacing. As spacing increases from 5 to 10 

micron, loss in the lines decreases and more of the signal is transmitted. Also, for line widths of 

6-10 micron, the loss decreases as width increases. This can be seen in Figures 19-20 where the 

loss of the CPW and CPWM1 are plotted together against width and spacing. 

Overall, insertion loss for the CPW ranges from 2.2 to 14.4 mdB/µm. The CPWM1 has 

less insertion loss with simulated values between 1.3 and 4.7 mdB/µm. 

 

5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

In
se

rt
io

n
 L

o
ss

 (
m

il
li

d
ec

ib
el

/m
ic

ro
n)

Line Width (micron)

 

 
Spacing = 5.000000

Spacing = 6.000000

Spacing = 7.000000



27 

 

 

 

Figure 19. Waveguide: Loss by Spacing, 10 µm Lines, 200 GHz 

 

Figure 20. Waveguide: Loss by Line Width, 5 µm Spacing, 200 GHz 

5 6 7 8 9 10
2.5

3

3.5

4

4.5

5

5.5

6

In
se

rt
io

n
 L

o
ss

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz

5 6 7 8 9 10
3

3.5

4

4.5

5

5.5

6

6.5

7

In
se

rt
io

n
 L

o
ss

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Width (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



28 

 

 

In the CPM, loss improves as both width and spacing increases, and worsens as 

frequency increases. These trends are shown in Figures 21-23 where the loss in the CPM and 

CPMMI are plotted together against frequency, spacing, and width, respectively.  

The CPMM1 yields an improvement in loss over the CPM and is less impacted by 

changing frequencies than the CPMM1. This can be seen above in Figure 21 where 5-micron-

wide lines with 10 micron spacing are plotted against frequency for the CPM and CPMM1. 

Overall, the insertion loss decreases with increases in spacing for the CPMM1, as shown in 

Figure 22.  

However, the impact of line width on insertion loss varies in the CPMM1. Insertion loss 

improves slightly with increases in width until the width of the line reaches 7 micron. Further 

increases in line width cause insertion loss to increase and less of the signal to be transmitted. 

This pattern is visible in Figure 23.  

 

Figure 21. Microstrip: Loss by Frequency, 10 µm Lines, 5 µm Spacing 

100 120 140 160 180 200
0

2

4

6

8

10

12

14

In
se

rt
io

n
 L

o
ss

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Frequency (GHz)

 

 
No M1

M1



29 

 

 

 

Figure 22. Microstrip: Loss by Spacing, 10 µm Lines, 200 GHz 

 

Figure 23. Microstrip: Loss by Line Width, 5 µm Spacing, 200 GHz 

5 6 7 8 9 10
2

4

6

8

10

12

14

In
se

rt
io

n
 L

o
ss

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz

5 6 7 8 9 10
2

4

6

8

10

12

14

16

18

In
se

rt
io

n
 L

o
ss

 (
m

il
li

d
ec

ib
el

s/
m

ic
ro

n
)

Line Width (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



30 

 

 

Compared to the CPW, the CPM has more insertion loss with a range of 3.98 to 16.7 

mdB/µm. The CPMM1 yields the least amount of loss and a slight improvement in insertion loss 

over the CPWM1 with a range of 1.33 to 3.94 mdB/µm. 

5.2 Electrical Model Results 

5.2.1 Characteristic Impedance. Figures 24-25 show the simulated values of the 

characteristic impedance of the CPW and CPWM1 against spacing for a constant line width of 5 

µm at 100 GHz and 200 GHz respectively.  Recall that the spacing between all lines is equal, and 

the widths of all lines are equal in the coplanar waveguides. 

In Figures 24 and 25, the solid lines represent the simulated characteristic impedance of 

the CPW while the dashed lines represent the simulated characteristic impedance of the 

CPWM1.  It can be seen that the characteristic impedance remains fairly constant across the 

frequencies. It decreases by less than 1 ohm as frequency increases from 100 GHz to 200 GHz. 

The line dimensions, however, impact the characteristic impedance more strongly. In both the 

CPW and CPWM1, the characteristic impedance is inversely related to the width of the signal 

and ground lines and directly related to the spacing. The CPW yields characteristic impedances 

of 34.9-55.8 ohms across all width-spacing combinations. The addition of the M1 ground plane 

leads to an average drop in the characteristic impedance of 5 ohms and the CPWM1 yields 

values of 30.0-47.7 ohms across the width and spacing combinations.  



31 

 

 

 

Figure 24. Waveguide: Characteristic Impedance, 5 µm Lines, 100 GHz 

 

Figure 25. Waveguide: Characteristic Impedance, 5 µm Lines, 200 GHz  

5 6 7 8 9 10
38

40

42

44

46

48

50

52

54

56

Z
0
 (

oh
m

s)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
38

40

42

44

46

48

50

52

54

56

Z
0
 (

oh
m

s)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



32 

 

 

In Figures 26 and 27, the characteristic impedance of the CPM and CPMM1 are shown 

for a line width of 5 µm, at 100 GHz and 200 GHz respectively. The solid lines represent the 

CPM while the dashed lines represent the CPMM1.  

The coplanar microstrips yield higher characteristic impedances than the coplanar 

waveguides, and again the characteristic impedance remains fairly constant across the 

frequencies. In both the CPM and CPMM1, the characteristic impedance is impacted by the line 

dimensions in the same fashion that it is impacted in the coplanar waveguide. It decreases as the 

lines become wider and increases when the spacing between the lines is increased.  A total range 

of 39.4-59.3 ohms is observed in the microstrip lines without the M1 ground plane. The addition 

of the M1 ground plane again leads to characteristic impedances approximately 10 ohms lower 

than that seen on the microstrip lines without the M1 ground plane. In the microstrip lines with 

the M1 ground plane characteristic impedances between 31.6 and 48.5 ohms are achieved.  

 

Figure 26. Microstrip: Characteristic Impedance, 5 µm Lines, 100 GHz 

5 6 7 8 9 10
40

45

50

55

60

Z
0
 (

oh
m

s)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



33 

 

 

 

Figure 27. Microstrip: Characteristic Impedance, 5 µm Lines, 200 GHz 

5.2.2 Capacitive Coupling between the Lines, C1. The coupling capacitance between 

the lines is represented by C1 in Figure 8 of section 4.2.2. Figures 28-29 show the simulated 

values of the coupling capacitance for the CPW and CPWM1 with line widths of 5 µm at 100 

GHz and 200 GHz respectively.  

By comparing Figures 28 and 29, it can be seen that the capacitance between the lines 

remains flat across the frequencies.  In the coplanar waveguide without the M1 ground plane 

(CPW) the capacitance between the lines, C1, is impacted by both changes in line width and 

changes in spacing. C1 decreases as spacing increases and increases as the width of the line 

increases. Without the M1 ground plane, the coplanar waveguide yields C1 values of 26.6-49.7 

attoFarad/micron.  

 

5 6 7 8 9 10
40

45

50

55

60

Z
0
 (

oh
m

s)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



34 

 

 

 

Figure 28. Waveguide: Capacitive Coupling, 5 µm Lines, 100 GHz 

 

Figure 29. Waveguide:  Capacitive Coupling, 5 µm Lines, 200 GHz 

5 6 7 8 9 10
15

20

25

30

35

40

45

C
ou

p
li

n
g 

C
ap

ac
it

an
ce

 (
at

to
F

ar
ad

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
15

20

25

30

35

40

45

C
ou

p
li

n
g 

C
ap

ac
it

an
ce

 (
at

to
F

ar
ad

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



35 

 

 

On the other hand, capacitance between the lines in the coplanar waveguide with the M1 

ground (CPWM1) is only impacted by the spacing between the lines. A signal of 5-10 µm yields 

the same capacitive coupling given a constant spacing between the lines in the CPWM1. Overall, 

the addition of the M1 ground plane causes the capacitance to decrease by an amount of 10-13 

attoFarad/micron. In the CPWM1, C1 ranges from 16.2-36.9 attoFarad/micron. 

Figures 30 and 31 show the coupling capacitance for the coplanar microstrip lines with 

and without the M1 ground plane, CPMM1 and CPM, respectively, for line widths of 5 µm at 

100 and 200 GHz respectively. The CPM is shown with a solid line. The dashed lines represent 

the simulated C1 values for the CPMM1.  

 

Figure 30. Microstrip: Capacitive Coupling, 5 µm Lines, 100 GHz 

In the CPM, the capacitance between the lines is impacted only by the spacing between 

the lines for both the structure with the M1 ground plane and without.  As spacing increases, the 

simulated values of the coupling capacitance decreases. For a given spacing, the value remains 

5 6 7 8 9 10
15

20

25

30

35

40

45

50

C
ou

p
li

n
g 

C
ap

ac
it

an
ce

 (
at

to
F

ar
ad

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



36 

 

 

constant across all width and frequency values. Without the M1 ground plane, C1 is simulated 

between 28.9 and 53.5 attoFarad/micron. The addition of the M1 ground plane causes C1 to 

decrease to a range of 16.4-37.3 attoFarad/micron. Compared to the CPW, the CPM shows 

increased capacitance between the lines. However, the CPMM1 and CPWM1 yield nearly 

identical coupling capacitance values.  

 

Figure 31. Microstrip: Capacitive Coupling, 5 µm Lines, 200 GHz 

5.2.3 Capacitive Coupling to Ground, C2. The coupling capacitance between the lines 

and the substrate is represented by C2 in Figure 8 of section 4.2.2. Figures 32 and 33 show the 

simulated values of C2 for the CPW and CPWM1 with line widths of 5 µm at 100 GHz and 200 

GHz respectively. The values shown are per C2 capacitor. So, the total capacitance to substrate 

in a single section of the line is twice the amount seen in the figures.  

5 6 7 8 9 10
15

20

25

30

35

40

45

50

C
ou

p
li

n
g 

C
ap

ac
it

an
ce

 (
at

to
F

ar
ad

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



37 

 

 

 

Figure 32. Waveguide: Capacitive Coupling to Ground, 5 µm Lines, 100 GHz 

 

Figure 33. Waveguide: Capacitive Coupling to Ground, 5 µm Lines, 200 GHz 

5 6 7 8 9 10
90

100

110

120

130

140

C
ap

ac
it

an
ce

 t
o
 G

ro
un

d
 (

at
to

F
ar

ad
s/

m
ic

ro
n)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
90

100

110

120

130

140

C
ap

ac
it

an
ce

 t
o

 G
ro

un
d

 (
at

to
F

ar
ad

s/
m

ic
ro

n)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



38 

 

 

In the CPW, the capacitance to the ground plane remains flat across all frequencies. 

There is an increase in the simulated value of C2 as the width of the line increases and a decrease 

as spacing between the lines increases. Recall, the spacing between the signal lines and ground 

lines is modeled at identical values. The width of the signal and ground lines is also modeled 

with a single variable. Across all dimensions, the CPW has values ranging from 92.4 - 140.8 

attoFarad/micron. The addition of the M1 ground plane causes this value to increase to 119.3 - 

177.5 attoFarad/micron.  

In Figures 34 and 35, the simulated results of C2 for the CPM and CPMM1 with line 

widths of 5 µm at 100 GHz and 200 GHz, respectively, are shown. The solid line represents the 

C2 values of the CPM and the dashed lines show the C2 values of the CPMM1.   

 

Figure 34. Microstrip: Capacitive Coupling to Ground, 5 µm Lines, 100 GHz 

5 6 7 8 9 10
80

90

100

110

120

130

C
ap

ac
it

an
ce

 t
o
 G

ro
un

d
 (

at
to

F
ar

ad
s/

m
ic

ro
n)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



39 

 

 

 

Figure 35. Microstrip: Capacitive Coupling to Ground, 5 µm Lines, 200 GHz 

In the CPM, capacitance between the lines and the ground, C2, remains fairly constant 

across the frequencies. However, C2 increases with the width of the line and decreases as 

spacing between the lines increases. In the CPM, C2 ranges from 83.0 – 115.3 attoFarad/micron. 

The addition of the M1 ground plane leads to an increase in C2 by an average amount of 31.8 

attoFarad/micron. In the CPMM1, C2 increases to a range of 116.4 – 164.2 attoFarad/micron. 

Overall, the microstrip lines display less capacitive coupling to ground than the waveguides.    

5.2.4 Inductive Coupling Coefficient, K. The inductive coupling coefficient, K, is 

calculated from the extracted values as shown in equation (7) of Section 4.2. The inductive 

coupling coefficient can have any value between 0 and 1. A value of 0.5-1 represents lines that 

have strong inductive coupling, while values of 0-0.5 represent lines that are weakly coupled.  In 

Figures 36-37, the simulated results of K for the CPW and CPWM1 are shown for a line width of 

5 µm at 100 GHz and 200 GHz respectively.  

5 6 7 8 9 10
80

90

100

110

120

130

C
ap

ac
it

an
ce

 t
o

 G
ro

un
d

 (
at

to
F

ar
ad

s/
m

ic
ro

n)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



40 

 

 

 

Figure 36. Waveguide: Inductive Coupling Coefficient, 5 µm Lines, 100 GHz 

 

Figure 37. Waveguide: Inductive Coupling Coefficient, 5 µm Lines, 200 GHz 

5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

K

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

K

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



41 

 

 

In both the CPW and CPWM1, the coupling coefficient remains fairly flat across the 

frequencies, decreases as spacing increases, and increases as the width of the lines increase. 

Recall that the spacing between all lines is the same and the width of all lines is the same in the 

coplanar waveguides. In the CPW, K ranges from 0.32 to 0.38. The addition of the M1 ground to 

the waveguides causes an overall drop in the inductive coupling coefficient to a range of 0.11 - 

0.21. 

Figures 38 and 39 show the simulated values of the inductive coupling coefficient against 

spacing for the CPM and CPMM1 with line widths of 5 micron at 100 and 200 GHz, 

respectively. It can be seen that the CPM displays more inductive coupling than the CPW. The 

addition of the M1 ground plane to the coplanar microstrips causes the CPMM1 to have nearly 

identical inductive coupling coefficients as the CPWM1.  

 

Figure 38. Microstrip: Inductive Coupling Coefficient, 5 µm Lines, 100 GHz 

5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

K

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



42 

 

 

 

Figure 39. Microstrip: Inductive Coupling Coefficient, 5 µm Lines, 200 GHz 

In the microstrip lines, inductive coupling between the lines also displays a flat response 

across the frequencies. In both the CPM and CPMM1, K decreases with increases in line width 

and decreases with increases in spacing. The CPM lines remain strongly coupled and maintain an 

inductive coupling coefficient with a range of 0.42 - 0.55 across all spacing and width 

dimensions. The addition of the ground plane causes the lines to display less coupling. In the 

CPMM1, the inductive coupling coefficient drops to a range of 0.11-0.24 across all spacing and 

width dimensions.  

5.2.5 Series Inductance, L. The series inductance is represented by L in Figure 8 of 

section 4.2.2. Figures 40 and 41 show the simulated value of L for the CPW and CPWM1 with 

line widths of 5 µm at 100 and 200 GHz respectively. The values shown are per inductor, L. So, 

the total series inductance in a single line is twice the amount shown in the figures.  

5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

K

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



43 

 

 

 

Figure 40. Waveguide: Series Inductance, 5 µm Lines, 100 GHz 

 

Figure 41. Waveguide: Series Inductance, 5 µm Lines, 200 GHz 

5 6 7 8 9 10
160

180

200

220

240

260

280

S
er

ie
s 

In
du

ct
an

ce
 (

fe
m

to
H

en
ri

es
/m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
160

180

200

220

240

260

280

S
er

ie
s 

In
du

ct
an

ce
 (

fe
m

to
H

en
ri

es
/m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



44 

 

 

The series inductance of the coplanar waveguides is minimally impacted by increases in 

frequency, as shown in Figures 40 and 41. In both the CPW and CPWM1, the series inductance 

decreases as width of the signal line increases from 5 to 10 micron.  However, the CPW is more 

heavily impacted by spacing than the CPWM1.  In the CPW, L exhibits an increase of 45 – 54 

femtoHenry/micron as width remains constant and spacing increases from 5 to 10 µm. However, 

when the M1 ground is added, L only increases by 9 – 15 femtoHenry/micron given a constant 

width and an increase in spacing from 5 µm to 10 µm. Overall, the CPW displays a higher 

inductance value than the CPWM1. In the CPW, L is between 187.9 femtoHenry/micron and 

273.8 femtoHenry/micron. When the M1 ground is added, these values decrease to a range of 

125 to 170 femtoHenry/micron. Recall that these values are per inductor, L, in Figure 8 of 

section 4.2.2. In a single line, the total inductance will be twice the amounts discussed above. 

In Figures 42 and 43, the series inductance of the coplanar microstrip lines is shown. 

 

Figure 42. Microstrip: Series Inductance, 5 µm Lines, 100 GHz 

5 6 7 8 9 10
150

200

250

300

350

S
er

ie
s 

In
du

ct
an

ce
 (

fe
m

to
H

en
ri

es
/m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



45 

 

 

 

Figure 43. Microstrip: Series Inductance, 5 µm Line Lines, 200GHz 

In the coplanar microstrip lines, the series inductance, L, displays the same trends for 

both the lines with the M1 ground plane and without. L is relatively unaffected by changes in 

spacing or the operating frequency, and as line width increases, L decreases. The impact of 

frequency and spacing between the lines can be seen in Figures 42 and 43 where the simulated 

values remain mostly flat across spacing and are nearly identical at 100 and 200 GHz, 

respectively. It can also be seen in Figures 42 and 43 that L is, however, strongly impacted by 

the change in the location of the ground plane. With the introduction of the M1 ground plane, 

series inductance along the line is cut in half. In the CPM, L ranges from 284.0 – 345.5 

femtoHenry/micron. The CPMM1 sees a drop in L to a range of 125.9 – 178.1 

femtoHenry/micron. Overall, the microstrips have higher series inductance than the waveguides. 

5.2.6 Series Resistance, R. The series resistance is represented by R in Figure 8 of 

section 4.2.2. Figures 44 and 45 show the simulated value of R for the CPW and CPWM1 with 

5 6 7 8 9 10
150

200

250

300

350

S
er

ie
s 

In
du

ct
an

ce
 (

fe
m

to
H

en
ri

es
/m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



46 

 

 

line widths of 5 µm at 100 GHz and 200 GHz, respectively. The values shown are per resistor. 

So, the total series resistance in a single line is twice the amount shown in the figures.  

In the coplanar waveguide, R is impacted by frequency, width of the signal line, and 

spacing. In both the CPW and CPWM1, the value of R increases as frequency increases and as 

spacing decreases. As expected, R decreases as the width of the signal lines increase. The 

addition of the M1 ground plane has an interesting impact on the resistance of the line. Notice in 

figures 44 and 45 that there is a change in the slope of the resistance when the M1 ground plane 

is added.  With the addition of the M1 ground plane, the value of the resistance becomes more 

constant across the spacing values for a given width. Also, as frequency increases from 100 GHz 

to 200 GHz, the resistance increases at a slower rate in the CPWM1 than it does in the CPW. The 

total range of values for the CPW is 5.12 - 14.0 milliohms/micron and 5.81 - 12.5 

milliohms/micron for the CPWM1.  

 

Figure 44. Waveguide: Series Resistance, 5 µm Lines, 100 GHz 

5 6 7 8 9 10
8

8.5

9

9.5

R
es

is
ta

n
ce

 (
m

il
li

o
h
m

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



47 

 

 

 

Figure 45. Waveguide: Series Resistance, 5 µm Lines, 200 GHz 

The series resistance of the coplanar microstrip lines is shown below in Figures 46 and 47 

for line widths of 5 µm at 100 GHz and 200 GHz respectively.  

 

Figure 46. Microstrip: Series Resistance, 5 µm Lines, 100 GHz 

5 6 7 8 9 10
12

12.5

13

13.5

14

14.5

R
es

is
ta

n
ce

 (
m

il
li

o
h
m

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz

5 6 7 8 9 10
6.5

7

7.5

8

8.5

9

9.5

R
es

is
ta

n
ce

 (
m

il
li

o
h
m

s/
m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz



48 

 

 

 

Figure 47. Microstrip: Series Resistance, 5 µm Lines, 200 GHz 

In the coplanar microstrip lines, R is impacted directly by frequency and inversely by 

spacing and width. The CPM has resistance values of 3.9 – 10 milliohms/micron across the 

varying spacing-width combinations. The addition of the M1 ground plane leads to an increase 

of approximately 2 milliohms/micron, and the CPMM1 has a resistance range of 5.9 – 12.4 

milliohms/micron. The series resistance in the lines of the CPM is slightly less than the series 

resistance in the lines of the CPW. However, the CPMM1 and CPWM1 show similar R values.  

5.3 Behavioral Model Results 

The propagation delay of the lines per unit length for the coplanar waveguides is shown 

in Figures 48 and 49, for 5 µm lines at 100 GHz and 200 GHz, respectively. The solid line 

represents the CPW while the dashed line represents the CPWM1. Recall that in the coplanar 

waveguide the spacing between the signal lines is the same as the spacing between the signal and 

ground lines, and the width of the signal lines is the same as the width of the ground lines.  

5 6 7 8 9 10
9.5

10

10.5

11

11.5

12

12.5

R
es

is
ta

n
ce

 (
m

il
li

o
h

m
s/

m
ic

ro
n

)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



49 

 

 

 

Figure 48. Waveguide: Propagation Delay, 5 µm Lines, 100 GHz  

 

Figure 49. Waveguide: Propagation Delay, 5 µm Lines, 200 GHz 

5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

8

P
ro

p
ag

at
io

n
 d

el
ay

 (
fe

m
to

se
co

n
ds

/m
ic

ro
n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

8

P
ro

p
ag

at
io

n
 d

el
ay

 (
fe

m
to

se
co

n
ds

/m
ic

ro
n
)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



50 

 

 

In Figures 48 and 49, it can be seen that changes in spacing and maximum frequency 

have little impact on the propagation delay. This is also true of the width of the lines. As spacing 

increases from 5 to 10 micron for a constant width, the delay decreases by a mere 0.019 

femtoseconds/micron. As width increases from 5 to 10 micron for a constant spacing, the 

propagation delay decreases by 0.05 femtoseconds/micron. The addition of the M1 ground plane 

has the largest impact on the propagation delay, but it is still small enough to be considered 

negligible. The addition of the M1 ground causes an overall decrease in the propagation time, by 

an average amount of 0.1-0.3 femtoseconds/micron. In the CPW, propagation times range from 

6.54 to 6.827 femtoseconds/micron. The signals in the CPWM1 travel slightly faster with a 

propagation delay of 6.23 - 6.72 femtoseconds/micron. However, for signals traveling at 100 – 

200 GHz, the propagation delay can be considered flat across the frequencies, width, and spacing 

for both the CPW and CPWM1.  

Figures 50 and 51 show the propagation delay per unit length for coplanar microstrips 

with lines of 5 micron width at 100 GHz and 200 GHz respectively. In the CPM and CPMM1, 

changes in width, spacing, and frequency again have negligible impacts on the propagation 

delay.  As seen with the CPW and CPWM1, the largest impact on the delay is seen with the 

addition of the M1 ground plane, which causes an overall decrease in the propagation delay. 

However, the changes are still minimal and the delay of the coplanar microstrips can also be 

considered flat across all spacing, width, and frequency combinations.  The propagation delay 

per unit length of the CPM is simulated as 6.59 – 6.77 femtoseconds/micron. With the addition 

of the M1 ground plane to the coplanar microstrip structure, the value of the propagation delay 

drops to 6.28 – 6.49 femtoseconds/micron.   



51 

 

 

 

Figure 50. Microstrip: Propagation Delay, 5 µm Lines, 100 GHz 

 

Figure 51. Microstrip: Propagation Delay, 5 µm Lines, 200 GHz  

5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

8
P

ro
p

ag
at

io
n

 d
el

ay
 (

fe
m

to
se

co
n

ds
/m

ic
ro

n
)

Line Spacing (micron)

 

 
No M1, 100 GHz

M1, 100 GHz

5 6 7 8 9 10
5

5.5

6

6.5

7

7.5

8

P
ro

p
ag

at
io

n
 d

el
ay

 (
fe

m
to

se
co

n
ds

/m
ic

ro
n

)

Line Spacing (micron)

 

 
No M1, 200 GHz

M1, 200 GHz



52 

 

 

CHAPTER 6 

Optimum Structures  

In modeling the transmission lines, this work seeks to identify a set of structures that 

minimize delay and loss, and maximize characteristic impedance. Since the propagation delay of 

the lines are all small enough to support 100 – 200 GHz signals, the focus in identifying 

optimum structures is narrowed down to two optimization goals - the loss in the lines and the 

characteristic impedance of the lines. Ideally, the optimum structures will have characteristic 

impedance values of 50 ohms or higher, and loss values of 1 dB or less. For the 100 µm lines 

used in this work, that equates to a loss of 10 mdB/µm or less. Below, a set of line dimension 

that allow all three optimization goals to be met is presented.  

6.1 Optimum Structures 

To achieve characteristic impedances of 50 ohms or more, using line widths of 5 – 10 

micron and spacing of 5 – 10 micron in a TSMC 65 nm process, it is best to eliminate the M1 

ground. In the coplanar waveguide, the structures with the M1 ground achieve a maximum 

characteristic impedance of 47.7 ohms. The coplanar microstrip with the M1 ground yield a 

maximum characteristic impedance of 48.5 ohms. In order to achieve higher characteristic 

impedances with the M1 ground plane, lines separated by more than 10 µm are needed. 

However, in this work, separation between the lines is restricted to 10 micron. 

To achieve loss below 10 mdB/µm while achieving characteristic impedance above 50 

ohms, the coplanar waveguide structure is recommended. In the coplanar microstrip, there is 

only one width-spacing combination that allows all three optimization goals to be met across the 

100 GHz to 200 GHz frequency band.  



53 

 

 

The width and spacing dimensions in Tables 1 and 2 are for the coplanar waveguide and 

coplanar microstrips, respectively, without the M1 ground plane. The lines in Table 1 yield 50.3 

- 55.8 ohms of characteristic impedance across the frequencies of 100-200 GHz for a coplanar 

waveguide. The line dimensions in Table 2 yield a characteristic impedance of 59.2 ohms. It can 

be seen that the coplanar waveguide allows for more options than the coplanar microstrip in 

achieving characteristic impedances of 50 ohms or more and loss of 10 mdB/µm or less.  

Table 1 

Optimum Coplanar Waveguide Line Dimensions  

Width (µm) Spacing (µm) 

5 8, 9, 10 

6 9, 10 

7 10 

 

Table 2  

Optimum Coplanar Microstrip Line Dimensions 

Width (µm) Spacing (µm) 

10 10 

 

The coplanar waveguide lines shown in Table 1 are loosely coupled with a simulated 

value of the inductive coupling coefficient between 0.3236 and 0.3445. Total series inductance in 

these lines is between 502 and 546 femtoHenry/micron. The total parasitic resistance ranges 

from 12.8-24 milliohms/micron for these structures. Capacitance values are small. The total 

capacitance seen between the ground and the signal lines is between 185 and 200 



54 

 

 

attoFarad/micron, and the capacitance between the lines is simulated between 53.2 and 63.2 

attoFarad/micron.   

The coplanar microstrip lines referenced in Table 2 have an inductive coupling 

coefficient of 0.4204-0.4322 as frequency increases from 100 GHz to 200 GHz. The total 

observed series inductance in this structure ranges from 571 to 575.8 femtoHenry/micron. The 

total resistance of the coplanar microstrip structure above is 7.95-11.82 milliohms/micron. 

Capacitance to the substrate falls between 199 and 199.4 attoFarad/micron, and the coupling 

capacitance between the lines ranges from 32.9 and 33.1 attoFarad/micron. 

The propagation delay for the structures in Table 1 and Table 2 is 6.6-6.7 

femtoseconds/micron.  

  



55 

 

 

CHAPTER 7 

Conclusions and Future Work  

7.1 Conclusions 

This work sought to identify a set of lines with characteristic impedance above 50 ohms, 

loss below 1 dB, and propagation velocity sufficient to handle a 100-200 GHz signal in a 65 nm 

CMOS process. In identifying the lines, the following four differential transmission line 

structures were analyzed: the coplanar waveguide, with and without the lowest metal ground 

layer, and the coplanar microstrips, with and without the lowest metal ground layer. In 

identifying the impact of line width, spacing between the lines, and frequency, the width of the 

lines and spacing between the lines is swept from 5 to 10 micron, and the frequency was swept 

from 100 to 200 GHz. In the coplanar waveguide, where the ground lines run parallel to the 

signal lines, the width of the ground and signal lines remain constant and are swept together. 

Additionally, the spacing between the signal lines and the spacing between the signal and ground 

lines are also modeled with a single variable and swept simultaneously.  

Simulations suggest that in order to achieve the three goals listed above, it is best to use 

the coplanar waveguide without the M1 ground plane. Using line widths of 5-7 micron and 

spacing between the lines of 8-10 micron in the coplanar waveguide, it is possible to meet all 

three optimization goals. The coplanar microstrip lines were also able to meet all three goals 

when line width and line spacing are both 10 micron. The addition of the M1 ground plane 

lowers loss in both the coplanar waveguide and the coplanar microstrip lines. However, with the 

addition of the M1 ground plane, neither the coplanar waveguide nor the coplanar microstrip 

lines were able to achieve 50 ohm characteristic impedances. To achieve characteristic 

impedances that high in structures with the M1 ground plane, it would be necessary to increase 



56 

 

 

the spacing between the lines above 10 micron. Although larger separation between the lines is 

allowable, this work sought to identify lines that meet these goals within the 5-10 micron limits. 

So, the M1 ground plane needs to be eliminated within these dimensions.  

7.2 Future Work 

Recall that in this work several dimensions of the coplanar waveguide are modeled with a 

single variable. More specifically, the spacing between the signal lines and the spacing between 

the signal and ground lines are modeled with one variable. Also, the width of both the signal 

lines and the ground lines are modeled with a single variable. 

Future work should identify the impact of spacing between signal and ground lines and 

spacing between the signal lines separately in the coplanar waveguides. For example, model the 

spacing between the signal and ground lines as SG, and model the spacing between the two 

signal lines as SS. Again, sweep both SG and SS from 5 micron to 10 micron. Identify the 

impact by studying the changes in the electromagnetic, electrical, and behavioral parameters of 

the lines as SG remains constant for a swept SS, and as SS remains constant for a swept SG. 

Future work should also model the width of the ground line and the width of the signal 

line separately in the coplanar waveguides. Although increases in the width of the ground line 

were found to be minimal, an exhaustive exploration of the impact of the ground lines having a 

different width than the signal lines is beneficial. In doing so, the width of the ground line can be 

modeled using a single variable, WG, while the width of the signal line is modeled with a 

separate variable, WS. Then, the impacts of these variable values on the electromagnetic, 

electrical, and behavioral models of the transmission lines should be explored.   



57 

 

 

References 

[1] R. K. Mongia, I. J. Bahl, P. Shartia, and J. Hong, RF and Microwave Coupled-Line 

Circuits, Second ed. United States: Artech House, Inc, 2007. 

[2]  C. P. Wen, "Coplanar Waveguide: A Surface Strip Transmission Line Suitable for 

Nonreciprocal Gyromagnetic Device Applications," Microwave Theory and Techniques, 

IEEE Transactions on, vol. 17, pp. 1087-1090, 1969. 

[3]  L. F. Tiemeijer, R. M. T. Pijper, J. A. van Steenwijk, and W. Van Noort, "Systematic 

Lumped-Element Modeling of Differential IC Transmission Lines," Microwave Theory 

and Techniques, IEEE Transactions on, vol. 57, pp. 1572-1580, 2009. 

[4]  B. Razavi, "The role of monolithic transmission lines in high-speed integrated circuits," 

in Custom Integrated Circuits Conference, 2002. Proceedings of the IEEE 2002, 2002, 

pp. 367-374. 

[5] H. M. Greenhouse, "Design of Planar Rectangular Microelectronic Inductors," Parts, 

Hybrids, and Packaging, IEEE Transactions on, vol. 10, pp. 101-109, 1974. 

[6]  T. Sakurai and K. Tamaru, "Simple formulas for two- and three-dimensional 

capacitances," Electron Devices, IEEE Transactions on, vol. 30, pp. 183-185, 1983. 

[7]  N. Delorme, M. Belleville, and J. Chilo, "Inductance and capacitance analytic formulas 

for VLSI interconnects," Electronics Letters, vol. 32, pp. 996-997, 1996. 

[8] U. Choudhury and A. Sangiovanni-Vincentelli, "Automatic generation of analytical 

models for interconnect capacitances," Computer-Aided Design of Integrated Circuits 

and Systems, IEEE Transactions on, vol. 14, pp. 470-480, 1995. 



58 

 

 

[9] W. R. Eisenstadt and Y. Eo, "S-parameter-based IC interconnect transmission line 

characterization," Components, Hybrids, and Manufacturing Technology, IEEE 

Transactions on, vol. 15, pp. 483-490, 1992. 

[10] L. F. Tiemeijer, R. M. T. Pijper, and W. Van Noort, "On the Accuracy of the Parameters 

Extracted From S-Parameter Measurements Taken on Differential IC Transmission 

Lines," Microwave Theory and Techniques, IEEE Transactions on, vol. 57, pp. 1581-

1588, 2009. 

[11]  A. Hamidipour, M. Jahn, H. Jaeger, and A. Stelzer, "Characterization of Differential 

Transmission Lines for Integrated Millimeter-Wave Applications," Microwave and 

Wireless Components Letters, IEEE, vol. 22, pp. 188-190, 2012. 

[12] B. Gustavsen, "Time delay identification for transmission line modeling," in Signal 

Propagation on Interconnects, 2004. Proceedings. 8th IEEE Workshop on, 2004, pp. 

103-106. 

[13] C. Warns, W. Menzel, and H. Schumacher, "Transmission lines and passive elements for 

multilayer coplanar circuits on silicon," Microwave Theory and Techniques, IEEE 

Transactions on, vol. 46, pp. 616-622, 1998. 

[14] B. Kleveland, C. H. Diaz, D. Vook, L. Madden, T. H. Lee, and S. S. Wong, "Exploiting 

CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design," 

Solid-State Circuits, IEEE Journal of, vol. 36, pp. 1480-1488, 2001. 

[15] L. F. Tiemeijer, R. M. T. Pijper, R. J. Havens, and O. Hubert, "Low-Loss Patterned 

Ground Shield Interconnect Transmission Lines in Advanced IC Processes," Microwave 

Theory and Techniques, IEEE Transactions on, vol. 55, pp. 561-570, 2007. 



59 

 

 

[16] L. F. Tiemeijer, R. M. T. Pijper, R. J. Havens, and O. Hubert, "Corrections on "Low-Loss 

Patterned Ground Shield Interconnect Transmission Lines in Advanced IC Processes"," 

Microwave Theory and Techniques, IEEE Transactions on, vol. 55, pp. 1811-1811, 2007. 

 

 

 

  



60 

 

 

Appendix 

A.1 Graphical User Interface 

 

 

A.2 C# Code 
using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Data.SqlClient; 

using System.Data.Entity; 



61 

 

 

using System.Diagnostics; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Threading.Tasks; 

using System.Windows.Forms; 

using System.IO; 

 

namespace TLineDBFormApplication 

{ 

    public partial class DBForm : Form 

    { 

        // 

        //global variables declaration 

        // 

        private string fileName, folderName;   

        string[] directoryContents; 

 

        //holds data from the input .dat file 

        float Z0; 

        float freq; 

        float L1_1, L2_1, L2_2; 

        float R1_1, R2_1, R2_2; 

        float C1_1, C2_1, C2_2; 

        float G1_1, G2_1, G2_2; 

 

        //holds data from the input .s4p file 

        double S11, S21, S31, S41; 

 

        string CSVfile; //location of output file 

 

        //structure and dimensions of the line 

        int lineWidth; 

        int lineSpacing; 

        string structure; 

 

        int RLCsaveCounter = 0;    //to identify data being extracted: 1=L, 2=R, 3=C, 4=G 

        int SParamsaveCounter = 0; //to identify data being extracted: 1=S11, 2=S21, 3=S31, 4=S41 

 

        tLineDataSet.StructuresRow newRLCline; 

        SparamDataSet.SParamTableRow newSParamline; 

 

        //file or directory flags, mutually exclusive 

        bool fileSelected = false; 

        bool directorySelected = false; 

 

        int paramFile = 0; 

        int formatFile = 0; 

        int[,] WidthSpacingArray = new int[61,2]; // stores width-spacing assignments 

        int arraylineWidth, arraylineSpacing; 

 



62 

 

 

        public DBForm() 

        { 

            InitializeComponent(); 

        } 

 

        private void DBForm_Load(object sender, EventArgs e) 

        { 

            // TODO: This line of code loads data into the 'sparamDataSet.SParamTable' table.  

            this.sParamTableTableAdapter.Fill(this.sparamDataSet.SParamTable); 

            // TODO: This line of code loads data into the 'tLineDataSet1.Structures' table.  

            this.structuresTableAdapter.Fill(this.tLineDataSet1.Structures); 

        } 

 

        //saves selected structure  

        private void strucExtractComboBox_SelectedIndexChanged(object sender, EventArgs e) 

        { 

            if (strucExtractComboBox.SelectedIndex == 0) 

                structure = "GSSG"; 

            else if (strucExtractComboBox.SelectedIndex == 1) 

                structure = "GSSG M1"; 

            else if (strucExtractComboBox.SelectedIndex == 2) 

                structure = "SS"; 

            else if (strucExtractComboBox.SelectedIndex == 3) 

                structure = "SS M1"; 

        }//end method strucExtractComboBox_SelectedIndexChanged 

 

        private void openButton_Click(object sender, EventArgs e) 

        { 

            DialogResult result;   //create dialog box enabling user to open file   

 

            using (OpenFileDialog fileChooser = new OpenFileDialog()) 

            { 

                result = fileChooser.ShowDialog();  // shows the OpenFile Dialog box 

                fileName = fileChooser.FileName;    //saves selected file name and location 

            } // end using fileChooser 

 

            // exit event handler if user clicked Cancel 

            if (result == DialogResult.OK)  //if user clicks ok 

            { 

                // show error if user specified invalid file 

                if (fileName == string.Empty)   //check that file name is not empty 

                    MessageBox.Show("Invalid File Name", "Error", 

                       MessageBoxButtons.OK, MessageBoxIcon.Error); 

                else 

                { 

                    fileTextBox.Width = 500;    //increase width of text box 

                    fileTextBox.Text = fileName;    //display selected file name in text box 

                    directoryTextBox.Text = "";     //clear directory text box 

                    fileSelected = true;    //tell the program that a single file was selected 

                    directorySelected = false;  //set directory flag to false 

                } // end else 



63 

 

 

            } // end if 

        }// end method openButton_Click 

 

        private void openDirectoryButton_Click(object sender, EventArgs e) 

        { 

            // Show the FolderBrowserDialog. 

            DialogResult result;  

 

            using (FolderBrowserDialog folderChooser = new FolderBrowserDialog()) 

            { 

                result = folderChooser.ShowDialog(); 

                folderName = folderChooser.SelectedPath; 

            } 

             

            if (result == DialogResult.OK)  //exit if user clicks cancel 

            { 

                if (folderName == string.Empty) 

                    MessageBox.Show("Invalid Directory Name", "Error", 

                       MessageBoxButtons.OK, MessageBoxIcon.Error); 

                else 

                { 

                    directoryTextBox.Width = 500; 

                    directoryTextBox.Text = folderName; 

                    fileTextBox.Text = ""; 

                    directorySelected = true; 

                    fileSelected = false; 

 

                    directoryContents = Directory.GetFiles(@folderName); 

                } 

            } 

        }   //end method openDirectory_Click 

       

        //saves file/directory name, and line dimensions, and calls appropriate extraction method 

        private void extractButton_Click(object sender, EventArgs e) 

        { 

            Stopwatch stopWatch = new Stopwatch(); 

             

            stopWatch.Start(); 

 

           try 

            { 

                if (structure == null) 

                { 

                    MessageBox.Show("For which Structure does this data apply?"); 

                } 

                else 

                { 

                    if (fileSelected || (fileTextBox.Text != ""))   //if a file was selected 

                    { 

                        //if width and/or spacing is missing, alert user and exit method 

                        if (widthTextBox.Text == "" || spacingTextBox.Text == "") 



64 

 

 

                        { 

                            MessageBox.Show("Oops! You forgot the line dimensions."); 

                            return; 

                        } 

                        else 

                        { 

                            fileName = fileTextBox.Text; //save file name 

 

                            bool DATFile = fileName.EndsWith(".dat",  

System.StringComparison.CurrentCultureIgnoreCase); 

                            bool s4pFile = fileName.EndsWith(".s4p",  

System.StringComparison.CurrentCultureIgnoreCase); 

 

                            if (DATFile || s4pFile) 

                            { 

                                //save string/character as an integer to the lineWidth and lineSpacing variables 

                                lineWidth = Int32.Parse(widthTextBox.Text); //save line width 

                                lineSpacing = Int32.Parse(spacingTextBox.Text); //save line spacing   

 

                                //call appropriate extraction method 

                                if (DATFile) 

                                    extractRLCValues();     

                                else if (s4pFile) 

                                    extractSParamValues(); 

                            } 

                            else //if not DATFile or s4pFile 

                            { 

                                MessageBox.Show("This application only accepts .dat and .s4p file formats."); 

                                return; 

                            } 

                        }         

                    }   //end if fileSelected 

                    else if (directorySelected) 

                    { 

                        foreach (string file in directoryContents) 

                        { 

                            fileName = file;    //save file from array to fileName 

 

                            bool DATFile = fileName.EndsWith(".dat",  

System.StringComparison.CurrentCultureIgnoreCase); 

                            bool s4pFile = fileName.EndsWith(".s4p",  

System.StringComparison.CurrentCultureIgnoreCase); 

 

                            if (fileName.Contains("output_files")) 

                            { 

                                //capture width-spacing-paramfile combinations 

                                CreateWidthSpacingArray();    

                            } 

                            else if (fileName.Contains("_param")) 

                            { 

                                //check file name to assign width and spacing 



65 

 

 

                                int index1; 

                                index1 = fileName.IndexOf("_param"); 

 

                                string parameter = fileName.Substring((index1 + 6), 2); 

 

                                paramFile = Int32.Parse(parameter); 

 

                                lineWidth = WidthSpacingArray[paramFile, 0]; 

                                lineSpacing = WidthSpacingArray[paramFile, 1]; 

                                 

                                //call appropriate extraction method 

                                if (DATFile) 

                                { 

                                    extractRLCValues(); 

                                } 

                                else if (s4pFile) 

                                { 

                                    extractSParamValues(); 

                                } 

                                else 

                                { 

                                    MessageBox.Show("This program only accepts .dat and .s4p file formats for  

extractions."); 

                                } 

                            } 

                        }   //end for each file in directory 

 

                        paramFile = 0;  //reset paramFile value after iterating through all the parameter files 

                    } //end if directory selected  

 

                    //clear array after extracting all data from the directory 

                    Array.Clear(WidthSpacingArray, 0, 61); 

 

                    stopWatch.Stop(); 

 

                    // Get the elapsed time as a TimeSpan value. 

                    TimeSpan ts = stopWatch.Elapsed; 

                    string elapsedTime = String.Format("{0:00}:{1:00}:{2:00}.{3:00}", ts.Hours, ts.Minutes,  

ts.Seconds, ts.Milliseconds / 10); 

 

                    MessageBox.Show("Extraction complete. Please review the data before exporting. Elapsed  

Time: " + elapsedTime); 

                } 

            }   //end try to extract file name and line dimensions 

            catch (Exception error) 

            { 

                string error1 = error.ToString(); 

                MessageBox.Show(error1); 

            } 

        }   // end method extractRLCButton_Click  

 



66 

 

 

        //extracts width and spacing key from the key file 

        private void CreateWidthSpacingArray() 

        { 

            FileStream fileFormat = null; 

 

            fileFormat = new FileStream(fileName, FileMode.Open, FileAccess.Read); 

 

            try 

            { 

                // specify file from which data is read (fileReader of StreamReader type) 

                //fileReader will read the data using the stream that was created 

                using (StreamReader fileReader = new StreamReader(fileFormat)) 

                { 

                    try 

                    { 

                        // go back to the beginning of the file 

                        fileFormat.Seek(0, SeekOrigin.Begin); 

 

                        // traverse file until end of file 

                        while (fileReader.Peek() > -1) 

                        { 

                            //zero out row 0 

                            WidthSpacingArray[0,0] = 0;     

                            WidthSpacingArray[0,1] = 0; 

 

                            //read in line 

                            string formatLine = fileReader.ReadLine(); 

 

                            if (formatLine.Contains("_param")) 

                            { 

                                //extract the parameter file number 

                                int index2; 

                                index2 = formatLine.IndexOf("_param"); 

 

                                string parameter = formatLine.Substring((index2 + 6), 2); 

 

                                formatFile = Int32.Parse(parameter); 

 

                                for (int i = 0; i < 4; i++) 

                                { 

                                    formatLine = fileReader.ReadLine(); //read in a new line 

 

                                    if (formatLine.StartsWith("W")) //capture line width for parameter file  

                                    { 

                                        int equal = formatLine.LastIndexOf("="); 

                                        string w = formatLine.Substring((equal + 2)); 

 

                                        int period = w.LastIndexOf(".0"); 

                                        w = w.Substring(0, period); 

                                         

                                        arraylineWidth = Int32.Parse(w); 



67 

 

 

                                    } 

                                    else if (formatLine.StartsWith("S"))    //capture spacing for parameter file 

                                    { 

                                        int equal = formatLine.LastIndexOf("=");                                   

                                        string s = formatLine.Substring((equal + 2)); 

                                         

                                        int period = s.LastIndexOf(".0"); 

                                        s = s.Substring(0, period); 

 

                                        arraylineSpacing = Int32.Parse(s); 

                                    } 

                                } 

                                 

                                //assign spacing and width of the parameter file 

                                //row = file number, column 0 = width, column 1 = spacing 

                                WidthSpacingArray[formatFile, 0] = arraylineWidth; 

                                WidthSpacingArray[formatFile, 1] = arraylineSpacing; 

 

                                //reset array variables before exiting the while loop to avoid errors 

                                arraylineWidth = 0; 

                                arraylineSpacing = 0; 

                            } 

                        } 

                    } 

                    catch (IOException ioExcept) // handle exception when errors occur within the try statement 

                    { 

                        MessageBox.Show(ioExcept.ToString()); 

                    } // end catch  

                } 

 

                fileFormat = null;   //dispose of fileFormat streamreader 

            } 

            catch (Exception except) 

            { 

                MessageBox.Show(except.ToString()); 

            }//end catch 

            finally //expose of reader if it has not been done already 

            { 

                if (fileFormat != null) 

                    fileFormat.Dispose(); 

            } 

        }   //end method CreateWidthSpacingArray 

         

        //Loops through file to extract data 

        private void extractRLCValues() 

        { 

            FileStream input = null; 

 

            input = new FileStream(fileName, FileMode.Open, FileAccess.Read); 

 

            try 



68 

 

 

            { 

                //specify file from which data is read (fileReader of StreamReader type) 

                //fileReader will read the data using the stream that was created 

                using (StreamReader fileReader = new StreamReader(input)) 

                { 

                    bool DATFile = fileName.EndsWith(".dat",  

System.StringComparison.CurrentCultureIgnoreCase); 

 

                    if (DATFile) 

                    { 

                        try 

                        { 

                            //go back to the beginning of the file 

                            input.Seek(0, SeekOrigin.Begin); 

 

                            //traverse file until end of file 

                            while (fileReader.Peek() > -1) 

                            { 

                                string[] inputFields; //stores individual pieces of data 

 

                                // get next line in file 

                                string inputLine = fileReader.ReadLine(); 

 

                                //flag to check for header or comment lines 

                                bool commentHeader = (inputLine.StartsWith("; ") ||  

inputLine.StartsWith("FORMAT")); 

 

                                // at the end of the file, exit method 

                                if (inputLine == null) 

                                    return; 

 

                                //statements below test the string for certain conditions to discard the  

                                //comment and formatting lines, and/or prepare the valid data for storing 

                                else if (commentHeader) //skip comment lines 

                                { 

                                    //check that Z0 is not in the comments 

                                    if (!inputLine.Contains("(ohms)")) 

                                    { 

                                        inputLine = string.Empty; 

                                    } 

                                    //if this is the header for the Z0, save Z0 

                                    else if (inputLine.Contains("(ohms)"))   

                                    { 

                                        //read in next line where Z0 is contained 

                                        inputLine = fileReader.ReadLine(); 

 

                                        //trim comment marker 

                                        inputLine = inputLine.Substring(1); 

 

                                        while (inputLine.StartsWith(" ")) 

                                        { 



69 

 

 

                                            inputLine = inputLine.Substring(1);  

                                        } 

 

                                        //Separate data by space between them. Save values into a separate array index  

                                        inputFields = inputLine.Split(' '); 

 

                                        Z0 = float.Parse(inputFields[2]); 

 

                                        inputLine = string.Empty; 

                                    } 

                                } 

                                //string manipulation to delete leading spaces that are read in 

                                //during the readline operation 

                                else if (inputLine.StartsWith(" ")) //if string begins with spaces 

                                { 

                                    //delete all leading spaces 

                                    while (inputLine.StartsWith(" "))   //while a leading space exists 

                                    { 

                                        inputLine = inputLine.Substring(1); //truncate first character 

                                    } 

 

                                    //skip formatting lines hidden by leading spaces 

                                    if (inputLine.StartsWith("R1:1")) 

                                    { 

                                        inputLine = string.Empty; 

                                    } 

                                    else if (inputLine.StartsWith("C1:1")) 

                                    { 

                                        inputLine = string.Empty; 

                                    } 

                                    else if (inputLine.StartsWith("G1:1")) 

                                    { 

                                        inputLine = string.Empty; 

                                    } 

                                } 

                                 

                                if (inputLine != string.Empty) 

                                { 

                                    //if colon is present eliminate colon and space after the colon 

                                    if (inputLine.Contains(':')) 

                                    { 

                                        int index; 

                                        index = inputLine.IndexOf(':'); 

 

                                        inputLine = inputLine.Remove(index, 2); 

                                    } 

 

                                    //separate data by space between them and save values into a separate array index  

                                    inputFields = inputLine.Split(' '); 

 

                                    if (inputFields.Length > 4)    //if data has been extracted and saved to the test array 



70 

 

 

                                    { 

                                        //check to see if frequency value is present 

                                        if (inputFields.Length > 6) //frequency value will require two additional cells 

                                        { 

                                            //extract frequency and L data  

                                            freq = float.Parse(inputFields[0]); 

                                            L1_1 = float.Parse(inputFields[2]); 

                                            L2_1 = float.Parse(inputFields[4]); 

                                            L2_2 = float.Parse(inputFields[6]); 

 

                                            RLCsaveCounter++;  //increment save counter 

                                        } //end save frequency and L data 

                                        else  //otherwise, read in R, C, G data 

                                        { 

                                            if (RLCsaveCounter == 1)    //reading in R data 

                                            { 

                                                R1_1 = float.Parse(inputFields[0]); 

                                                R2_1 = float.Parse(inputFields[2]); 

                                                R2_2 = float.Parse(inputFields[4]); 

 

                                                RLCsaveCounter++;  //increment save counter 

                                            } //end save R data 

                                            else if (RLCsaveCounter == 2)  //reading in C data 

                                            { 

                                                C1_1 = float.Parse(inputFields[0]); 

                                                C2_1 = float.Parse(inputFields[2]); 

                                                C2_2 = float.Parse(inputFields[4]); 

 

                                                RLCsaveCounter++;  //increment save counter 

                                            }   //end save C data 

                                            else if (RLCsaveCounter == 3)  //reading in G data 

                                            { 

                                                G1_1 = float.Parse(inputFields[0]); 

                                                G2_1 = float.Parse(inputFields[2]); 

                                                G2_2 = float.Parse(inputFields[4]); 

 

                                                //create new row 

                                                newRLCline = tLineDataSet1.Structures.NewStructuresRow(); 

 

                                                //save extracted values to the columns in the new row 

                                                newRLCline.Structure = structure; 

                                                newRLCline.Width = lineWidth; 

                                                newRLCline.Spacing = lineSpacing; 

                                                newRLCline.Frequency = freq; 

                                                newRLCline.R = (R1_1 * 1E-6) / 2; 

                                                newRLCline.Ls = (L1_1 * 1E-6) / (2 * 1E-9); 

                                                newRLCline.Km = L2_1 / (Math.Sqrt(L1_1 * L2_2)); 

                                                newRLCline.Csubs = (C1_1 * 1E-6) / 1E-12; 

                                                newRLCline.Cline = C2_1 / 1E-6; 

                                                newRLCline.Z0 = Z0; 

 



71 

 

 

                                                //check that row does not already exist 

                                                DataRow foundrow =  

tLineDataSet1.Structures.FindByStructureWidthSpacingFrequency( 

structure, lineWidth, lineSpacing, freq); 

 

                                                if (foundrow == null)  //if row does not exist already 

                                                { 

                                                    //add new row to the dataset 

                                                    tLineDataSet1.Structures.AddStructuresRow(newRLCline); 

                                                } 

                                                else if (foundrow != null) 

                                                { }//do nothing 

 

                                                RLCsaveCounter = 0;  //reset save counter 

                                                foundrow = null; //reset row check variable 

                                            } //end save G data 

                                        } //end copy R, C, G data  

                                    }//end copy data to variables and database  

                                } //end "if input not empty" 

                            } // end while not end of file 

                        } // end try statement 

                        catch (IOException ioExcept) // handle exception when errors occur within try statement 

                        { 

                            MessageBox.Show(ioExcept.ToString()); 

                        } // end catch           

                    }   //end if DATFile 

                    else //if not DATFile 

                    { 

                        MessageBox.Show("This application only accepts .dat file formats for RLGC data."); 

                    } 

 

                    input = null;   //dispose of input 

                }   //end using streamreader 

            } //end try 

            catch (Exception except) 

            { 

                MessageBox.Show(except.ToString()); 

            }//end catch 

            finally //expose of reader if it has not been done already 

            { 

                if (input != null) 

                    input.Dispose(); 

            } 

        } // end method extractRLCValues 

 

        //Loops through File to extract S-Parameter Data 

        private void extractSParamValues() 

        { 

            FileStream input = null; 

 

            input = new FileStream(fileName, FileMode.Open, FileAccess.Read); 



72 

 

 

 

            try 

            { 

                // set file from where data is read (fileReader of StreamReader type) 

                //fileReader will read the data using the stream that was created 

                using (StreamReader fileReader = new StreamReader(input)) 

                { 

                    bool s4pFile = fileName.EndsWith(".s4p",  

System.StringComparison.CurrentCultureIgnoreCase); 

 

                    if (s4pFile) 

                    { 

                        try 

                        { 

                            // go back to the beginning of the file 

                            input.Seek(0, SeekOrigin.Begin); 

 

                            // traverse file until end of file 

                            while (fileReader.Peek() > -1) 

                            { 

                                string[] inputFields; // stores individual pieces of data 

 

                                // get next line in file 

                                string inputLine = fileReader.ReadLine(); 

 

                                //flag to check for header or comment lines 

                                bool commentHeader = (inputLine.StartsWith("!") || inputLine.StartsWith("#")); 

 

                                // at the end of the file, exit method 

                                if (inputLine == null) 

                                    return; 

 

                                //if statements below test the string for certain conditions to discard the  

                                //comment and formatting lines, and/or prepare the valid data for storing 

                                else if (commentHeader) //skip comment lines 

                                { 

                                    //clear the input line and discard data that is read in 

                                    inputLine = string.Empty; 

                                } 

                                //string manipulation to delete leading spaces that are read in 

                                //during the readline operation 

                                else if (inputLine.StartsWith(" ")) //begin with space 

                                { 

                                    //delete all leading spaces 

                                    while (inputLine.StartsWith(" "))   //while a leading space exists 

                                    { 

                                        inputLine = inputLine.Substring(1); //truncate first whitespace 

                                    } 

                                } 

 

 



73 

 

 

                                if (inputLine != string.Empty) 

                                { 

                                    //separate data by space between them and save values into a separate array index  

                                    inputFields = inputLine.Split(' '); 

 

                                    if (inputFields.Length > 7)    //if data has been extracted and saved to the test array 

                                    { 

                                        //check to see if frequency value is present 

                                        if (inputFields.Length > 8) //frequency value will require one additional cell 

                                        { 

                                            //extract frequency and S11 magnitude data  

                                            freq = float.Parse(inputFields[0]); 

                                            double hold = double.Parse(inputFields[1]); 

                                            S11 = 20 * Math.Log10(hold); 

 

                                            SParamsaveCounter++;  //increment save counter 

                                        } //end save frequency and S11 magnitude data 

                                        else  //otherwise, only S-parameter values are present 

                                        { 

                                            if (SParamsaveCounter == 1)    //reading in S2 values 

                                            { 

                                                double hold = double.Parse(inputFields[0]); 

                                                S21 = 20 * Math.Log10(hold); 

 

                                                SParamsaveCounter++;  //increment save counter 

                                            } //end save S2 data 

                                            else if (SParamsaveCounter == 2)  //reading in S3 data 

                                            { 

                                                double hold = double.Parse(inputFields[0]); 

                                                S31 = 20 * Math.Log10(hold); 

 

                                                SParamsaveCounter++;  //increment save counter 

                                            }   //end save S3 data 

                                            else if (SParamsaveCounter == 3)  //reading in S4 data 

                                            { 

                                                double hold = double.Parse(inputFields[0]); 

                                                S41 = 20 * Math.Log10(hold); 

 

                                                //create new row 

                                                newSParamline = sparamDataSet.SParamTable.NewSParamTableRow(); 

 

                                                //save extracted values to the columns in the new row 

                                                newSParamline.Structure = structure; 

                                                newSParamline.Width = lineWidth; 

                                                newSParamline.Spacing = lineSpacing; 

                                                newSParamline.Frequency = freq; 

                                                newSParamline.S11 = (float)S11; 

                                                newSParamline.S21 = (float)S21; 

                                                newSParamline.S31 = (float)S31; 

                                                newSParamline.S41 = (float)S41; 

 



74 

 

 

                                                //if row does not exist already 

                                                DataRow foundrow =  

sparamDataSet.SParamTable.FindByStructureWidthSpacingFrequency( 

structure, lineWidth, lineSpacing, freq); 

 

                                                if (foundrow == null) 

                                                { 

                                                    //add new row to the dataset 

                                                    sparamDataSet.SParamTable.AddSParamTableRow(newSParamline); 

                                                } 

                                                else if (foundrow != null) 

                                                { }//do nothing 

 

                                                SParamsaveCounter = 0;  //reset save counter 

                                                foundrow = null; 

                                            } //end save S4 data 

                                        } //end copy S-parameter data  

                                    }//end copy data to variables and database  

                                }   //end "if input not empty" 

                            } // end while not end of file 

                        } // end try statement 

                        catch (IOException ioExcept) // handle exception when errors occur within try statement 

                        { 

                            MessageBox.Show(ioExcept.ToString()); 

                        } // end catch           

                    }   //end if s4pFile 

                    else //if not s4pFile 

                    { 

                        MessageBox.Show("This application only accepts .s4p file formats for S-parameter  

     data."); 

                    } 

 

                    input = null;   //dispose of input 

                }   //end using streamreader 

            } //end try 

            catch (Exception except) 

            { 

                MessageBox.Show(except.ToString()); 

            }//end catch 

            finally //expose of reader if it has not been done already 

            { 

                if (input != null) 

                    input.Dispose(); 

            } 

        }  // end method extractSParamValues 

 

        //assign output file name and location. Then, call WriteCSVfile function  

        private void structuresBindingNavigatorSaveItem_Click(object sender, EventArgs e) 

        { 

            //check structure value and save to appropriate file 

            if (structure == "GSSG") 



75 

 

 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\GSSG  

RLC.csv"; 

            else if (structure == "GSSG M1") 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\GSSG_M1  

RLC.csv"; 

            else if (structure == "SS") 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\SS  

RLC.csv"; 

            else 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\SS_M1  

RLC.csv"; 

 

            WriteCSVfile(); 

        }   //end method structuresBindingNavigatorSaveItem_Click 

 

        //assign output file name and location. Then, call WriteCSVfile function  

        private void SParamBindingNavigatorSaveItem_Click(object sender, EventArgs e) 

        { 

            //check structure value and save to appropriate file 

            if (structure == "GSSG") 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\GSSG  

SParam.csv"; 

            else if (structure == "GSSG M1") 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\GSSG_M1  

SParam.csv"; 

            else if (structure == "SS") 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\SS  

SParam.csv"; 

            else 

                CSVfile = @"\\psf\Home\Documents\Visual Studio 2013\Projects\DataExtraction\SS_M1  

SParam.csv"; 

 

            WriteCSVfile(); 

        }   //end method SParamBindingNavigatorSaveItem_Click 

 

        //write values to .csv file 

        private void WriteCSVfile() 

        { 

            int countColumn; 

 

            try 

            { 

                //open stream writer object 

                System.IO.StreamWriter csvFileWriter = new StreamWriter(CSVfile, false); 

 

                //hold column header 

                string columnHeaderText = ""; 

 

                //get column count of correct data table 

                if (CSVfile.Contains("RLC")) 

                    countColumn = structuresDataGridView.ColumnCount - 1; 



76 

 

 

                else 

                    countColumn = SParamdataGridView.ColumnCount - 1; 

 

                //if first column, save as header 

                if (countColumn >= 0) 

                { 

                    if (CSVfile.Contains("RLC")) 

                        columnHeaderText = structuresDataGridView.Columns[0].HeaderText; 

                    else 

                        columnHeaderText = SParamdataGridView.Columns[0].HeaderText; 

                } 

 

                //append remaining column values of this row to the column header variable 

                for (int i = 1; i <= countColumn; i++) 

                { 

                    if (CSVfile.Contains("RLC")) 

                        columnHeaderText = columnHeaderText + ',' +  

structuresDataGridView.Columns[i].HeaderText; 

                    else 

                        columnHeaderText = columnHeaderText + ',' +  

SParamdataGridView.Columns[i].HeaderText; ; 

                } 

 

                //write column header to file 

                csvFileWriter.WriteLine(columnHeaderText); 

                 

                if (CSVfile.Contains("RLC"))   //if writing RLC data, copy data from RLC data grid view 

                { 

                    //for each row in the data grid 

                    foreach (DataGridViewRow dataRowObject in structuresDataGridView.Rows) 

                    { 

                        //if New Row 

                        if (!dataRowObject.IsNewRow) 

                        { 

                            string dataFromGrid = ""; 

 

                            dataFromGrid = dataRowObject.Cells[0].Value.ToString(); 

 

                            for (int i = 1; i <= countColumn; i++) 

                            { 

                                dataFromGrid = dataFromGrid + ',' + dataRowObject.Cells[i].Value.ToString(); 

                            } 

 

                            csvFileWriter.WriteLine(dataFromGrid); 

                        } 

                    } 

                } 

                else //if writing S-Param data, copy data from SParam data grid view 

                {                     

                    foreach (DataGridViewRow dataRowObject in SParamdataGridView.Rows) 

                    { 



77 

 

 

                        //if New Row 

                        if (!dataRowObject.IsNewRow) 

                        { 

                            string dataFromGrid = ""; 

 

                            dataFromGrid = dataRowObject.Cells[0].Value.ToString(); 

 

                            for (int i = 1; i <= countColumn; i++) 

                            { 

                                dataFromGrid = dataFromGrid + ',' + dataRowObject.Cells[i].Value.ToString(); 

                            } 

 

                            csvFileWriter.WriteLine(dataFromGrid); 

                        } 

                    } 

                } 

 

                csvFileWriter.Flush(); 

                csvFileWriter.Close(); 

            } 

            catch (Exception exceptionObject) 

            { 

                MessageBox.Show(exceptionObject.ToString()); 

            } 

        }//end method WriteCSVfile         

    } 

} 

 


	Electromagnetic Modeling Of Coupled Transmission Lines For Millimeter-Wave/Terahertz Circuits In 65 Nm Cmos Technology
	Recommended Citation

	tmp.1590516723.pdf.v2CAF

