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Abstract 

Flagella have been studied for more than a hundred years, yet there remains a simple and 

powerful question about how to further make use of the recent wave of genomic data to find 

differences between flagellar genes across diverse bacterial strains. With the comparative power 

of bacterial genomic data, we propose that flagellar gene sequences may be used as genetic 

markers that indicate evolutionary adaptations of different bacteria for different hosts. We 

specifically proposed to identify and utilize genetic sequence differences that may diagnose for 

the presence of bacterial pathogens found to infect different hosts, specifically animal versus 

plant hosts. Four flagella genes were chosen for this study due to the fact that they are 

consistently found across diverse types of bacteria having both flagellar phenotypes and fully 

sequenced genomes. fliC and fliD express proteins that are located on the outside of the cell and 

are potentially antigenic in animal hosts. fliJ and flgG are expressed as intracellular protein 

products. We collected sequences for these flagellar genes from 18 animal host bacteria and 18 

plant host bacteria and analyzed for homologous regions and dN/dS measures of selective 

pressure. As expected, fliC had the highest amount of diversification for animal host bacteria 

versus plant host bacteria. We developed a quantitative trait loci approach for identifying 

differentiating regions within the fliC gene - a 51 nucleotide region encoding for some of the 

conserved N-terminal domain of flagellin (FliC) and a 21 nucleotide region encoding for the 

more variable middle domain of flagellin. We then developed and tested an algorithm with these 

regions against our database of 36 bacterial strains, and the performance characteristics of the 

algorithm were best for inferring the presence of plant host bacteria compared to animal host 

bacteria. We implemented an extraction and PCR amplification protocol to screen for bacterial 

fliC DNA from agricultural produce and, for multiple replicates from a single specimen of 
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lettuce, found sequence patterns corresponding to both the N-terminal domain and middle 

domain that were consistent with plant host bacteria. We anticipate that further development of 

the algorithm and the usage of next generation methods of sequencing will help enhance this 

overall workflow for more extensive contexts of usage.  
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1 CHAPTER 1 

Introduction 

1.1 Flagella 

The flagellum is a virulence factor for bacterial pathogens in both animals and plants 

(Finlay & Falkow, 1997). Flagella genes assist with the export process, motility and the 

chemotaxis stage. Flagella have been studied for more than a hundred years, yet, there has not 

been a comprehensive study of evolutionary pressures on flagellar genes between animal and 

plant host bacteria based on the recent wave of genomic data. A primary factor of comparison to 

the evolutionary pressures on these four flagella genes in animal versus plant host contexts is the 

presence of an adaptive immune system in animals.  

Four genes of the flagellar apparatus were chosen for this study due to the fact they are 

well studied in the literature and common to a wide variety of bacteria. For the purpose of 

comparison, two encode for proteins for the extracellular portion and the other two for the 

intracellular segment. Some of the extracellular gene products are expected to have interaction 

and selective pressure in response to host factors such as the antibodies of animal immune 

systems. 

1.2 Flagellin 

We mainly focused our study on fliC, the gene that encodes for flagellin. Flagellin is a 

major component of the bacterial flagellum. There are 10,000 to 40,000 molecules of flagellin 

within the filament of a flagellum. Flagellin is self-assembled at the distal tip after going through 

the hollow core of the flagellum (Felix & Boller, 1999). The conserved N and C terminal ends of 

flagellin determine the export and self-assembly. Flagellin is essential for the phenotype of 

cellular attachment on animal cells where fliC attaches to Muc1 mucin. As the extracellular 
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portion of the flagella interacts with the host cell boundary, the flagella release “effector” 

proteins into the host cell and foster invasion through some cross-interaction with bacterial type 

III secretion systems, which is poorly understood (Abby & Rocha, 2012; Alfano & Collmer, 

2004). Attachment to plant cells does not rely on a specific ligand receptor mechanism, but 

rather upon the complex interactions among the diverse materials of bacteria and plant cells 

(Wilson & Beveridge, 1993; Lillehoj et al., 2002).  

1.3 Objectives and Impact 

The objective of the current research was to determine evolutionary differences between 

animal and plant bacteria as they relates to flagellar genes. Based upon the adaptive immune 

system found in animals and differences in cell attachment mechanisms, we hypothesized that 

flagella genes from animal host pathogens such as Pseudomonas aeruginosa will differ from the 

plant host pathogens such as Pseudomonas syringae. Diversifying selection of extracellular 

flagella genes that alters amino acid composition may be expected for bacterial adaption to the 

animal immune system which could otherwise recognize and destroy an unchanging antigenic 

surface on the bacteiral cell. We expect however some balancing mode of selection to some of 

these diversifying changes. Flagella are highly interconnected systems, and we postulate that 

there would a high level of negative (purifying) selective pressure in order to maintain 

functionality of the interdependencies of quaternary structure and dynamics for the dozens of 

different types of proteins of a flagellum. We investigated this by first analyzing the flagella 

genes and proteins of diverse bacteria, utilizing KEGG and IMG databases. For the validation of 

the genotypic measures which may differentiate bacterial flagella sequences based on 

evolutionary pressure for animal versus plant host association, we developed initial protocols and 

workflows for DNA sequencing and phenotypic attachment that may be applied to bacteria 
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found in nature and the human environment. Our strategy for differentiation may lead to a 

powerful scenario of application based on how bacteria that cause disease in plants do not cause 

disease in animals, and vice versa. As those categories are effectively contrasted, this may lead to 

a generic and simplified screening method in comparison to methods that are specific to narrow 

ranges of pathogens. This would however rely upon an effective approach for extracting DNA 

from diverse bacteria potentially found on eukaryotic tissue. These approaches may range from 

isolation and growth of bacterial cells in culture media to a wholesale metagenomic capture of all 

DNA from any eukaryotic specimen followed by digital subtraction to detect for bacterial DNA 

(Duncan et al., 2009). In this study, as an initial step of validation for future directions, our 

approach was for PCR-based targeted sequencing of the bacterial fliC gene from a bulk DNA 

extraction conducted upon lettuce tissue. 

 

2  
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7 CHAPTER 2 

Literature Review 

2.1 Bacterial Diversity and Structure  

Bacteria are a domain of unicellular microorganisms with a variety of cellular 

morphologies with shapes ranging from spirals, rods and spheres. In addition, bacterial cells may 

have external structures such as fimbriae, pili and flagella. A major distinction across this 

domain has historically been for gram-positive or gram-negative status which generally 

corresponds to having one or two phospholipid bilayer membranes for their cell boundaries 

respectively (Gupta, 2011). Gram-negative bacteria are very unique in having two membranes 

for their cell boundary – an outer membrane and plasma membrane. The volume between the 

outer and inner membrane has the periplasmic space and a thin peptidoglycan layer. Gram-

negative bacteria have porins which are transmembrane proteins that allow passage for certain 

molecules across the outer membrane (Schirmer, 1998). A chemical signature of gram-negative 

bacteria is the presence of lipopolysaccharide as a component of their outer membrane. 

Examples of gram-negative pathogens that infect the human population include strains of 

Escherichia coli, Salmonella, Shigella, Stenotrophomonas, Pseudomonas and Vibrio (Brooke, 

2012; Hunt et al., 2011; Shute, 2013; Haley et al., 2013; McClaine & Ford, 2002; Abby & 

Rocha, 2012). 

For many gram-negative bacteria, their two membranes provide for enhanced flux control 

of the import and export of small molecules, enabling sophisticated systems of antibiotic 

resistance, endosymbiosis, and secretory transport that go beyond what is found for gram-

positive bacteria (Gupta, 2011; Gerlach & Hensel, 2007). In addition, gram-negative pathogens 

are more likely to have pili and fimbriae (Proft & Baker, 2009; Winn, 2006). Flagella are 
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widespread across both gram-positive and gram-negative diversity and this is attributed to their 

early appearance in the evolution of bacteria several billion years ago (Cavalier-Smith, 2002). 

These virulence factors of gram-negative bacteria are critical to their pathogenesis in a wide 

range of host symbioses including gastrointestinal disease. 

The effect on eukaryotic hosts of gram-negative pathogens varies from plants to animals. 

Along with other exterior factors, the lipopolysaccharide (LPS) layer of the gram-negative 

bacteria outer membrane triggers an innate immune response in animals through binding to TLR-

4 receptors of animal cells, ultimately initiating an inflammatory response. The animal host 

defense system may then generate a secondary adaptive immune response mediated by white 

blood cells that can acquire the ability to recognize a wider range of foreign material (Aderem & 

Ulevitch, 2000). For bacterial adaptation to this powerful animal immune system, it has been 

suggested that there is diversifying selection on genes encoding for extracellular portions of 

structures such as the outer portions of bacterial flagella (Lynch, 2012). This variation allows the 

bacteria to evade recognition. This strategy may not be necessary for plant host-associated 

bacteria. Plants only have a primary (non-adaptive) detection and response system that will enact 

defense by excreting exopolysaccharides to induce water soaking and wilting of the plant by 

blocking the xylem (Boch & Bonas, 2001). In order to arrive at a focused comparison of this 

selective effect on animal versus plant host-associated bacteria, it would be ideal to utilize those 

gram-negative taxa for which there are multiple strains of both plant and animal pathogens, and 

for which significant background knowledge exists for the genomes and phenotypes of these 

strains. One such opportunity for comparison among related gram-negative bacteria that have 

known host associations and fully sequenced genomes would be a comparison between 

Pseudomonas aeruginosa that infects animals and Pseudomonas syringae that infects plants. 
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2.2 The Genus of Pseudomonas 

Pseudomonas is a gram-negative genus of the family Pseudomonadaceae of the class 

Gammaproteobacteria. The name Pseudomonas was proposed by Walter Migula in 1894 and 

soon thereafter was adopted in the 1900s literature (List of Prokaryotic names with standing in 

nomenclature. Retrieved September 5,2013, from http://www.bacterio.net/).  Overall, 

Pseudomonas is a gram-negative, aerobic, rod-shaped (bacillus-shaped) bacterial taxon with 

polar flagella. There are currently 206 species that have been formally described in the literature 

(List of Prokaryotic names with standing in nomenclature. Retrieved September 5,2013, from 

http://www.bacterio.net/). The different species of this genus have a wide range of metabolic 

diversity and are able to colonize a wide range of habitats including terrestrial, aquatic, 

freshwater and clinical habitats (Hirano & Upper, 2000; Romling et al., 1994). Some species 

such as Pseudomonas aeruginosa affect the animal population with impacts on human and 

livestock health while others, most notably Pseudomonas syringae, affect plants with impacts on 

agriculture. The evolution of different varieties of Pseudomonas has only begun to be interpreted 

(Baltrus et al., 2011), and opportunities exist for comparing different genomic sequences and 

investigating their evolutionary divergence as a function of different environments and host 

associations.  

2.3 Pseudomonas syringae  

Pseudomonas syringae causes frost damage across many different crop species. P. 

syringae genomes are approximately 6 million base pairs (bp) in size. Distinct strains of P. 

syringae only exhibit pathogenic potential on a single or small range of plant species, but for 

other plant species will fail to initiate disease. For pathogenesis, P. syringae strains transfer a 

large number of different proteins into plants through the bacterial type III secretion system 

http://www.bacterio.net/
http://www.bacterio.net/
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(T3SS). P. syringae has many polar flagella that are used for motility. Three strains of P. 

syringae have been identified and fully sequenced. These three strains have different effects on 

host plants. P. syringae pv. tomato DC3000 causes bacterial specks on tomatoes and Arabidopsis 

(Wilson et al., 2002; Whalen et al., 1991). P. syringae pv. syringae B728a causes brown spots on 

beans (Willis et al., 1990). P. syringae pv. syringae 1448A causes halo blight on beans (Taylor et 

al., 1996). The strain that has been most intensively studied and, advantageously for 

experimental study, grows on the model plant organism Arabidopsis is Pseudomonas syringae 

pv. tomato DC3000. (Fouts et al., 2001). 

The Hrp-dependent pili protein that affects Pseudomonas syringae pv. tomato (Pst) 

DC3000 is HrpA. The Hrp pilus is suggested to be involved in type III secretion of HrpN and 

DspA/E. Bacteria having knockout mutations in the gene for this protein, hrpA, do not cause 

disease in host plants and do not elicit the hypersensitive response in non-host plants. 

Researchers have shown through genetic analysis that the hrpA gene is required directly or 

indirectly for the secretion of effector proteins. The hrpA gene of Pst DC3000 is necessary for 

the full expression of hrp and avr genes encoding for Hrp and Avr proteins respectively (Hu et 

al., 2001). 

2.4 Pseudomonas aeruginosa 

Pseudomonas aeruginosa is an opportunistic pathogen of animals. For example, it causes 

chronic and sometimes lethal infections of the lungs of patients with cystic fibrosis (CF) 

(Lillehoj et al., 2002). P. aeruginosa is responsible for a variety of diseases: 16% of nosocomial 

pneumonia infections, 12% of nosocomial urinary tract infections, 8% of surgical wound 

infections and 10% of bloodstream infections. P. aeruginosa causes death rates reaching 30% 

with pneumonia patients, and it is among the most common and lethal pathogens for ventilator-
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associated pneumonia in intubated patients causing death rates reaching 38%. Within intensive 

care units, P. aeruginosa has shown to reach high death rates approximately 60%. For persons 

with AIDS, P. aeruginosa has been found to have a 50% death rate (Deldan et al., 1998). It can 

be found in soil, water, skin flora, and most human-made environments throughout different 

countries all over the world. P. aeruginosa infections within animals feed off of a variety of 

organic material (Lillehoj et al., 2002). P. aeruginosa has a versatile set of nutrient uptake 

pathways and response behaviors including for carbon and nitrogen that modulate in vitro 

biofilm development and surface motility. Carbon sources have two effects on virulence 

phenotypes within P. aeruginosa: toxin production and formation of antibiotic-resistant biofilms 

(Palmer et al., 2007). Generalized inflammation and sepsis are symptoms of the infection. 

Colonization occurs in the lungs, the urinary tract, and kidneys. These infections can be fatal to 

immunocompromised individuals (Lillehoj et al., 2002).  

Pseudomonas aeruginosa has nine fully sequenced genomes that range in size from 6.2 to 

6.9 million bp (Winsor et al., 2011). In terms of genomic analysis, PA01 is the most well studied 

strain (Fouts et al., 2001). The PA01 ATCC 15692 strain’s genome is 6,264,404 bp and there are 

5,571 open reading frames within this strain (Fouts et al., 2001).  

Investigations into the microbial ecology and molecular mechanisms of P. aeruginosa 

have identified patterns of gene expression underlying host and environmental adaptations. 

During the infection state in P. aeruginosa, lasR triggers quorum sensing leading to measurable 

increases of cell density, virulence factor synthesis, and biofilm production. These phenotypic 

analyses have been confirmed by disrupting the lasR mutants (Smith et al., 2006). Other 

phenotypic measures of P. aeruginosa have been for alginate production, under aerobic versus 

anaerobic conditions on Columbia sheep blood agar plates. For PA01, alginate production and 
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biofilm formation have been found to increase under anaerobic conditions, and this has been 

implicated with anaerobic conditions in the mucus of cystic fibrosis patients (Worlitzsch et al., 

2002). Flagella play a major role in the virulence of a strain (Finlay & Falkow, 1997). 

Components of the multiprotein flagellum structure have been evaluated for their role in 

virulence such as for attachment to mucin 1 host cell receptors. A series of studies compared the 

wild type Pseudomonas aeruginosa PAK to strains devoid of components such as pilin 

(PAK/NP), flagellin (PAK/fliC), and cap protein (PAK/fliD) to binding upon human and mouse 

cells. Although an initial report implicated cap protein (FliD) as the adhesin to mucin 1 (Arora et 

al., 1998), it was later determined that flagellin protein (FliC) is the adhesin responsible for 

binding to mucin 1 (Lillehoj et al., 2002). 

2.5 Bacterial Flagella 

The flagellum is a virulence factor for bacterial pathogens in both animals and plants 

(Finlay & Falkow, 1997). A bacterial flagellum is a semi-rigid complex structure which has a 

rotary motor, powered by a transmembrane proton motive force. A bacterial flagellum consists 

of a long helical filament, hook and basal body that can enable motility for microbial cells 

(Schuster et al., 1994; Macnab, 2004; Felix et al., 1999 & González-Pedrajo et al., 2002). The 

proton motive force causes bacterial flagella to rotate at different speeds. This permits some 

varieties of bacteria to rapidly propel themselves at many micrometers per second. For example, 

Bacillus subtilis was found to move at a swimming speed of 40 micrometers per second (Manson 

et al., 1977; Khan & Macnab, 1980). An estimated number of 50 proteins make up the complex 

formation mechanisms and structural components of the flagellar complex (Kutsukake, Ohya & 

Lino, 1990).  
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Flagella can serve as catalysts for both the movement and attachment of pathogenic 

bacteria to various surfaces such as lungs, soil surfaces, meats, and plants. Flagella enable 

adhesion through physicochemical characteristics of their amino acids including electrical charge 

and hydrophobicity. Attachment may further involve entrapment, based on first the ability to 

swim through crevices and then second, perhaps due to how flagella increase the bulk of the cell 

for it to remain situated in the constrained space of a crevice (Piette & Idziak, 1991). Flagellar 

attachment has been linked to subsequent events of pathogenesis. In a study done on flagella-

induced immunity against experimental cholera disease in adult rabbits, Vibrio cholera was 

found to bind to an epithelial ganglioside receptor. This study suggests that flagella function to 

transport and attach V. cholera to the intestinal mucosa where subsequent events such as 

enterotoxin delivery may occur (Yancey et al., 1979).  

2.6 Flagellar Bacteria in Plants 

In rhizosphere bacteria, flagellar chemotaxis is vital for colonizing the host plant in some 

instances. A study has shown that flagella were essential for colonization of P. putida on potato 

roots where motility is required to reach the root surface (Broek, 1995). The host resistance of a 

plant species against specific pathogens that invade it is dependent upon a set of important 

recognition mechanisms for molecules, through the loss or change of the toxin’s target or 

through detoxification, that are generated exclusively by particular strains of pathogens. R genes 

enable plants to detect avirulence genes, and to initiate signal transduction that helps with 

defenses (Hammond-Kosack & Jones, 1997; Parniske et al., 1997). Plants do not have an 

immune system comparable to vertebrate animals, however plants have the ability to sense 

infection by conserved molecular aspects of microbial pathogens, such as the N-terminal region 
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of flagellin. Plants respond to the attack with an extensive set of protection responses (Felix & 

Boller, 1999; Chesnokova et al., 1997; Hatterman & Ries, 1989).  

2.7 Flagellar Bacteria in Animals 

In animal-associated pathogens, the flagellum is a virulence factor which has been 

examined in several animal models to determine the efficiency of the motility directed by 

flagella. Flagella are responsible for adhesion by virtue of physicochemical properties, electrical 

charge and hydrophobicity (Piette & Idziak, 1991). Flagella provide a means for some bacteria to 

colonize throughout the respiratory tract, and associated chemotaxis guides the organisms toward 

preferred substrates. For P. aeruginosa, these preferred substrates include amino acids, inorganic 

phosphate, and other known components of human mucus (Feldman et al., 1998). In terms of 

host defense response, flagella are adhesins for polymorphonuclear leukocytes (PMNs) and for 

macrophages which clear micro-organisms from mucosal surfaces (Mahenthiralingam & Speert, 

1995). The general process of the role of flagella in adhesion of P. fluorescens has been 

demonstrated on tendon slices. The presence of flagella promotes motility by modifying the 

chances of bacterium to encounter the favorable location and possibly provides the kinetic 

energy to initiate adhesion. The flagellum then initiates contact of the bacterial cell to the meat 

(Piette & Idziak, 1991). 

2.8 Motility and Attachment 

Motility associates with virulence, biofilm development and invasiveness in 

Pseudomonas syringae and Pseudomonas aeruginosa (Romantschuk, 1992; Turnbull & Sanders, 

2001). Motile bacteria move to favorable locations through chemotaxis. Pseudomonas 

aeruginosa cells aggregate and form biofilms under conditions that allow for growth, such as 

availability of oxygen, sugars and amino acids. Flagella have been shown to play a vital role in 
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the initial event of biofilm development in P. aeruginosa. Once bacteria come into contact with 

the surface, they may attach and form biofilms (O’Toole et al., 2000). In natural environments, 

non-motile and motile bacteria appear at their favorable locations because they stick to surfaces 

(Romantschuk, 1992). Motility allows a significant amount of cells to get closer to the surface, 

however a necessary pause is required near the surface to allow the host cell to attach effectively 

(McClaine & Ford, 2001).  

The initial attachment of cells occurs in two steps, transport to the surface and absorption 

to the surface. Motile cells swim in all directions and non-motile cells do not. Non-motile cells 

attach at a much lower rate than active motile cells because motile activity facilitates cells to 

contact attachment areas more quickly; also active motility increase the probability of reaching a 

potential binding site rather than relying on being stagnant. Motility increases the chance to 

position the cell in close enough physical proximity to the host tissue for binding to occur 

(McClaine & Ford, 2001). 

Studies have shown the attachments of bacteria to surfaces are measured by the fluid 

velocity by comparing motile bacteria to nonmotile bacteria (McClaine & Ford, 2001). 

Swimming bacteria behave differently than non-swimming bacteria in that motility assists 

transport through permeable media in dormant and flowing systems and also favors attachment 

to surfaces in smaller-scale systems under vibrant conditions (Jenneman, McInerney & Knapp, 

1985; Reynolds et al., 1989; Witt et al., 1999; Camper et al., 1993; Korber, Lawrence & 

Caldwell, 1994; Lawrence et al., 1987; Mueller et al., 1992; Mueller, 1996). Measurements have 

involved the residence time analysis, motile bacteria have time to reach the surface at different 

flow rates because they have the ability to swim at higher speeds than non-motile cells 

(McClaine & Ford, 2001). 
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Attachment in bacterial cells to foliage and to the root surface in many plant hosts is an 

early vital step. It is a significant aspect in epiphytic colonization; researchers have thought this 

increased the ability of pathogenic strains to result in plant disease. Surface openings, stomata 

and wounds in plant tissue are the way for bacteria to enter into the host cell. Attachment to the 

epidermal surface offers a selective advantage for epiphytic colonizers, although it does not 

directly induce a plant defense response as vertebrates does (Boch & Bonas, 2001). Specific 

chemotactic attractants such as galactose, glucose, arabinose, fucose and xylose can stimulate 

virulent gene expression for bacteria associated with detecting and entering plant wounds. Many 

substances are in plant root exudates and these include amino acids and simple sugars along with 

specific nonmetabolizable compounds which are identified as chemoattractants for different 

plant host bacteria. Bacterial cells within the root surface microenvironment are increased 

because of motility which facilitates transport from the aqueous bulk phase surrounding the root 

(Turnbull & Sanders, 2001). 

Once bacteria have been embedded in the plant roots or the seed, flagella can act to move 

bacteria to favorable locations for attachment (Broek et al., 1995). The extracellular portion of 

flagella interact with the host and then the flagella release “effector” proteins into the host cell 

and foster invasion through some cross-interaction with bacterial type III secretion systems, 

which is poorly understood (Abby & Rocha, 2012; Alfano & Collmer, 2004). Researchers have 

found that motility and chemotaxis initiate the interaction of rhizobia with the plant root surface. 

This mechanism ensures the effectiveness of inoculation and improves the speed of plant growth 

(Turnbull et al., 2001). Once on the surface of the root, bacteria can be passed downward by the 

roots reaching into the soil of the plant. During this stage, flagellar motility and chemotaxis 
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become a part of the process which then spreads the bacteria in the rhizoplane where root 

mucilage contains an ongoing water film.   

Many plant hosts are infected with bacteria that are motile in the free-living state. 

Rhizosphere bacteria are flagella-driven, which is essential to their virulence (Felix & Boller, 

1999). Flagella of rhizobacteria constitute the mechanism for chemotaxis and motility, which can 

lead to early contact (Broek et al., 1995). Motility is vital for foliar pathogens reaching internal 

sites in the leaves of host plants. Some plants have a highly sensitive chemoperception for the N- 

terminal domain of bacterial flagellin. A. thaliana and tomato cells have been found to respond 

to flagellin, unlike rice cells. Peptides that consist of 15 through 22 amino acids within the N 

terminus domain “acted as elicitors of defence responses at subnanomolar concentrations” (Felix 

& Boller, 1999) in tomato cells and other plant species. Peptides that consist of 8 through 11 

amino acids act as direct competitive inhibitors of defense responses in tomato cells but do not 

have an elicitor effect within this domain (Felix & Boller, 1999).  

A particular study demonstrated attachment on P. putida to wheat roots by comparing 

motile and non-motile strains of P. putida on the same root section (Turnbull et al., 2001). The 

non-motile strains attached at a lower number suggest that the motile strain was competing for 

the same binding site. The motile strain had an advantage because of the flagella which makes 

this strain motile. Turnbull and his research team in 2001 recommend that perhaps motility can 

increase the number of bacterial cells that are in the root surface microenvironment by means of 

facilitating transport from the aqueous bulk phase surrounding the root. They further propose that 

motility can overcome electrostatic repulsion or surface tensions which are physicochemical 

forces. 
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The first step of binding of bacterial cells to plant tissue starts off by early reversible and 

irreversible attachment steps which are specific to the cell interaction. An electrostatic force 

keeps the cells apart in an aqueous environment possessing a net negative charge. The only way 

for the bacteria cell to attach to the plant surface is through ionic bridging between nearby 

positively charged groups on one surface, hydrogen bonding between suitable groups on either 

surface, or through attractive close range (3-4 A) van der Waals forces and divalent cations, all 

of which help defeat the repulsive energy obstacle (Romantschuk, 1992). 

Receptors are proteins that found inside or on the surface of the cell, transport signals 

coming from outside of the cell. There have not been a specific plant cell receptor that bacteria 

bind to; however, the findings from (Gurlitz et al., 1987) used a few monosaccharides for 

proteolytic or chemical treatments of the carrot cells to see if there was any binding specificity 

found in the carrot cell. Sugars in the plant cell wall such as arabinose and galactose failed to 

inhibit binding of the bacteria, and this confirmed the adherence of Agrobacterium tumefaciens 

to carrot cells involving a receptor site that is different from other bacteria. This was due to the 

comparison between the embryos and uninduced cells utilizing that demonstrated changes. The 

carrot cells were not killed by the treatments and they seemed to recover their binding ability 

after being in the incubation for 3 to 6 hours. A specific receptor has not yet been found. (Gurlitz 

et al.,1987). 

Colonization is the initial step of microbial infection in animals. In animals, there are 

many ports of entry that can be infected by bacteria which include the digestive tract, urogenital 

tract, respiratory tract and the conjunctiva. Flagellar-mediated attachment of P. aeruginosa cells 

to mucins is known for being an important factor in colonization of respiratory epithelial cells 

(Lillehoj et al., 2002). 
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Bacterial that attaches to different surfaces forms a slime condition, subsequently forming 

a biofilm (Costerton, Stewart & Greenberg, 1999), for example the mucosa of the respiratory 

tract and gastrointestinal tract. Flagella act as ligands to receptors on the surface of animal host 

tissue cells (Arora et al., 1997). Bacteria infecting animals have a different adhesion process than 

for infecting plants. Campylobacter jejuni was compared to observe the attachment to the 

gastrointestinal tract using a flagellate motile strain and a flagellate non-motile strain, comparing 

it with a non-flagellate strain. In order for a successful infection to occur, enteropathogenic 

bacteria have to overcome host defenses. The gastrointestinal tract mucus layer removes 

unattached micro-organisms, but motile bacteria can navigate the mucus layer and live under the 

mucus layer within the dormant area near the epithelial cells (Newell, McBride & Dolby 1985).  

Flagellar motility is a general virulence factor of V. cholerae essential for transport to the 

intestinal mucosa. A comparison of motile and non-motile strains of Vibrio cholerae established 

that motility was essential for subsequent adhesion to isolated brush borders and surfaces of 

mucosal and for agglutination of red blood cells. After being transported, flagellar attachment 

aids the delivery of enterotoxin to eukaryotic host cells (Newell, McBride & Dolby, 1985).    

2.9 Flagellar Genes and Proteins 

 Flagellar genes that make up the flagellum assist in the ATP driven export process, 

motility and the chemotaxis stage (Kutsukake, Ohya & Lino, 1990; Macnab, 2004). It is thought 

that there are 40 to 50 genes essential for the flagellar phenotype. These genes are regulated by 

sigma factors that control the expression of flagella genes along with other regulation factors that 

assist with these sigma factors (Arora & Ramphal, 1997). Flagellar gene regulation has been 

found to occur through a regulon of 13 operons in Salmonella typhimurium (Kutsukake, Ohya & 

Lino, 1990; Komeda, 1982; Poggio et al., 2007).  
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The flagella proteins are grouped into regions I, II and III. In region I, the hook and basal 

body proteins are located (Macnab, 1992). The basal body consists of four rings (L, P, S and M) 

which are all located on a central rod (Aizawa et al., 1985; DePamphilis et al., 1971). Within the 

rod, there are several proteins (FlgB, FlgC, FlgF,and FlgG), which are all related to each other in 

primary sequence (Homma et al., 1990), the outside ring (FlgH and FlgI) (Jones, Homma & 

Macnab, 1989), the hook (FlgE) (Homma, DeRosier & Macnab, 1990) and the hook-filament 

junction (FlgK and FlgL) (Homma, DeRosier & Macnab, 1990; Homma, Kutsukake & Lino, 

1984). Region I is helpful to cell-proximal elements of the external flagellar structure. The 

chemotaxis proteins are within in Region II. The chemotaxis proteins are CheA, CheB, CheR, 

CheW, CheY, and CheZ. For the receptor proteins tar and tap, tar is found only in E. coli and the 

motility proteins, MotA and MotB are also found in this region. These chemotaxis proteins are 

utilized for detecting chemical stimuli, the cells have several receptors, which bind ligands and 

transport this information to the cytoplasm (Macnab, 1992). The master operon protein is also 

encoded in this region, FlhD and FlhC (Bartlett, Frantz & Matsumura, 1988) along with the 

protein that is involved in the export apparatus, FlhA (Ibuki et al., 2011; Vogler et al., 1991; 

Kim, 1989). Region IIIa is dedicated to the flagellar filament, FliC, flagellin (Joys, 1985). FliA is 

the protein for an σ factor that initiates transcription of fliC (Ohnishi et al., 1990). Region IIIb 

comprises the proteins that are involved in the preliminary phases of the assembly of the 

flagellum (Macnab, 1992). 

For this research, we have selected to study four flagella genes, fliD, fliC, fliJ and flgG. 

We are choosing to compare these four genes, being that two come from the external portion, 

fliD and fliC, whereas for the other two, one is in the cytoplasm, fliJ, and flgG, is in the basal 

body of the flagellum.  
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2.10 FliD 

FliD is involved in filament assembly and ranges in Pseudomonas aeruginosa and 

Pseudomonas syringae, from 474 to 478 and 483 to 492 amino acids, respectively (Kyoto 

Encyclopedia of Genes and Genomes. Retrieved January 29, 2014, from 

http://www.genome.jp/kegg/pathway.html). It acts as a cap protein for the distal, extending end 

of the flagellar filament which is critical in the assembly of the FliC, flagellin proteins (Macnab, 

1992; Tasteyre et al., 2001). FliD is also referred to as hook-associated protein 2 (HAP2) 

(Tasteyre et al., 2001; Arora et al., 1998). An alignment analyzed the amino acid sequence for 

FliD in P. aeruginosa in comparison to the other FliD proteins, and demonstrates that the 

organization of this protein is conserved throughout the ORF (Arora et al., 1998). Normally, fliD 

gene has two chaperone proteins, FliS and FliT, that assist with its function but in P. aeruginosa 

it is different (Arora et al., 1998). There was no evidence of FliT and there was a duplication of 

the gene encoding for the FliS protein. In P. aeruginosa, fliD exclusively maintains equilibrium 

of the motility and mucin adhesion. Research shows that the P. aeruginosa fliD knockout mutant 

did not need the help of the two chaperones to fulfill the two functions of motility and adhesion. 

The promoter of fliD binds to the transcriptional regulator, FleQ and the sigma factor RpoN. The 

transcriptional regulator, FleQ, works together with the sigma factor RpoN regulating motility 

and mucin adhesion in P. aeruginosa. RpoN has two sigma factors, 54 and 70, that are a dual 

regulation control of fliD expression. Sigma factors aid the flagella gene with motility and 

adherence. Sequence analysis of the operon containing fliD has been done and it showed fliS and 

fliT share the same operon as fliD in P. aeruginosa (Arora et al., 1998). FliD is located in region 

IIIa (Yokoseki et al., 1995). Another study has been done on S. typhimurium with this fliD gene 
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to see if the other two genes assisted with the function of  fliD and they obtained similar results 

(Homma, DeRosier & Macnab, 1990). 

2.11 FliC 

FliC is the major structural component of the flagellar filament. PCR was a method that 

was utilized to investigate the conservation of the fliC gene. The fliC gene was sequenced in 

three strains of Clostridium difficile:  C, D, and X. Results showed that the analysis in C. difficile 

strains has conservation in the N and C termini, but the middle was very diverse (Tasteyre et al., 

2000). In Pseudomonas aeruginosa, the amino acid lengths range from 387 to 488 whereas in P. 

syringae an amino acid length of 282 has been consistent across all strains (Kyoto Encyclopedia 

of Genes and Genomes. Retrieved January 29, 2014, from 

http://www.genome.jp/kegg/pathway.html). This is an important gene because it exhibits the 

behavior of mediating flagella endocytosis which assists with bacterial “effector” proteins 

entering into the host cell. Studies have shown the knockout gene fliC of B. pseudomallei did not 

demonstrate flagellum-mediated endocytosis. It was timed in coculture and it confirmed that 

only an intact flagellar machinery supported B. pseudomallei access into A. astronyxis (Inglis & 

Chang, 2003). Lillehoj et al (2002) showed that mucin 1 on the epithelial tissue surface is an 

adhesion location for P. aeruginosa. This study demonstrated that flagellin is an adhesion of P. 

aeruginosa accountable for binding to mucin 1; fliC mutants are non-motile and do not adhere to 

mucin receptors of host cells (Lillehoj et al., 2002). 

Researchers have observed the NHO1 gene in Arabidopsis is necessary for resistance to 

numerous strains in non-host P. syringae. Results demonstrated that flagellin is the primary 

Pathogen Associated Molecular Pattern (PAMP) in the Ptab strain of P. syringae responsible for 

NHO1 induction; the fliC mutant strain does not exhibit NHO1 induction. The Ptab strain shows 
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partial virulence on Arabidopsis plants that is directly infiltrated into leaves because it lacks the 

fliC gene and also on tomato plants; however the fliC mutant is not fully pathogenic on 

Arabidopsis (Li & Zhou, 2005). 

2.12 FliJ  

The chaperone gene FliJ is one of three soluble proteins (FliH, FliI and FliJ) of the export 

apparatus. The export apparatus has an additional six other membrane proteins, FlhA, FlhB, 

FliO, FliP, FliQ and FliR (Ibuki et al., 2011). From various studies of Salmonella, the length of 

FliJ is 147 amino acids with a physical protein size of 17 kDa (Vogler et al., 1991; Fraser et al., 

2003). FliJ directly interacts with FliH and FliI and with soluble domains of FlhA and FlhB 

(Minamino et al., 2000). FliI function is to drive the export process by energy from ATP. FliH 

functions as a negative regulator of FliI (Fraser et al., 2003). FliH, fliI and fliJ genes are related 

through evolution to major components of F1-ATPase. FliH, FliI, and FliJ are not absolutely 

essential for flagellar protein export – flagellar assembly can still occur in their absence (Ibuki et 

al., 2012). It has been found from a negative dominant study with glutathione S-transferase 

(GST) affinity chromatography and FliJ mutations that FliJ(F72A) and FliJ(L76A) reduce proton 

motor force-driven export by preventing the wild-type activity of FliJ to connect together two 

intraprotein domains of FlhA (Ibuki et al., 2012). The inhibition of GST-FliJ on export has been 

found to be reduced by the mutations, and it has been overall proposed that the FlhA binding 

surface of FliJ relies upon Gln38, Leu42, Tyr45, Tyr49, Phe72, Leu76, Ala79, and His83 (Ibuki 

et al., 2012).  

FliJ chaperone protein binds to both filament and rod/hook substrates and filament 

proteins. Filament substrates are divided into two classes: the rod/hook export class and the 

filament export class (Minamino et al., 2000). The six membrane proteins are found to be 
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essential for all flagellar protein substrates, which translocates across the plane of the cytoplasma 

membrane (Minamino & Macnab, 1999). The filament proteins are FlgK (first-hook filament 

junction protein), FlgL (second-hook-filament junction protein, and FliD (filament capping 

protein). Various flagellar proteins in Salmonella such as FliS, FlgN, and FliT have the same 

filament substrate chaperoning mechanism as FliJ does. In order for fliJ chaperone gene exhibit 

its complete function, the N-terminal has to have its first 73 amino acids within FliJ, otherwise 

swarming was reduced. FliJ has a unique structure within its gene; it has a sequence with a high 

probability of alpha helical coiled-coil near the N terminus, which is necessary for the function 

of this gene. This study found that when FliJ-N73 is overproduced, it stimulates the export of 

FliC (flagellin) along with FlgD (hook-capping protein). Yet, deletions of residues 13 to 24 

reduced motility even in the presence of FliJ overexpression. It is hypothesized that the essential 

role of FliJ is to prevent aggregation of export substrates in the cytoplasm (Minamino et al., 

2000). Literature shows that half of the C-terminal of FliJ associates with the N-terminal of FliH. 

When they act together differently under noninducing conditions in wild-type Salmonella, it 

inhibits motility. In this study, it demonstrates that the fliJ chaperone gene (74-147) truncate 

binds to FliH in Ni affinity chromatography assays and affinity blotting; the FliJ (1-73) truncate 

does not bind. None of the 10 amino acid deletions within the C-terminus of FliJ eliminated the 

FliH binding site. This therefore specifies that the association border may be broad, although 

those deletions including residues of 101 to 110 had the strongest effect implying that the C-

terminal displays the importance of the FliH binding site (Fraser et al., 2003). 

 2.13 FlgG  

FlgG is embedded in the basal body of the flagella as part of the central rod structure that 

is surrounded by the M, S, P and L rings. Approximately 26 subunits of FlgG comprise the distal 
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component of the rod that transmits torque to the outer structure of the flagella (González-

Pedrajo et al., 2002). The protein length and expression of FlgG can vary. The protein length of 

FlgG across 411 bacterial strains ranges from 98 to 423 amino acids with a mean length of 262.3 

± 1.87 (95% confidence limits) amino acids (Annotation Search Report on FlgG, Comprehensive 

Microbial Resource, Retrieved January 18, 2014, from http://cmr.jcvi.org/). Although there is 

some variation in the composition of operons, the genes for flgG and other flagellar proteins are 

generally found in a tightly organized system of cotranscription across other bacterial species 

such as Escherichia coli and Salmonella enterica serovar Typhimurium (Kutsukake, Ohya, & 

Iino, 1990). 

2.14 Summary of Genotypic and Phenotypic Analyses in Flagella  

There are opportunities for further investigations of the differences between flagella 

genes in plant and animal bacteria. Attachment to host cells is an essential phenotypic outcome 

of bacterial flagella, and its mechanism and rate of incidence may vary. Upon infection, flagella 

are recognizable by host defense systems and there may be varying levels of diversifying versus 

purifying selection for some of the flagellar genes. This may enable better understanding of how 

specific flagellar gene sequences may indicate pathogenicity for potential eukaryotic hosts. 

The fliC gene has been previously proposed to be a genetic markersfor epidemiological 

and phylogenetic analysis (Tasteyre et al, 2000). We are going to extend upon this to analyze 

four flagella genes of bacteria, fliC, fliD, fliJ and flgG, and evaluate for their evolutionary 

differences with animal versus plant host associations. Following a bioinformatics analysis, we 

are going to then develop a PCR-based protocol to be used in a diagnostic workflow to measure 

the contamination of plant material based on the patterns of identified flagellar gene sequences. 

http://cmr.jcvi.org/
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CHAPTER 3 

Methodology 

3.1 Comparative Sets of Bacteria Strains 

There are 18 strains animal host bacteria and 18 plant host bacteria strains that were 

analyzed for this study, identified from the IMG database http://img.jgi.doe.gov/, January 23, 

2013 with cross-referencing to the KEGG database   http://www.genome.jp/kegg/pathway.html 

September 5, 2013 and selected based upon gram negative status and unambiguous association 

with disease. The animal pathogen strains were: Edwardsiella tarda EIB202, Edwardsiella tarda 

FL6-60, Escherichia coli BL21-Gold(DE3)pLysS AG, Pseudomonas aeruginosa PA7, 

Pseudomonas aeruginosa PA01, Pseudomonas aeruginosa UCBPP-PA14, Salmonella enterica 

subsp. enterica serovar Choleraesuis, Shigella flexneri 301 (serotype 2a), Shigella flexneri 

2002017 (serotype Fxv), Vibrio cholerae IEC224, Yersinia enterocolitica subsp. palearctica 

105.5R(r), Yersinia pestis A1122, Yersinia enterocolitica subsp. palearctica Y11, Yersinia pestis 

Angola, Yersinia pestis Antiqua (biovar Antiqua), Escherichia coli APEC O78: 

APECO78_13405, Salmonella enterica subsp. enterica serovar Typhimurium SL1344: 

SL1344_1889, and Vibrio sp. EJY3: VEJY3_03600. The 18 plant pathogen strains were: 

Erwinia amylovora ATCC 49946, Erwinia pyrifoliae DSM 12163, Erwinia pyrifoliae Ep1/96, 

Pseudomonas syringae pv. syringae B728a, Pseudomonas syringae pv. phaseolicola 1448A, 

Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum GMI1000, Ralstonia 

solanacearum CMR15, Xanthomonas oryzae pv. oryzae MAFF311018, Xanthomonas 

axonopodis pv. citri 306, Xanthomonas albilineans, Xanthomonas oryzae pv. oryzicola, 

Xanthomonas campestris pv. campestris ATCC 33913, Xanthomonas campestris pv. campestris 

B100, Xanthomonas axonopodis pv. citrumelo F1, Xanthomonas oryzae pv. oryzae PXO99A, 

http://img.jgi.doe.gov/
http://www.genome.jp/kegg/pathway.html%20September%205
http://www.genome.jp/kegg/pathway.html%20September%205
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Xanthomonas campestris pv. campestris 8004 and Xanthomonas oryzae pv. oryzae KACC 

10331. 

3.2 Flagella Genes 

There are 4 flagella genes that were analyzed for this study, fliC, fliJ, flgG and fliD across 

the 18 animal and 18 plant-host bacterial strains. The genes were chosen from the KEGG 

interface (http://www.genome.jp/kegg/ retrieved on September 05, 2013) obtaining the 

nucleotide sequences and the protein sequences of flagellar genes for each strain of bacteria. 

3.3 Sequence Alignment Analysis 

We used EMBOSS Transeq (http://www.ebi.ac.uk/Tools/st/emboss_transeq/) (Rice, 

Longden & Bleasby, 2000) to convert DNA sequence of each strain to amino acid sequence. We 

then made the amino acid alignment using Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/) (McWilliam et al., 2013). We utilized PAL2NAL 

(http://www.bork.embl.de/pal2nal/) to generate a codon-based alignment from the amino acid 

alignment and the FASTA file of DNA sequences (Suyama, Torrents & Bork, 2006). After those 

crucial steps, we visualized the codon-based alignments with Jalview2 (Waterhouse et al., 2009). 

Lastly, the codon alignment text file was edited to remove terminating stop codons and was 

analyzed with HyPhy utilizing the FEL mathematical analysis (http://www.datamonkey.org/) to 

measure dN/dS (Delport et al., 2010). All four flagella genes codon alignments were visualized 

in Jalview 2 from the 18 animal and plant bacterial strains. MAFFT was used to insert test case 

sequences into pre-established background reference set codon-based alignments (Katoh & 

Standley, 2013). Quantitative trait loci analysis was conducted as described in 3.4. 

http://www.genome.jp/kegg/
http://www.ebi.ac.uk/Tools/st/emboss_transeq/
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.bork.embl.de/pal2nal/
http://www.datamonkey.org/
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3.4 Quantitative Loci Trait Algorithm  

Quantitative Trait Loci (QTL) is an approach to infer likelihood for sequence variation to 

associate with phenotypic traits (Kearsey, 1998). We designed a QTL approach to model 

estimations of conserved patches that are predictive for animal versus plant host association. The 

first stage of our QTL algorithm is to calculate odds ratios across each and every nucleotide 

position. Tables 1-4 present a simplified example of how our QTL algorithm works for 

calculating odds ratios of sequence variation at each nucleotide position for host association. 

Nucleotide position #4 (n4) represents the strongest contrast of host association (odds ratio is 

16:1), and nucleotide positions #2 and #3 (n2 and n3) represent the absence of any contrast 

between sequence differences and host association (odds ratio is 1:1). Nucleotide position #3 has 

an odds ratio of 9:1). Two of the rows of Table 1 (boldface row names) present the consensus 

sequences corresponding to animal versus plant host associations for this example. The second 

stage of our QTL algorithm was to measure the strength by which different test cases of 

sequence regions would align and match to the consensus sequences for the alignment regions. 

This matching score is calculated as the average of the added or subtracted logarithms of odds 

ratios for which there is identity with the respective animal (+) or plant (-) consensus nucleotide 

at a given position. 
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Table 1  

Simplified example of contrasted alignment regions of four nucleotides across eight sequences 

from four animal host bacteria (AHB) and four plant host bacteria (PHB), along with consensus 

sequences and three test cases for matching score calculation 

 n1 n2 n3 n4 

AHB #1 (ACTA) A C T A 

AHB #2 (GCTA) G C T A 

AHB #3 (GCTA) G C T A 

AHB #4 (GCTA) G C T A 

PHB #1 (ACTC) A C T C 

PHB #2 (ACTC) A C T C 

PHB #3 (GCTC) G C T C 

PHB #4 (ACTC) A C T C 

AHB consensus 

(13) 

G C T A 

PHB consensus (15) A C T C 

Test case A G C T A 

Test case B G C T C 

Test case C A C T C 
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Table 2 

Odds ratio for nucleotide position #1 (n1) on simplified example 

 Animal host bacteria strains Plant host bacteria strains 

Match AHB consensus 3 1 

Match PHB consensus 1 3 

 

Table 3 

Odds ratio for nucleotide positions #2 and #3 (n2 and n3) on simplified example 

 Plant host bacteria strains Animal host bacteria strains 

Match AHB consensus 4 4 

Match PHB consensus 4 4 

 

Table 4 

Odds ratio for nucleotide positions #4 (n4) on simplified example 

 Animal host bacteria strains Plant host bacteria strains 

Match AHB consensus 4 0 (1) 

Match PHB consensus 0 (1) 4 

 

The matching scores for test cases A, B, and C from Table 1 are calculated as follows: 

Test case A (perfect match with animal consensus): (log(9) + log(16))   /  4 = 1.24 

Test case B (variable match): (log(9) - log(16))   /  4 = -0.575 

Test case C (perfect match with plant consensus): (-log(9) - log(16))   /  4 = -1.24 
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In summary, the matching scores quantify animal host association likelihood as a positive 

value and plant host association likelihood as a negative value, where the strength of association 

corresponds to the magnitude of the averaged matching scores. 

The third stage of the QTL algorithm is to identify those regions of the test cases which 

have the highest magnitudes of matching scores for both animal and plant host association 

likelihoods. These regions were then retrospectively tested against the original sets of animal and 

plant host bacterial strains, with matching evaluated with BLASTN (window size of 7, E values 

< 0.05), and performance tabulated as sensitivity, specificity and predictive value. 

3.5 Primers  

Jalview2 was used to visually identify homologous regions at the ends of the aligned 

sequences that would be generic for amplifying fliC sequences from the range of 36 bacteria. 

Primers were: 5' - GAIAIACIGTCGTTIGCGTT - 3' (forward) and 5' - 

TGGCICAIGCIAACCAG - 3' (reverse). 

3.6 Reviving Pseudomonas aeruginosa and Pseudomonas syringae 

Heat the tip of the outer vial in a flame, then squirt few drops of water on the hot tip. 

Strike the tip with a pencil to remove the tip, then remove insulation and inner vial with forceps. 

Aspectically add 0.5ml of Luria Broth to the freeze-dried material with a sterile pipette and mix 

well; transfer the total mixture to a 5ml falcon tube. Lastly, incubate aeruginosa at 34C and 

syringae at 28C. 

3.7 DNA Extraction from Bacterial Cells 

Pelleted bacterial cells from 100 μl of quantified P. aeruginosa and P. syringae were 

used for DNA extractions. A 300- μl mixture containing Tissue and Cell Lysis solution and 1 μl 

proteinase K, was added to each sample and the samples were mixed thoroughly by vortex the 
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tubes for 10 seconds. The samples were incubated at 65°C for 15 minutes; vortex every 5 

minutes. The samples were placed on ice for 5 minutes and then proceed with 150 μl protein 

precipitation reagent and then centrifugation at 4°C for 10 minutes at ≥10,000 x g in a 

microcentrifuge. The supernantant was transferred to a clean microcentrifuge and discard the 

pellet. For the precipitation of DNA, 500 μl isopropanol was added to the sample supernatants 

and were inverted 30 times. The samples were centrifuged at 10,000 g for 10 min. The 

isopropanol was poured off carefully, then the DNA pellets were washed twice with 75% ethanol 

and resuspened in 35 μl of DNA Free H2O . 

3.8 DNA Extraction from Agricultural Produce 

2 mg of lettuce were processed from head and bag lettuce samples coming from two 

different grocery stores. A 300- μl mixture containing Tissue and Cell Lysis solution and 1 μl 

proteinase K, was added to each sample and mix thoroughly. We homogenize fresh tissue by 

freeze the tissue using liquid nitrogen. The samples were incubated at 65°C for 15 minutes; 

vortex every 5 minutes. The samples were placed on ice for 5 minutes and then proceed with 150 

μl protein precipitation reagent and then centrifugation at 4°C for 10 minutes at ≥10,000 x g in a 

microcentrifuge. The supernatant was transferred to a clean microcentrifuge and discard the 

pellet. For the precipitation of DNA, 500 μl isopropanol was added to the sample supernatants 

and were inverted 30 times. The samples were centrifuged at 10,000 g for 10 min. The 

isopropanol was poured off carefully, then the DNA pellets were washed twice with 75% ethanol 

and resuspened in 35 μl of Tris-EDTA buffer. 
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3.9 Series of Serial Dilution Inoculation 

We obtained the revived P.aeruginosa and P.syringae grown in turbid culture for 48h+ 

and conducted serial dilutions and plating for 1:10^4 to 1:10^9 with incubation for 72 hours at 

28C and 37C respectively.  

3.10 Induction of Bacteria into Combined Lettuce 

We combined lettuce specimens and inoculated it with P.syringae and P.aeruginosa 

using two different mortar and pestals, with a inoculation time of 90 minutes. Then we extracted 

DNA.  

3.11 Mouse Cell Culture  

Cell came from ATCC, Hepa-1c1c7 ATCC CRL-2026. The cells were grown in Alpha 

minimum essential medium without nucleosides, 90%; fetal bovine serum, 10%.  

3.12 Optimization-of-Attachment and Cell Culture Wash 

The mouse cell line C1C17 was incubated with P. aeruginosa and P. syringae, 

separately. The lettuce tissue was also incubated with both bacteria seperately. They were 

incubated for 30 minutes on a depressed microscope slide. There was a volume of 100uL of 

bacteria and 100uL of C1C17. The lettuce tissue was 1gram and 100uL of bacteria.  The 

unattached bacterial cells and lettuce tissue and mouse cells were pressed down with a coverslip 

and poured into an empty beaker. We then took the droplet containing both precipitated 

eukaryotic cells and bacterial cells were pressed down with a coverslip, then the attached cells 

and tissue were rinsed three times into an empty petri dish. We streaked duplicate plates for each 

bacterium containing the mouse cells and the lettuce tissue. The plates were incubated for 48 

hours and the colony forming unit counts of bacterial suspensions were 471 cells per mL for 

Pseudomonas syringae and 72 cells per mL for Pseudomonas aeruginosa.  
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8 CHAPTER 4 

Results 

4.1 Differences across Flagellar Genes for Animal and Plant Host Bacteria   

There was a difference in conservation between the flagella genes (Tables 1 and 2). The 

fliC gene varied the most in length (>20% across 95% confidence interval for plant host bacterial 

fliC genes and >25% across 95% confidence interval for animal host bacterial fliC genes). Based 

on both alignment of sequence homologies and ratios of positive versus negative dN/dS 

positions,  the interior genes fliJ and flgG, and the exterior gene fliD (alignment was essentially 

uninterrupted), for both animal host and plant host bacteria were mostly conserved. FliC was 

conserved for plant host bacteria but diversified for animal host bacteria (Figure 1). In the P. 

syringae, fliC from nearly all the strains were conserved. Figure 1 shows the locations of the 

positive selection instances for nucleotide positions where dN/dS > 1 and the negative selection 

instances for nucleotide positions where dN/dS < 1. The variation in length is also evident, 

especially from the presence or absence of different subsequences in the middle region. This 

patchiness of different subsequences in the middle region was entirely absent from sequence 

alignments for fliD, fliJ and flgG.  

 Table 5 

Profiles of flagellar genes for 18 animal-host bacteria 

Gene Length (95% CI) Positive (dN/dS > 1) Negative (dN/dS < 1) 

fliC 1315 (1153, 1476)  5 193 

fliD 1546 (1437, 1656) 1 236 

fliJ 442 (426, 459) 2 76 

flgG 800 (799, 801) 0 170 



34 

 

 

Table 6 

Profiles of flagellar genes for 18 plant-host bacteria 

Gene Length (95% CI) Positive (dN/dS > 1) Negative (dN/dS < 1) 

fliC 1110 (1004,1216)  2 133 

fliD 1454 (1341,1568) 0 7 

fliJ 456 (453,459) 2 64 

flgG 786 (785, 787)  0 130 

 

 
Figure 1. Four flagella genes investigated in animals and plant hosts: two from the extracellular 

portion, fliC, fliD; and two from the intracellular portion, flgG, and fliJ 
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4.2 Development and Performance of Diagnostic Algorithm 

The first stage of our QTL algorithm development was to calculate odds ratios across 

each and every nucleotide position with respect to animal versus host association, and we 

established background reference sets of 13 animal host bacteria and 15 plant host bacteria 

respectively that were then aligned. Test cases of 5 animal host bacteria and 3 plant host bacteria 

were then added to this alignment (Figure 2). The average odds ratios of 10mer regions across 

the background reference sets and average matching score measures of 10mer regions on the test 

case sequences are shown in Figure 3. The black line represents the odds of there being a 

difference between animal and plant host bacteria for the reference sets. These odds values of the 

black line are going to be added or subtracted to a series of matching scores for the two test sets. 

Addition happens when the test set matches the animal host bacteria reference set. Subtraction 

happens when the test set matches the plant host bacteria reference set. The red test case is 

expected to have more positive scores and the green test case is expected to have more negative 

scores.  

 

Figure 2. Alignment of background reference sets and test sets for fliC gene  
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Figure 3. Odds ratios of 10mer regions across the background reference sets (black line), and 

average matching score measures of 10mer regions on the test case sequences for animal host 

bacteria (red) and plant host bacteria (green) are shown in Figure 3.  

Differentiating regions were identified through visualization of regions where matching 

score measures were both high for the animal host bacteria test cases and low for plant host 

bacteria test cases. A leftward differentiating region encoding for an N terminal portion of 

flagellin was identified at the nucleotide position coordinates of 400-450 (pink lines) and a 

middle differentiating region was identified at the nucleotide position coordinates 1020-1040 

(blue lines). 

The 400-450 and 1020-1040 nucleotide coordinate regions from the animal and plant 

consensus sequences were then identified. The 400-450 nucleotide coordinate regions from the 

animal and plant consensus sequences were found to be, respectively,  

“actccattcaggacgaaatcaacccgcgtctggacgaaattgaccgcgtat” and 

“aagcgctgaactccgaagtcaagcagctcacctcggaaatcgaccgcgtcg.” The 1020-1040 nucleotide coordinate 

regions from the animal and plant consensus sequences were found to be, respectively, 

“gcagaaaaccagaaagctacg” and “ga--------ccggcatgtac.” 
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These diagnostic consensus sequences were retrospectively tested against the original sets 

of animal and plant host bacterial strains BLASTN (window size of 7, E values < 0.05) for a 

positive match) for sensitivity, specificity and predictive value (Tables 5 and 6). 

Table 7 

Performance of animal-host bacteria diagnostic consensus sequences for sensitivity, specificity 

and predictive value bacterial fliC gene sequences 

 

 

Sensitivity 

(TP/(TP+FN)) 

Do we get positive 

matches for all 

positive (animal host 

bacteria strain) cases? 

Specificity 

(TN/(TN+FP)) 

Do we reject for all 

negative (plant host 

bacteria) cases? 

Positive predictive 

value (TP/(TP+FP)) 

If a prediction is 

made, will it be 

“reliable” (actually 

true)? 

N-terminal 

associated region 

pattern (400-450 nt) 

0.83 0.11 0.48 

Middle region 

pattern (1020-1040 

nt) 

0.61 0.83 0.79 
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Table 8  

Performance of plant-host bacteria diagnostic consensus sequences for sensitivity, specificity 

and predictive value bacterial fliC gene sequences 

 

 

Sensitivity 

(TP/(TP+FN)) 

Do we get positive 

matches for all 

positive (plant host 

bacteria) cases? 

Specificity 

(TN/(TN+FP)) 

Do we reject for all 

negative (animal host 

bacteria) cases? 

Positive predictive 

value (TP/(TP+FP)) 

If a prediction is 

made, will it be 

“reliable” (actually 

true)? 

N-terminal 

associated region 

pattern (400-450 nt) 

0.77 0.55 0.63 

Middle region 

pattern (1020-1040 

nt) 

0.61 0.88 0.85 

 

The N-terminal associated region demonstrated greater values of sensitivity (≥0.77) than 

the middle region (0.61) and the middle region demonstrated greater values of specificity and 

positive predictive values (≥0.79) than the N-terminal associated region (≤0.55) for retrospective 

testing against both animal host bacteria and plant host bacteria data sets. (Tables 7 and 8). 
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4.3 Prospective Study of Agricultural Produce 

Lettuce was screened for the presence of the diagnostic consensus sequences to infer for 

the presence of bacteria with fliC genetic markers for animal host association or plant host 

association. Positive matches (BLASTN, word size = 7, E<0.05) for the 400-450 N-terminal  

genetic marker of plant host-associated bacteria were found in head lettuce from a single grocery 

store, and this finding was found for two of three replicate samplings from the head lettuce from 

the single grocery store. This positive match for the same genetic marker was also found for a 

single replicate of combined sampling from all lettuce specimens put together. An almost 

positive match (BLASTN, word size = 7, E=0.054) was found for the 1020-1040 N-terminal 

genetic marker of plant host-associated bacteria were found in the same head lettuce specimen 

from the single grocery store, and for three replicates of combined samplings from all lettuce 

specimens put together. The other grocery store and other lettuce specimens were negative for 

any match to the plant and animal 400-450 N-terminal and 1020-1040 N-terminal genetic 

markers. 

Alignments between the targeted Sanger sequencing reactions with the diagnostic 

consensus sequence were overall very limited. As may have been due to the bulk DNA 

extraction of both lettuce and microbial DNA, the single-primer sequencing method of the 

sequencing service, and limitations on the sequencing service's purification protocols, DNA 

sequencing results were poor. Only patches of high PHRED scores (<20 nucleotides) were 

observed from the inferred sequencing reads which were generally less than 300 nucleotides in 

length, and not the expected sequence length of a fliC gene (1153 to 1476 nucleotides). The N-

terminal associated consensus sequence for plant host bacteria revealed an alignment region of 

AAGTCAAGCA with the reported sequences, and was found both for the single lettuce 
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specimen and the combined lettuce specimens. The middle region consensus sequence for plant 

host bacteria revealed an alignment was for a sequence of GGCATGTAC, and was found both 

for the single lettuce specimen and the combined lettuce specimens. For a BLAST search of the 

KEGG database, these sequences identified a joint match with fliC for a Xanthomonas 

axonopodis, Xanthomonas campestris or Xanthomonas citri bacterial strains. 
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9 CHAPTER 5 

Discussion and Conclusion 

This study represents an effort to develop an analytical approach for matching the gene of 

a known virulence factor, flagella, to its host association. Potential uses of this analytical 

approach for both targeted Sanger sequencing and next generation sequencing methods include                                                

diagnostics for food safety, investigation of other known virulence factors, and the discovery of 

genes not yet established to be virulence factors. 

With an expanding set of fully sequenced bacterial genomes (Chain et al., 2009; Goetz, 

2012), there are both challenges and opportunities for comparing differences in genomic content 

to phenotype and host-environment associations. A practical challenge is to set up multiple sets 

of these bacterial genomes with known phenotypic and host-environment association metadata 

across which genomic content can be analyzed. KEGG and IMG were two tools that, 

collectively, provided helpful starting points for assembling data (Kanehisa & Goto, 2000; 

Markowitz et al., 2012). KEGG was used for screening those bacterial strains having all four 

candidate flagella genes, fliC, fliD, fliJ and flgG, as well as retrieving genetic sequence data. 

IMG provided metadata on host association and pathogenicity across different bacterial strains 

with fully sequenced genomes that we cross-indexed from KEGG. After verification of bacterial 

strain host association and pathogenicity based on unambiguous reports in the literature, we 

established an 18 versus 18 set of bacterial strains associated with animal versus plant hosts 

respectively. We constrained the comparison to the Gammaproteobacteria class (except for 

Ralstonia solanacearum which is from the Betaproteobacteria class). There were limited 

pairwise categorizations across these two sets. The closest taxonomic representation across the 

two sets was within the common genus of Pseudomonas. There was also a broader taxonomic 
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representation across the two sets for the Enterobacteriaceae family (Erwinia sp. of plant host 

association with the animal-host associated Edwardsiella, Escherichia, Salmonella, Shigella, 

Yersinia, and Vibrio sp.). In summary, the establishment of this comparative set must confront 

cross-indexing and verification across public data repositories, evidence from the literature, and 

– perhaps in the future – optimize opportunities for pairwise categorizations allowing for closer 

interpretation and more a powerful statistical design for analysis. This study in the future could 

be furthered analyzed with increasing data from, for instance, the 100K foodborne pathogen 

genome project (Goetz, 2012). For studies of the flagellum in contexts other than animal versus 

plant host association, another interesting comparison would be with nonpathogenic flagellar 

species such as, for example, Caulobacter crescentus. The next steps of the bioinformatics study 

were to evaluate and compare diversity and conservation across different flagellar genes. We 

tried different applications for possible discovery workflows such as the clientside GUI-based 

Jcoda which is fairly integrative for analyzing sequencing conservation (Steinway et al., 2010). 

Ultimately we settled on step-by-step workflows involving a common core of web-based 

applications for transforming, visualizing and analyzing the set of sequences flexibly for 

comparisons of codon-based alignment, dN/dS calculations, primer design, and QTL analysis.  

For corresponding fliC genetic patterns with animal versus plant host associations, we 

analyzed variation of the fliC gene across 36 strains using a quantitative trait loci approach, and 

measured sensitivity, specificity and positive predictive values of host-related consensus regions. 

Based on how different regions demonstrated contrasting degrees of sensitivity and specificity, 

this suggests a scheme where sensitive regions may be used for initial detection of possible 

genetic pattern, followed by specific regions that support a more definitive finding. In the study 

of lettuce, this path of interpretation seemed relevant with the N-terminal associated region 
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giving the first indication of a plant host bacteria, and the middle region adding to the specificity 

of the result. Another scenario of flagellar gene sequences and their correspondence with 

bacterial varieties is horizontal transfer (Schonknecht et al, 2013). We did find some discrepancy 

between the gene trees and species trees of flagella genes that suggested some level of horizontal 

transfer could be occurring mainly within the separate groups of animal versus plant host 

bacteria. The inference of horizontal transfer is not straightforward (Schonknecht et al, 2013), 

but new enhancements to the phylogeny software application Notung may be a new path for 

resolving this question across a diverse range of bacteria (Chen, Durand and Farach-Colton, 

2000).  

We have concluded that out of four genes, fliC is the best gene for a diagnostic workflow. 

fliC diversification was most distinctive for animal host-associated bacteria versus plant host-

associated bacteria when we compared to the other three genes. From our QTL-based analysis, 

there were regions of fliC that have moderate levels of sensitivity, specificity and positive 

predictive value – highest for regions within plant host bacteria fliC genes. This is perhaps due to 

the greater conservation of the fliC gene across plant host bacteria compared to animal host 

bacteria. Further developments involving more data and a refined algorithmic approach may 

enhance how these regions may be used as genetic markers to differentiate for bacteria with 

different phenotypes of host association. When our results were sent to our sequencing service, 

we experienced some constraints with the sequencing results. The sequencing service utilized a 

linear amplification protocol by using one primer (forward primer or reverse primer) instead of 

exponential amplification protocol, using both primers. In order to increase the predictive value 

of our approach, we expect that the DNA extraction and targeted PCR steps could be further 

optimized, or next generation sequencing technologies could be utilized to harvest metagenomic 
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and whole genome sequencing data sets. Follow-up analyses to identify and validate the specific 

bacterial strains inferred to be on agricultural and livestock specimens would include further 

sequence-based analysis and the isolation and culture of bacterial strains. Ultimately, as we may 

develop this approach to confidently distinguish animal host bacteria from plant host bacteria, 

this may lead to an innovative, broad-based method that is an essential part of the diagnostic 

arsenal for food safety. 
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Appendix 

                A pilot study was conducted of comparative host cell attachment of 

Pseudomonas aeruginosa PA01 and Pseudomonas syringae DC3000 to lettuce tissue (1 

g, manually ground with fingers) and 100 uL directly from culture of C1C17 mouse cells 

(Figures A1-A4). Qualitative analysis was based on visual assessment of growth density 

and green pigmentation (potentially pyocyanin – observed in both mouse and lettuce cell 

treatments) from Pseudomonas syringae and Pseudomonas aeruginosa. In all instances, 

bacteria were found in both the unattached and potentially attached layers of the 

experiment. There were higher levels of green pigmentation that we observed for P. 

syringae attached to lettuce tissue than for P. aeruginosa (Figure A4). For one of the petri 

dishes, bacteria that were in the unattached layer of the experiment with mouse cell lines 

were found to be more dense for P. aeruginosa than P. syringae (Figure A1), which may 

be notable due to the greater CFU density of P. syringae used in inoculation. Overall, 

these preliminary results suggest that separations of a liquid phase may yield levels of 

bacteria in layers of the liquid with and without eukaryotic cells, but additional steps 

were not performed to verify actual attachment. 

 

 



56 

 

 

  
Figure A1. Plating of bacteria that were unattached to mouse cells. Top: Pseudomonas 

aeruginosa PA01; Bottom: Pseudomonas syringae DC3000. 

 
Figure A2. Plating of bacteria that were unattached to lettuce cells. Top: Pseudomonas 

aeruginosa PA01; Bottom: Pseudomonas syringae DC3000. 
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Figure A3. Plating of bacteria that were potentially attached to mouse cells. Top: 

Pseudomonas aeruginosa PA01; Bottom: Pseudomonas syringae DC3000. 

 

Figure A4. Plating of bacteria that were potentially attached to lettuce cells. Top: 

Pseudomonas aeruginosa PA01; Bottom: Pseudomonas syringae DC3000. 
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