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Abstract 

 

Heating, ventilation, and air-conditioning account for a vast majority of energy consumption in 

the residential and commercial sectors.  Intelligent energy management control system (EMCS) 

in buildings offers an excellent means of reducing energy consumption in heating, ventilation, 

and air-conditioning (HVAC) systems while maintaining or improving indoor environmental 

conditions. This can be achieved through the use of computational intelligence and optimization. 

This project proposes and evaluates a model-based optimization process for HVAC systems 

using an evolutionary algorithm. The process can be integrated into the EMCS to perform 

several intelligent functions and achieve optimal whole-system performance.  The proposed 

process addresses the requirements of the latest ASHRAE Standard 62.1.  A whole building 

simulation energy software is used to generate the sub hourly load. The simulations are 

performed to test the process and determine the potential energy savings achieved. In addition, 

simulations were conducted at peak load on July 15
th

 and partial load on April 10
th

 to observe the 

effects of genetic algorithm (GA).  

  Through artificial intelligence utilization, the energy consumption can be better managed.  

Building controls are like living organisms which can be treated much like evolutionary biology 

during programming.  The single-objective GA optimization and modernized ventilation codes 

have demonstrated that total energy consumed by the HVAC system can be reduced by 30.6% 

for the air side distribution.   
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CHAPTER 1 

 

 Introduction 

 

1.1 Overview 

 

 The intent of this research is to develop an intelligent strategy using technology to drop 

energy consumption and evaluate a model-based optimization process for HVAC systems using 

GA.  In this chapter, the issue of why energy conservation is in such high demand among 

buildings is discussed, along with a reflection on some of the guidelines that buildings are 

required to meet nowadays.  Other points discussed are the HVAC system is also discussed, the 

impact of its setpoints on energy conservation, and how technology can be used to lower energy 

consumption. 

1.2 Problem Statement 

 According to the U.S. Energy Information Administration, the building load is ever 

increasing due to human and environmental factors.  Several other notable HVAC statistics 

include commercial spaces  which account for 50% of fuel consumption by end use, space 

heating alone accounts for 36% of consumption, and facility HVAC systems account for 62% of 

non-process energy consumption by end use within manufacturing industry (Energy Information 

Administration [EIA], 2012).  Both residential and commercial buildings account globally for 

20- 40%  of all energy consumption (Perez, 2008).   While primary energy use has marginally 

decreased in the residential sector, it has increased 0.6% annually in commercial sector (EIA, 

2012).  Dehumidification is also a very energy expensive process in southern U.S. and accounts 

for more than 60% of the total U.S. cooling energy consumption whereas the Northeast and the 

Midwest regions account for approximately 10% and 12% (Dieckmann, 2009).   Along with 

greater cooling and HVAC demand but fuel cost is also rising.  With such a large amount of 
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energy consumption attributed to HVAC, there are much room for improving efficiency and 

reducing energy consumption. 

1.3 Energy Conservation and Building Standards 

 With new innovations and standards, efficiency can be gained in many ways.  The 

American Society of Heating, Refrigeration, and Air-Conditioning Engineers, ASHRAE, is just 

one of many organizations that create new standards and guidelines such ASHRAE 62.1 and 

90.1 on how to implement these technologies.  Furthermore, among the sustainability and energy 

associations including U.S. Green Building Council or Leadership in Energy and Environmental 

Design, American Energy Engineers, and Department of Energy, there are strong goals and 

mandates to lower energy consumption and integrate new technologies including building 

mechanical systems.  Furthermore, modern building technologies currently  allow better control 

particularly with feedback and variable responses.   While many research are on areas such as 

economizers control strategies utilizing split control and PID control loops (Wang & Xu, 2002). 

1.4 Scope 

 Optimization focuses on the primary goal of energy reduction.  As shown in Figure 1, the 

three main components of the optimization are the load prediction tool, variable air volume 

(VAV) model, and genetic algorithm (GA).  The load prediction tool, eQuest, simulates the 

building in an annual period to which the peak load on a particular day was selected.  The  

software eQuest is an advanced simulator of building heat loads but also is able to simulate 

energy consumption and can be modified in vast case scenarios with different building codes, 

types, and mechanical equipment selection.  The VAV algorithm and program determines a 

simple energy utilization using input information from eQuest and external data collection and is 
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the core of the  optimization.  It will be explained in greater depth later on in the thesis.  GA 

mimics the evolutionary process into numerical terms in which the fittest setpoints are used in 

determining the supply air temperature and pressure for our model.  The fittest setpoints arrives 

after a specified number of generations as survival of the strongest data gets carried onto the next 

generation.  This is also another important, strong feature of the optimization as the weakest 

setpoint are dissolved and the program continuously cycles through random data of surviving 

from the prior generations along with a mutation factor.  From the GA and VAV model, the 

energy cost is computed from three main mechanical components: fan, reheat, and chiller.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Optimization Process. 
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1.5 Research Objectives 

 Building automation systems in HVAC offers a great solution to energy conservation.  

Through the control systems, this paper evaluates the algorithms used for reset controllers and 

optimizing the energy consumption while still meeting with environmental standards.  The main 

objectives during this research are to develop an optimization tool for use in the MATLAB 

OptimTool which is integrated in the Building Automation System for the air side distribution of 

HVAC.   Furthermore, a study on the energy consumption were also applied to the ASHRAE 

Standard 62.1 codes from 1989-2003 and 2004-2013 when the formula was modified specifically 

to account for area and occupancy. This proposed strategy considers the ventilation requirements 

by the recent version of ASHRAE Standard 62.1- 2013. 

1.6 Limitations 

 Although the algorithm develops setpoints, there are limitations to which real processes 

can occur without adverse impacts. The limitations exist as upper and lower boundaries in the 

variables and  the constraints defines the possible solutions.  Two main boundary conditions for 

the GA apply to supply air temperature and supply air pressure.  The supply air temperature is 

bounded between 55°F and 65°F whereas supply air pressure is bounded between 1.0 and 3.0 

inWg.  While lowering the supply air temperature can be advantageous, it can also cause icing in 

the buildup causes blockages of airflow and insulating effects of the frost layer itself (Reindl & 

Jekel, 2009).  Extreme supply air temperature may cause issues such as icing or lost 

dehumidification capability whereas supply air pressure extremities can cause air starvation or 

surging issues.   
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1.7 General Description--Air Side Distributions 

 The VAV must be understood mechanically and through its control systems before 

developing an optimization strategy.  Figure 2 shows a general air handling unit depicting return 

air, mixed air, and supply air statuses.  Also shown are three dampers including exhaust, outside 

air, and return air.   The air flow circulates from return air where it can exhausted or back to 

mixed air with outside air (OA), before the air handling unit (AHU), and then back into zones as 

supply air (SA).  The chilled water (CHW) valve modulates and controls the temperature of the 

supply air whereas the supply fan controls the supply air pressure.  Here, controller C1 controls 

the valve position of the chiller water passing through the inside the air handling unit’s coiling 

coils and thus the supply air temperature.  Controller C2 controls the supply air pressure through 

the fan where typically a variable speed drive is used.  Controller C3 modulates the air flow 

through the zone.  Binary outputs results in on or off positions of actuators whereas analog 

outputs results in partial positions. 

 This study emphasizes on the air distribution side starting mechanically from the air 

handling unit where the mixed air passes through the cooling coils to the fan and becomes supply 

air for the terminal zones.  Initially, mixed air (MA) starts before air handling unit (AHU) and 

passes through the cooling coils where the supply air temperature (SAT) is first regulated.  In 

conventional units, all air is held constant at 55°F for the cooling months.  The cooling coil 

valve, CCV, determines the temperature at which the supply air temperature.  Several options in 

SAT regulation and controls include constant and SAT reset.  Constant SAT regulation can be 

later modified by terminal reheat or dampers whereas SAT reset are constantly monitoring 

demand and adjusting the CCV as appropriate. 
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Figure 2. General Schematic of Supply Air Control System.  

 

1.8 General Description--Variable Air Volume 

 The VAV regulates the final temperature of the supply air at the terminal distribution.  

There are various ways to classify VAV systems.  While there are many terminal air distribution 

systems today, there are two main types: constant air volume and VAV.  In constant air volume, 

CAVs, the volume of air is constant until it cools the critical determining zone or room.  The fan 

is either on or off determined by the critical zone.  CAVs offer a lower initial cost but higher 

operating cost due to lack of specific control.  In CAVs, the AHU is only on or off and 
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determined by the critical room which is the room needing the most cooling or heating.  In VAV, 

VAVs, the control in the temperature by amount of air flowing to a zone is controlled by a 

modulating damper (ASHRAE Applications, 2011).  Depending on the set-point of the 

thermostat has been met or partially met, the damper will partially or fully close in a 

conventional control.  Furthermore, two general control designs by VAVs include pressure 

dependent and pressure independent.  In pressure dependent, the damper position is controlled 

with regards to room temperature only- there is without regards to flow rate or reset control to 

other zones.  Whereas in pressure independent, the control accounts also to flow rate, resets, and 

better individual control of room temperatures.  Pressure independent are valuable in that if one 

zone is satisfied and closed and thereby increasing the pressure in another terminal zone, the 

feedback is important because dependents VAVs only recognize damper position. Supply air 

temperature reset modulates the chilled water and aims to reduce compressor hours where energy 

is saved.  Supply air temperature can also be reset to higher setpoints at the cost of preventing 

cooling of the highest demand within zones.  However, at the other spectrum, supply air 

temperature resets that are too low carry the advantage of dehumidification but higher energy in 

reheat.  Compared to constant air volumes, VAVs use 60% of the airflow and thus save energy in 

fan speed reduction and static pressure (Dieckmann, 2012).  VAVs can also be organized by fan 

placement in series or parallel with each offering different strategies.   Series VAV’s passively 

induce plenum return air while parallel fan is placed in line with the plenum air.  Series designed 

fan are also designed to run continuously in cooling mode whereas parallel fans are designed to 

be run in low-cooling needs and also heating modes.  Since parallel fans are run intermittently 

and have a greater control of utilizing plenum air, the energy savings are greater.  VAV was also 

selected during this study which takes advantage of typical VAV savings at the air handler and 
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chiller during the cooling periods but the real savings occurs when it induces warm plenum air 

from the ceiling and blends it with the primary at minimum ventilation requirements during the 

heating sequence.  This recaptures the heat instead of wasting it back at the air handler. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

 Supply air side setpoints were the main topic in this study.  Numerous studies show that 

VAVs continually prove to be amongst the leader when utilized in real world application.  In an 

application and competition study with the UC Davis Medical Center Graduate Studies Building, 

variable air volume reheat, VAVR, proved to be a tough competitor and winner against Active 

Chilled Beams plus Dedicated Outdoor Air Systems, ACB+DOAS.  VAVR had much lower first 

cost, energy costs, and achieving similar floor to floor thermal air quality (Stein & Taylor, 2013, 

p. 30).  VAVs can even be further advanced with smarter controls offering energy strategies such 

as ‘Dual Maximum’ VAV box control logic as suggested by Taylor, Stein, and Paliaga.  In dual 

maximum logic, the maximum airflow is reset to be higher than 30% of the ASHRAE Standard 

90.1-2010 and California Title 24-2010 which limit the usage of reheat at a constant to 30%.  

Instead of the maximum heating airflow being the same as the minimum airflow rate that is 

allowed in single maximum strategy, the dual strategy allows the hot water valve opening and 

higher airflow change with respect to safety limitations (Taylor, Stein, & Paliaga, 2013).  

 This section gives a summary of the major ideas regarding the study of GA and its 

relevance to heating, ventilation, and air- conditioning (HVAC).   This analysis show that most 

studies can be categorize in several ways including theoretical analysis, case-study results, and 

simulations models.  Although there are many simulation studies revolving VAV, the primary 

focus is utilization of artificial intelligence.  Much research has determined while VAVs have 

higher initial cost and investment, the energy savings are greater compared to CAVs or Fan Coil 

Systems (FCS).  Further simulated technologies such as utilizing variable speed compressors 
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with pressure independent VAV has a bigger impact on energy conservation (Chen & Deng 

2006).  

 The literature review will cover topics on building and energy simulations, theoretical 

analysis of control designs, and applications of GA.  As a background source of information, 

literature from several renowned building technical societies were included in above areas 

including the ASHRAE Handbook; ASHRAE Journal;  ASHRAE HVAC&R Research; and prior 

lectures from NC A&T State University. 

2.2 Optimization of HVAC Control Systems Strategy using G.A. 

 In this case study, it was shown that using GA for as part of the supervisory control 

reduced energy consumption by 16% for two summer months (Nassif, 2005).  This study 

highlights that using global system better optimizes its full potential in energy savings in contrast 

with local level control.  The research was implemented at Ecole De Technologie Superierure 

campus in Canada with air handling unit, AHU 6, and 70 zones being studied.  Local level 

control often maintains constant temperature in supply air temperature and supply air pressure 

whereas continuously resetting these values at interval times gave a better feedback and response 

to demand and resulted in energy savings.  Two objectives were created during the study- energy 

and thermal comfort.  Thermal comfort, ASHRAE 55D can be quantified and measured as a 

proportion of predicted percentage of dissatisfied (PPD) and predicted mean vote (PMV) 

according to 2011 ASHRAE Handbook.  Thermal comfort is scaled by the PMV and based on 

six factors to include: metabolic rate, clothing insulation, temperature, radiant temperature, air 

speed, and humidity.  Using the energy models and algorithms for the HVAC and PPD equation 

for thermal comfort, an optimized setpoints was created for the reset variables.  Thermal comfort 
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as a second objective is important because as energy consumption is reduced, extreme 

boundaries of HVAC setpoints may cause an unbearable air quality for occupants.  The 

optimization process was based on a Non-Dominating Sorting Genetic Algorithm, NSGA II, in 

which a pareto curve convergence was created to obtain the optimal setpoints.  NSGA II offers 

many advantages for multi-objectives because they are able to utilize a tradeoff trend in which 

either a weighted performance sum or pareto curve is used.   The main difference from single-

objective optimization is that a multi-objective problem does not have one single optimal 

solution, but instead has a set of optimal solutions, where each represents a trade-off between 

objectives.   

 Furthermore during the design algorithm, the computation for outside air ventilation, 

ASHRAE 62.1 was based upon 1989 guidelines.  In the 1989 version of ASHRAE 62.1, the 

outside air had an Estimated Maximum Occupancy of (People/1000 ft
2
) and was reflected in the 

airflow rate.  The airflow rate per person was higher but at the cost of not equating area into the 

formula. The analysis of ASHRAE 62.1-2013 has been updated to reflect air flow rate not only 

in terms of people but also space area.   

2.3 Optimized Supply-Air Temperature (SAT) in Variable Air Volume Systems 

 Supply air temperature reset controllers (SATRC) offer many opportunities for energy 

conservation.  In Ke and Mumma simulation of supply air reset, three criteria for developing 

SAT setpoint were determined with the objective of determining and lowering energy cost.  The 

three researched criteria included outside air temperature, zonal thermal loads, and humidity 

limitations were compared at different times throughout the year in Harrisburg, PA.  

Furthermore, the relation of OA temperature can fall in categories of being higher than return air 

(RA), between supply (SA) and return, and lower than supply air temperature.  As the 
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temperature of the OA decreases to SA, the load is generally shifted from the cooling coil to the 

OA.   However, when the OA temperature goes below the SA temperature, free cooling occurs 

where no energy is consumed to lower SA temperature- plenum air is used to rewarm the air.   

 Although the SATRC can save energy during moderate seasons such as spring and fall; it 

also can adversely increase fan energy consumption where the fan energy may overrule this 

benefit.  As the SATRC approach higher temperatures, the disadvantage were the supply air fan 

running at higher speeds and lost capability of dehumidification.  SATRC was most optimal and 

could save energy if the system was able not turn on the VAV reheat on also or tempering, still 

meet minimum ASHRAE 62.1-1989 and necessary dehumidification.  The conclusion of the 

study recognized 16% reduction ratio of OA for March and 18% for November (Ke & Mumba 

1997).  Likewise, the power demand was lowest during expected seasons that OA economizer 

would be most beneficial and included March, April, October, and November.   The simulation 

also found that SATRC was marginally optimal in peak summer when compared to fixed SAT 

but not during the peak winter because the SATRC is advantageous to cooling and not heating 

energy.  Overall it was concluded that SATRC was better than fixed-SAT and saved 6.2% in 

annual cost (Ke & Mumma, 1997). 

2.4  A Model-Based Optimal Ventilation Control Strategy of Multi-Zone VAV Air-

Conditioning Systems 

 Another model reflecting the advantages of using GA was simulated in a study of multi-

zone VAV air-conditioning systems.  Since several prior studies were conducted in single path 

air supply and CO2 as the primary indicator of occupancy, the researchers wanted to study the 

effects of demand control ventilation (DCV) in multi-zone and also take a more comprehensive 
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approach.  The objectives were aimed at reducing energy consumption while still meeting 

standards for thermal comfort and indoor air quality.  Figure 3 shows how the equations were 

implemented in the control strategy for a multi-zone operation.   

 

Figure 3. Diagram of the Dynamic Multi-Zone Ventilation Equation Scheme.  (Xu, Wang, Sun, 

& Xiao, 2009). 

 Overall, two schemes were used for the ventilation- one using the ventilation equation 

scheme where fresh air correction was used and the second strategy involved utilizing the 

dynamic temperature set point reset to the critical zones.  The ventilation equation was adjusted 

due to the fresh air that still existed from the over-ventilated zones and ASHRAE 62.1- 2001 and 

2004 which was based on people and area:  Vbz = (Rp · Pz) + (Ra · Az) and was considered the 

conventional DCV strategy and categorized based on five differing weights.  In the second 

strategy, the dynamic temperature reset was compromise between factors such as energy 
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consumption, thermal comfort, and indoor air quality.  Thermal comfort was measured as an 

index of predicted mean vote (PMV) and predicted percent dissatisfied (PPD) according to the 

thermal sensation scale of ASHRAE 55.  In addition, whereas the conventional strategy used an 

equation scheme to determine solutions, the computation process or optimizer to solve the 

second scheme was GA.   

 The results of conventional versus multi-zone DCV strategy offered many possible 

solutions when balancing thermal comfort, indoor air quality, and energy consumption.  For all 

the testing during the sunny summer day, the multi-zone DCV strategy was considered the 

baseline.  For the conventional DCV strategy, the average thermal comfort, 6.92 PPD%, which 

indicated better score compared against any of the other multi-zone DCV strategy.  It also saved 

significantly higher energy in the cooling energy consumption, 17.36%, and overall power 

consumption, 11.92%.  However the tradeoff was that for the conventional DCV, the average 

CO2 ppm was relatively higher compared- 834 for convention versus 700 for multi-zone DCV.  

Although all the additional five weight settings for the multi-zone DCV did not show as 

significant high of a cooling energy and power consumption, the advantage was that it reflected 

better indoor air quality in which C02 level was the primary agent being tested for.  The five 

weight settings of multi-zone thermal comfort was also marginally worse ranging from 0.94- 

1.30 higher PPD than conventional DCV.  In all the DCV modeling, the fan energy only 

marginally varied from 0.20% to 1.37% worse than the multi-zone DCV.  The research 

highlights that the ventilation strategy is able to optimize performance according to different set 

weights.  Weighting factors are done with coefficients and depending on situation and building; 

some factors may have larger importance and must compromise between cost, environment, or 

priority.    
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2.5 Summary 

 During this investigation, we studied the air distribution to zones.  While there is much 

research also to the chiller, water loop, and condensing section of HVAC, the primary focus is 

the consumption of energy at the air distribution as it passes through the evaporator and coiling 

coils to the room.  Many published articles have shown the effectives of using reset controllers 

and using various strategies such as VAV trim and response methods at the individual level but 

not system integration particularly with artificial intelligence methods (Taylor, 2007).  While this 

study does not differentiate in depth between constant and variable systems, a further analysis 

can be conducted for optimization. It is found VAV systems often provides better performance, 

initial cost, and  life-cycle cost due to lower fan- operating costs (Aktacir & Yilmaz, 2006).  

VAV systems have been offering great solutions to recognizing occupied and unoccupied zones.   

 Much research and modernization has also been conducted to ASHRAE 62.1 ventilation 

standards.  One of the foremost improvements to Standard 62.1 was the modification to include 

zone population with floor area from 2003 to 2004.  Recycling air and minimizing the OA in air 

distribution offers many opportunities for energy conservation.  Maintaining high indoor air 

quality (IAQ) is one of the main objectives due to particles, gases, and vapors that can threaten 

health and productivity (Mcdowall, 2007).  IAQ is accomplished through ASHRAE standard 

62.1 and can be taken further in an ASHRAE Journal which Stanke also critiqued the 11 

sequential design step calculation for OA ventilation.  Throughout the calculation of minimum 

airflow rates, the strategy focused on using actual population instead of estimates and actual 

airflow values at 80% to show that ventilation airflow can be reduced at non-design conditions 

(Stanke, 2010).  Although more accurate and actual people counting can reduce energy 

consumption, the cost may be far outweighed and not readily available.  Actual population 
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counting can be advantageous because it can limit the amount of OA through its design’ 

Multizone System (MZS) calculations of ventilation with building automation systems, whereas 

C02 sensory technology has no MZS calculations but rather just opens and close damper 

according to design level (Stanke, 2010).  Besides CO2 based reset for ventilation, other 

technologies include using Airflow-based VRC, occupancy sensing, and using VRC with timing 

schedules based on estimates.  Overall design and operations of utilizing ASHRAE 62.1 

ventilation standards may conflict since design intake airflow always equal or exceeds the intake 

airflow needed at non-design conditions.  Changing the OA ventilation code strategy may offer 

one potential whereas other strategies include controlling the economizers.  Nassif’s split-control 

of the OA, RA, and DA and Yao’s enthalpy-based economizer’s are several concepts to further 

the energy-saving performance (Nassif, 2010; Yao, 2010). 

 Outside air is just one example where it can be set to be more dynamic in the simulation 

and GA could be developed in conjunction with supply air temperature and pressure.  The 2013 

edition of Standard 62.2 incorporates 20 addenda to the 2007 version itself and thus is a 

continually evolving (Emmerick, 2011).  Outside air and humidity becomes an important issue in 

regards in North Carolina’s climate index of 4A by.  Dehumidification consumes very high 

energy as it has to be sub-cooled to a lower setpoint for condensation to occur and also paralleled 

with reheat energy cost.  Charles Cromer also in 2001 innovated a process for dehumidification 

by using the excess subcooled temperatures for water removal condensation to preheat the return 

air via a precooled coil that otherwise be reheated at the VAV (Dieckmann, 2012).  However, 

higher OA airflow may not always consume more energy especially when combined with total 

energy recovery equipment and economizers as investigated a study by Dr. Mumma when 30% 

surplus OA was used.  Several design systems in becoming more energy efficient includes 
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dedicated outdoor air systems (DOAS); decoupled ventilation/recirculation systems; 

personalized ventilation (PV) system; displacement ventilation (DV) system; and under floor air-

distribution (UFAD) system (Sekhar, 2013).  Other technologies include the usage of energy 

recovery ventilation (ERV) which has been mandated in ASHRAE 90.1-2010 and has been 

shown to have up to 70% energy savings (Hastbacka, Dieckmann, & Bouzza, 2013). 
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CHAPTER 3 

 Methodology: Building Load Development 

3.1 Introduction 

 The building load analysis was conducted through eQuest for testing purposes only.  The 

goal was to extract the load calculation or in other applications, a trend log or history of data 

setpoints could be used.  The initial steps were to first simulate the building through eQuest.  

eQuest is an energy consumption and building load performance predictor after selecting the 

building type and mechanical system.  The heat load data is then extracted and organized in 

Excel.  From the heat load data, GA tool is performed in a sequence of steps to obtain the total 

energy.  GA is utilized through MATLAB through the Global Optimization Toolbox which 

determines the best fit supply air temperature and pressure with the least energy consumption.   

3.2 eQuest Building Simulation  

 During the algorithm development, the outside air conditions, building characteristics and 

internal load determined the energy consumption.  eQuest is a building energy software that can 

simulate building energy performance and analysis with Department of Energy’s guidelines, 

DOE-2, using ASHRAE 90.1 as the baseline.  Simply summarized from the eQuest website, 

DOE-2, in its raw standard form is a batch-oriented program, for which you create input files 

with your building description in DOE-2's building description language or BDL to simulate 

energy performance from architectural, lighting, and mechanical domains (eQuest 4).   Within 

eQuest, many standards including ASHRAE and LEED standards and codes can be configured to 

simulate building performance.  From the eQuest simulation, 20 zones’ sensible and total loads 

were created.  Outside air conditions is based on peak cooling day of the entire year.  Design 

minimum supply air flow, space areas, and number of people per zone are computed by eQuest.  
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Flow coefficient, fan efficiency was determined by industry nominal range of values.  ASHRAE 

62- 2013 Standards for Minimum Outside Air Intake per zone is based on number of people and 

square footage per zone.  In Figure 4 are the major characteristics are the overall area is 30,300 

ft2;  Utilization Type- Office Building;  Simplified time scheduling of mechanical setpoints; 

Location:  Greensboro, NC; and Code Analysis:  LEED- New Construction; ASHRAE 90.1. 

 

Figure 4. Developing a Baseline for Building Design Load in eQuest.   

 The building is divided into areas with respect to sun, size, type of rooms, and location, 

core or perimeter, where it is to be controlled by one thermostat per zone.  The first floor layout 

is the same as second floor and is also composed of 76.5% perimeter spaces.  Two floors with 

generalized zones, Figure 4, are created.  There are 20 zones with the first number indicating 
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ground floor, and the second number indicates top floor in Figure 5.  

 

Figure 5. Interior Space Zoning of Buildings Layout.  

 Every zone is specifically different by many factors including number of people, building 

orientation to sun, number of windows, and thus leads to a different amount of load factors and 

temperature control.  Sensible heat is related by a change in temperature but not changes phases 

whereas latent is related to phase change but not change in temperature. Latent heat is best 

described as the water effect or humidity whereas electric heat and convection is an example of 

sensible heat.  The total heat load is directly related to sensible heat and any changes are 

proportional. eQuest processed these zones automatically in the example but can be manually 

adjusted to specified characteristics such as perimeter or core, number of occupants, type of 

rooms such as computer or lecture rooms 
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Figure 6. HVAC Mechanical Equipment Selection.  

 In Figure 6, the equipment is auto sized using a single system pump with one hermetic 

chiller per floor for a total of two chillers.  It was estimated to be at 75.8 tons based upon the 

design load.  Other characteristics include:  Primary System Chiller Design Pump, 95 ton Chiller, 

and a Packaged Air-Cooled Condenser or direct air, heat exchange removal systems. 

 In Figure 7, a VAV is selected for the terminal air distribution.  Although the system 

baseboard heaters are shown for summer heating, the primary focus of this study focuses on 

cooling.  Among the air side, the air handling unit is also depicted through the chilled water coil 

and supply fan.  The air handling units will distribute the air to the VAV’s within the zone.  After 

modeling the building performance by EQuest, a building load output was created in Figure 8.  

The sensible heat load and total heat load is determined for each zone by day and hour.   
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Figure 7. eQuest Overall Air-Side System Selection.   

 

3.3 Load Extraction 

 A summation of the loads as shown in Figure 8 can be determined in various categories 

such as time and zones to be used as data for MATLAB and GA optimization.  Furthermore, it 

can be compared against the GA optimization for energy analysis. 
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Figure 8. eQuest Baseline Design Data, complete listing in Appendix A.   

 eQuest has many unique properties when it comes to simulating a building performance.  

In Table 1, the design data was extracted through an analysis of each zone’s property.  Among 

the design data extracted was the airflow rate, space area, and number of occupants. 

Table 1 

 Building Design Data Extracted from eQuest 

  Zone 
#: 

        

 1 2 3 4 5 6 7 8 9 10 

AirFlow 
Rate 

3370 2961 1082 1600 1051 2532 1028 1546 2035 2513 

Space Area 1914 1914 1827 1517 1775 1225 1048 1300 1420 1388 

People #: 24 24 13 19 13 16 13 17 18 18 

 

  Zone 
#: 

        

 11 12 13 14 15 16 17 18 19 20 

AirFlow 
Rate 

2945 2606 1082 1300 1051 2127 814 1330 1729 2202 

Space Area 1914 1914 1827 1517 1775 1225 1048 1300 1420 1388 

People #: 25 25 17 20 16 16 14 17 19 18 
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CHAPTER 4 

 

Optimization Model 

 

4.1 Introduction 

 

 In this chapter, there are two main parts to the optimization, GA and development of the 

air distribution algorithms that will simulate the energy consumption.  The GA tool is already 

developed by MATLAB but a discussion of how the optimization process will be discussed.  In 

addition, the air distribution algorithm was created through the fundamental theories and 

equations from hydraulics, fluids, and thermodynamics with the end product being energy 

consumption at each stage of sequence.  The GAHVACModel and VAVModel were the 

algorithms used to create these files for the air distribution with the GAHVACModel being like 

the cover or main page with all the major variables being listed on it.  The VAVModel would run 

each sequential step through the air distribution but also include energy consumption from the air 

distribution to the chiller.  The coiling coil and chiller algorithms were provided by the ASHRAE 

Toolkit 2. 

4.2 Genetic Algorithm Description 

 Through artificial intelligence utilization, the energy consumption can be better managed. 

Building controls are like living organisms which can be treated much like evolutionary biology, 

in the programming respectively.   Treating control systems inputs like chromosomal DNA, the 

algorithm processes the binary codes through crossing, mutation, and tournament selection with 

setpoint outputs to optimize the mechanical system.  The random set of parents is hybridized to 

produce an offspring which also defined as one generation.  During the hybridization, through 

processes of crossing over and mutation, to preserve diversity, a child is produced in the 

generation.  As each generation proceeds, the fittest code or trait survives into the next until an 
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optimum fitness is determined.  GA in depth has many advantages and uses in solving complex 

problems.  Traditional methods of solving problems sometime can lack efficiency when 

calculating every function value in the search space and moving only in the direction related to 

the local gradient instead of searching the population.  GAs differ from other search and 

optimization algorithms because they work with a coding of the parameter set, not the 

parameters themselves, searches from a population of points- not a single point, use payoff 

information instead of derivatives or other auxiliary knowledge; and use probabilistic transition 

rules, not deterministic rules (Goldberg, 1989).  While GA is used in this study, other types of 

artificial intelligence have been simulated to show energy conservation also.  Fuzzy logic 

controllers used in conjunction with DCV strategies and various economizer cycles has 

effectively conserved between 44% and 63% per day energy savings (Karunakaran, 2010). 

        

Figure 9. General Genetic Algorithm Model. 
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 The algorithm begins by creating a random initial population as shown in Figure 9.  The 

algorithm then creates a sequence of new populations. At each step, the algorithm uses the 

individuals in the current generation to create the next population. To create the new population, 

the algorithm performs the following respective steps:  evaluates the new population by 

calculating its fitness and grades the fitness, goes through the first main operator call selection in 

which the parents are chosen based on fitness, then hybridization of the parents in which a new 

offspring is produced after mutation and crossover combinations.  A generation cycle is complete 

after the offspring succeeds and becomes the new parents (Mathworks).  During the process of 

GA, several computing terms are representative of the biological reproduction system.  The 

population size is the array of individuals, row vectors, translated into a matrix.  Diversity is 

maintained by the mutation and crossover operators so that the entire space is searched.  The 

chromosome length is the length of the row vector determined in bits.  Finally the fitness vector 

contains the fitness values corresponding to the individuals in the population.   

4.3 MATLAB- Optimtool for Genetic Algorithm 

 MATLAB is an advanced numerical computing and simulating software.  Within the 

software, there is a Global Optimization Toolbox which has built in GA programs that is able to 

produce a set of optimal setpoints for the VAV air distribution system.  During this research, the 

it was conducted at steady state.  The GA program and VAV model different in that GA 

produces a random hybridized optimal setpoints for test in the VAV model which is a series of 

sequential operating system that calculates energy usage.  For each cycle or generations of GA, 

the child setpoints which are produced are evaluated through the VAV program.   The objective 

goal during this study is to introduce how energy can be minimized with GA using the following 

objective variables- supply air temperature and supply air pressure with energy consumption 
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defining the fitness.  From the setpoints, SAT and SAP, energy consumption is calculated for the 

terminal reheats, fan power, and chiller power respectively.  The following settings are used for 

the GA:  Population size = 100; Reproduction and Crossover fraction = 0.8;  Mutation function = 

Constraint dependent default; Generations = 100.  

4.4 Variable Air Volume Model 

 The GA computes setpoints for energy analysis through the variable air volume model. In 

overview, the input variables from eQuest including the loads, outside air conditions, and design 

criteria are input into the algorithm.  The algorithm then respectively determines the actual zone 

airflow rates, amount of reheat, outdoor air flow, and basic calculations involving the air’s latent 

heat.  Depending on the cooling load at the zone, the cooling coil model and chiller model 

calculates its respective energy consumption. Figure 10 shows the major component of the 

optimization model and its interface with the input values, output values, and GA. 

Input Optimized Variables:   The variables are supply air temperature, Ts, and duct static 

pressure, Ps.    

 Outside Air Condition:  The eQuest extracted data included the loads, outside air 

condition, and design airflow.  The loads were the sample data extracted from eQuest gives our 

sensible and total heat load for the entire year.  From this, the peak day for cooling was July 

15th.  The peak outside air condition was selected upon a random high condition.  Typically 

design conditions can be found within the ASHRAE Fundamental 2009- Ch. 14 at different 

corresponding annual, cumulative frequency of occurrence.  The design occurrence frequency 
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Figure 10. Optimization Model Organization and Processes. 

 

for daily temperature, dry bulb temperature, and wet bulb temperature can be selected at 0.4, 1.0, 

and 2.0% .  The outdoor air condition temperature, relative humidity, and wet bulb temperature 

was selected from the National Oceanic and Atmospheric Administration at 90 percentile in 

Table 2. 
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Table 2 

NOAA Climatic Data for Greensboro, NC for Partial and Peak Cooling Day. 

STATION 

GHCND: USW00013723 

TIME HLY-

DEWP-

90PCTL 

(°F) 

HLY-

TEMP-

90PCTL 

(°F) 

TIME HLY-

DEWP-

90PCTL 

(°F) 

HLY-

TEMP-

90PCTL 

(°F) 

April 10, 2010 July 15, 2010 

8:00 57.9 63.0 8:00 72.0 81.0 

9:00 57.9 66.9 9:00 73.0 84.0 

10:00 57.9 71.1 10:00 73.0 87.1 

11:00 57.9 73.9 11:00 72.0 89.1 

12:00 57.2 75.9 12:00 73.0 91.0 

13:00 57.0 78.1 13:00 73.0 91.9 

14:00 57.9 79.0 14:00 72.0 93.0 

15:00 57.0 80.1 15:00 72.0 93.9 

16:00 57.0 80.1 16:00 72.0 93.0 

17:00 57.0 78.1 17:00 72.0 91.9 

 

 Design Airflow:  The design airflow is maximum airflow values in which the system must 

meet demand and ventilation standards or else air starvation occurs.  

 Constant Values:   

  Temperature Set-Point of Zone = 72°F 

  Design Duct Static Pressure (nominal value) = 2.5 

  Chiller Size (extracted from EQuest) = 95 tons 
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Step 1: Total Airflow Rate   

                       

 where:  QZ = is airflow volume (cfm);  

  qS =  is sensible heat units in (Btu/hr) 

   Tz , Ts =  are Fahrenheit temperatures for zone and setpoint respectively 

 

 

This first calculates the zone airflow rates based on the setpoint temperature and sensible load 

from EQuest.   

Step 2: Reheat   

                                 

 where:  qS =  is sensible heat units in (Btu/hr); 

  QZ =  is airflow volume (cfm) of zone;  

  Tz,  Ts =  are Fahrenheit temperatures for zone and setpoint respectively 

 Reheat is determined if the actual flow rate is less than 20% of designed flow rate.  The 

amount of reheat is determined by the difference  of sensible heat necessary to meet 20% design 

flow.  A summation of zones reheats was calculated and converted into electrical energy using 

the standard of 3410 kbtu/hr equals 1kW.  

Step 3:  Fan Energy 

              
  

 

 where:  PT =  is total pressure in (inWg); 

  PS = is static pressure in (inWg); 

  C = is flow coefficient 

  QSYS = airflow rate of the system (cfm) 

 

 Airflow through a duct system creates three types of pressures: total, static, and dynamic 

(velocity).  Static pressure, Ps, is dependent upon the airflow rate volume and would be a 

variable input for the algorithm.  Fan energy is calculated from the formula: PressureTotal = 

PressureStatic + C *(Total Airflow Rate)
2
.   Fan energy consumed in units of kilowatts is the 
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product of system flow rate times total pressure and power factor divided by motor efficiency 

W=Q*ΔP/(6356*n).   

Step 4:  Outside Air Ventilation    

 

                
*
Version 1989 – 2003 

 

                    )   
*
Version 2004- 2013 

 

where: QOZ = outside airflow rate 

 RP = Rate of outdoor airflow per person  

 PZ = Population of zone: the number of people in the ventilation zone  

 RA = Rate of outdoor airflow per unit area  

 AZ= Area of ventilation zone  

 

 This is the uncorrected O.A. ventilation determined through ASHRAE Standard 62.1.  

Several additional and subsequent algorithms were created to a correction factor for the 

ventilation  rates section.   From 1989 to 2003 the minimum outside air was based on occupancy 

20 cfm/person for office spaces whereas 2004 to 2013 ventilation rate used occupancy- 5 

cfm/person, and zone are- 0.06 cfm/ft
2
 for office spaces.   

Table 3 

ASHRAE 62.1-1989 to 2003 Table for Outside Air Ventilation 

Offices 
Est. Max Occupancy 

per 1000 ft.
2
 

CFM/ person 

Office Space 7 20 

Reception Areas 60 15 

Data Entry Areas 60 20 

Conference Room 50 20 
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Table 4 

 

 ASHRAE 62.1- 2013 Table for Outside Air Ventilation  

Offices 

People Outdoor Air 

Rate- RP  

(CFM/ Person) 

Area Outdoor Air 

Rate- RA 

(CFM/ Sq.Ft) 

Main entry Lobbies 5 0.06 

Storage Room 5 0.06 

Office Space 5 0.06 

Reception Areas 5 0.06 

Telephone/ Data Entry 5 0.06 

 

The breathing zone outdoor airflow (Vbz) is calculated through the following equation given by 

ASHRAE Standard 62.1- 2004-2013.  

Step 5:  Basic Calculations & Latent Load 

             

 where:  qL = is latent load (btu/hr);  

 Q =  is airflow volume (cfm); 

  W=  humidity ratio difference (lb water/ lb dry air) or (grains water/grains dry air);  

         7000 grains = 1 lb. water 

 

 This calculates the cooling coil energy.  Basic calculations assumed the relative humidity 

leaving the coil was 90%.  Depending on the climate, decreasing the latent load may be 

necessary for thermal comfort.  Since this research is located in Climate 4A by ASHRAE 

Standard 90.1, it is assume dehumidification by air leaving the coil was at 90% relative humidity.  

Climate Zone 4A is defined as mixed and humid having a CDD base 50°F less than 4500 and 
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HDD base 65°F between 3600 and 5400 (ASHRAE Fundamentals, 2011).  The amount of 

dehumidification is important because it requires more energy to remove latent energy.  The 

ASHRAE Toolkit 2 provides the energy and algorithm calculations for cooling coil model 

(Brandemuehl, 1994). The Coiling Coil Method provides a calculation of energy consumption 

through water pumps, refrigerant compression, and heat transfer of nominal 45°F water chiller 

temperature to the Air Handling Unit.   

Step 6:  Chiller Energy (ASHRAE Toolkit 2): 

The chiller model is performed using the ASHRAE Toolkit 2 (Brandemuehl, 1994).   

Step 7: Total Energy 

                                         

In the last step, total energy is determined from the summation of three main components:  

chiller power, supply air fan, and amount of reheat in previous procedures.  See Appendix C: GA 

Algorithm- VAV Model. 
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CHAPTER 5 

Results and Analysis of Optimization and Setpoints  

5.1 Introduction 

 In this chapter, the focus is on the results of eQuest’s building modeling and load analysis 

and also the VAV Model results.  The effects of using GA and non-optimized, constant variables 

were analyzed for an entire day in each of the ASHRAE 62.1 ventilation years- 2003 and 2013. 

Each of the variables was examined for their movement throughout the day.  Furthermore two 

types of days were investigated, the first was peak cooling day and the second was at partial 

cooling when the load was less.  The building load was interpolated for every 15 minutes so that 

a proposed, conceptual application could later be implemented.  Finally we considered the 

effects of supply air fan pressure on energy and outside air temperature on energy.  

5.2 Peak Load 

 

 During this study, it was only focused on work-time operational hours allowing the zone 

temperature to drift away during the unoccupied state.  Figure 11 shows the peak cooling loads 

in each zone on July 15
th

.  It also  shows the building load during the day per zone since night 

time setback is used.  By studying the zones responsible for the peak demand, one might also 

investigate where the most conservations techniques can be applied.  Furthermore, night setback 

is a common low-tech procedure to energy savings where savings with proper controlling in 

existing buildings can save 10-15% on annual utility cost (Murphy & Maldeis, 2009).  We 

determined an analysis of sensible and total heat during our period of occupancy from 8:00 am 

(0800 hours) to 5:00 pm (1700 hours).  
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Figure 11. Different Zones Showing Varying Amounts of Loads. 

 

Since 1700 hours is shutoff for the building mechanics, it is not studied.  As expected, the 

building load increases as the amount of daylight hours and people increase but decrease near 

4:00pm- when occupants start leaving.  Latent load, the difference between total and sensible 

load, remains relatively proportional until 1600 hours when the work hours is approaching 

closing in the last hour.  Another way to also analyze the load throughout the day is shown in 

Figure 12 with the whole system cooling load profiles on July 15
th

. 

 

Figure 12. Building Loads Throughout the Day. 
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 In Figure 13, MATLAB provides a simplistic program for GA.  Using the command 

prompt Optimtool, the user is able to calculate the optimal setpoints- in this case supply air 

temperature and pressure.  Further analysis of this program also allows one to change many 

elements of data hybridization including the number of generations, fitness level, and mutation 

factor. The energy in Appendix D-F is calculated for every 15 minutes from 8:00am to 5:00pm 

or 17:00 using the 24 hour format.  Since each iteration consists of 15 minutes, this would also 

mean that 4:45pm would be the last time to be simulated. Two types of tables are first seen at 

peak load, one with ASHRAE 62.1-2003 and the other ASHRAE 62.1-2013.  The partial load 

was only paired with ASHRAE 62.1 to study the energy and setpoint effects.  The peak cooling 

day was the day of maximum cooling, July 15
th

 whereas the partial load day could be Fall or 

Spring seasons but arbitrarily chosen to be April 10
th

.   

 

Figure 13. Optimtool Simulation Sample for 8:00 am  
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 5.2.1 Peak Load- Supply Air Temperature.  Two of the main components that the GA 

modulates are supply air temperature and pressure.   In the Figure 14, the supply air temperature 

doesn’t vary significantly even though the boundary conditions are set to be between 55° and 

65°F with only one degree difference at 10:45am and after 4:00pm.  Furthermore, this is little 

change from the constant or actual SAT simulation which was set at constant 55°F during both 

studies with peak load, Appendix D and E.   This was as expected since the system running at 

peak capacity with a full load.  Although the GA searches the entire populations in different 

combinations, its optimal condition seems to unchanged.  The GA was conducted for every 15 

minutes with 17:00 hours being dismissed because of its irrational number.  

 

Figure 14. Supply Air Temperature- Optimized, ASHRAE 62.1-2013 at Peak Load.  

 5.2.2 Peak Load- Supply Air Pressure.  The second direct variable modulated was 

supply air pressure as shown in Figure 15.  Compared to S.A. temperature, the pressure was 

more dynamic throughout the day.  The boundary conditions during the GA were from 1.0 inWg 

to 3.0 inWg.  From 08:00 hours, the AHU fluctuate its speed gradually until a peak of 2.7 inWg.  

The building loads decrease from 9:30 hours to 11:00 hours in which the fan’s speed and 
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pressure decreased.  Actual SAP was constant 3.0 inWg when also investigated in the 2013 

ventilation codes.  

 

Figure 15. Supply Air Pressure- Optimized, ASHRAE 62.1-2013 at Peak Load.    

5.3 Partial Load  

 Moderate weather conditions particularly in Spring or Fall provides a greater opportunity 

for energy savings.   During these seasons, the time for economizer modes provides a greater 

opportunity to decrease energy consumption by partially utilizing outside air a means of cooling.  

Times of partial load are particularly important as there are two moderate seasons and one 

extreme season for cooling.  

 5.3.1 Partial Load- Supply Air Temperature.  In Figure 16, the supply air temperature 

decreases linearly until 1:00pm at which it stays constant at 55°F until 4:30pm in which the 

building load dynamics change with occupants leaving.  Not only is there more variation at 
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partial load than at peak load, but there also very little volatility or sudden big changes in 

temperature. 

 
Figure 16. Supply Air Temperature- Optimized, ASHRAE 62.1-2013 at Partial Load.    

 

 5.3.2 Partial Load- Supply Air Pressure.  In Figure 17, the optimized, supply air 

pressure at partial load doesn’t exceed above 1.80 inWg.  The fan speed decreases overall from 

8:15am to 1:00pm and fluctuates with some volatility in static pressure.   

 
Figure 17. Supply Air Pressure- Optimized, ASHRAE 62.1-2013 at Partial Load.    
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5.4 Energy Analysis Summary 

 In earlier chapter figures, the supply air temperature was 55°F whereas during the partial 

load conditions, there was more variability among the supply air temperature, 55°F-59°F.  With 

more variation, the GA program with able to provide more setpoint combinations during a partial 

load or economizer which suggest that although genetic is advantageous at peak load, its more 

valuable during partial load.   In addition, because the supply air is not constantly providing 

55°F, there is lesser load on the chiller and thus lesser energy consumption. 

 

Figure 18. Actual Energy Demand 
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  Shown in Figure 18 is the energy consumption for both the constant and optimized 

supply air temperature and pressure.  The ventilation rates energy demand can be analyzed by 

studying the top four data plot lines.  Separately, to compare energy demand at peak and partial 

load, the last four data plot lines can be examined.  Again, peak load was conducted on July 15
th

 

while partial load was conducted on April 10
th

.  Lastly, the energy demand can be conducted in 

comparison between non-optimized or constant setpoints versus optimized by comparing the first 

two top lines, next two middle trends, and the last bottom two in sets.     

 5.4.1 Ventilation Rates: ASHRAE 62.1.  An analysis of the ventilation rates can be 

made using the first four data trend lines in Figure 17. When comparing both averages of 

optimized versus constant in each case of utilizing 2003 or 2013 ventilation rates, the savings are 

significant.  When comparing 2003 versus 2013 peak load’s energy consumption, the impact was 

major.  By using ASHRAE 62.1-2013, the savings was approximately 24.0 kW.   

 5.4.2 Peak versus Partial Load.  The effect of peak load against partial load, only the 

last bottom four trends in Figure 17 are studied. Overall the partial load on April 10
th

 consumes 

lesser energy than peak load on July 15
h
.  This is due to more moderate temperatures in Spring 

than Summer.  In the constant setpoints, the peak cooling day averaged 61.1 kW whereas the 

partial load day was 32.3 kW.   However in the optimized setpoint, the peak cooling day 

averaged 58.4 kW while partial load averaged 26.3 kW.  This is a drastic savings but April 10
th

 

temperature was very moderate and thus gave an economizer opportunity. 

 5.4.3 Optimized versus Non-Optimized Setpoints: Genetic Algorithm. During 

investigating the optimized versus non-optimized setpoints effects, a relationship between first 

top two trends, next middle two trends, and last two bottom trends were examined separately. 
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The optimized strategy used in conjunction saves approximately 3.0 kW per minute in both peak 

load cases of ASHRAE 62.1-2009 and 2013.  There is however a bigger energy difference 

between optimized and non-optimized at partial load, approximately 5.0 kW saved, thus 

inferring that GA is more beneficial during economizer periods.   

 When totaled over the whole day, the savings could be significant.  Two primary 

contributing factors leads to significant difference between 2003 Non-Optimized and 2013 

Optimized energy difference.  Application of GA to find the optimum variables and updated 

ventilation standards were big sources of the energy savings and especially at partial loads.  

When comparing energy savings independently due to GA and ventilation codes, the GA has a 

small but considerable effect but not as much as compared to using modern ventilation standards.   

ASHRAE 62.1-2013 saves a tremendous amount of energy just by specifying the amount of 

people and zone size depending on type of building. There was also an optimized energy 

difference between the peak load and partial load conditions.  The partial-load energy 

consumption was between 18-37 kW whereas peak load energy consumption was between 51-66 

kW, depending on constant or optimized setpoints 

 Other technologies and strategies can also be implemented to improve the energy 

savings.  Although the study only focused on the occupants work hours, it can also be studied 

throughout the day where strategies such as pre-cooling the building can be utilized.  Pre-cooling 

works with the physical mass of building to store thermal mass.  It offer potentials of chiller 

efficiency during the night and reduced electricity consumption during off-peak periods (Roth, 

Dieckmann, & Brodrick, 2009).   
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5.5 Fan Laws 

 Besides the supply air temperature reset, the supply air fan was a primary contributing 

variable in energy consumption.  With new innovations and standards, fan efficiency will be a 

leading factor in energy guidelines.  ASHRAE Standard 90.1-2013 has implemented new 

regulations following Air Movement and Control Association, AMCA 205 classifications for 

efficient fans and its implementation.  AMCA 205 determines the Fan Efficiency Grade, FEG, 

and is based upon two main factors:  fan’s aerodynamic ability to convert shaft or impellor 

power of direct driven fan to air power and sizing, selection to be within 15% of the peak fan 

total efficiency (Cermak, 2013).   

 The supply air fan is one major aspect to energy conservation and could be shown 

through the Fan Laws or relationship between volume flow rate and fan speed independently.  In 

the below example of increasing the supply air volume flow rate 25% , from 10,000 CFM to 

12,500 CFM with the following variables CFM1 = 10,000; SP1 = 1.50 inWG; and RPM1 = 1,000.  

According to the fan laws, the fan power has to increase and use energy at a faster rate to the 

third power as the volume flow rate increases. To increase volume flow rate 25% from 1000 

CFM to 1250 CFM, it would almost double the power necessary.  

Fan Law Equations 

      
    

    
        

      
    

    
       

      
    

    
       

Where CFM = cubic feet per minute; 

RPM = revolutions per minute; 

SP =static pressure; 

HP = horsepower; 1HP=746 Watts 

and subscript 1= initial, subscript 2=new. 

 

Example:      
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Thus decreasing fan static pressure by allowing to vary using reset controllers decreases energy 

consumption such as use of motor’ variable frequency drives.  During the peak and partial load 

optimization, the supply varied throughout the day in the study.  

5.6 Outside Air Ventilation 

 Using an ASHRAE psychometric in Figure 18, the energy consumption between outside 

air and mixed air can be evaluated.  As mixed air, MA, becomes a larger proportion of outside 

air, OA, the enthalpy difference between (h2) and (h1) becomes more wide and thus uses more 

energy. The mixed air proportion can be calculated through the conservation of mass where 

return air plus outside air equal mixed air.  Mixed air passes through the cooling coil and  

 
 Figure 19. Psychometric of Outside Air’s Effect on Mixed Air and Enthalpy. (ASHRAE, 1963). 

 

h2 

h1 

OA: 95°F db 
41.6% RH 

RM: 72°F db, 
  50% RH 
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becomes supply air in the physical and theoretical models.   When the MA is majority return air, 

it uses less energy during seasons with extreme temperatures such as summer.  However, in 

Spring, Fall, or mornings, the situation may be different when outside air conditions are 

moderate or favorable and the HVAC system can enter economizer mode and thus allow 

moderate supply air to the HVAC system. The outside air can be used more to cool and ventilate 

the space and thus decrease the load upon the cooling coil valves and compressor. 
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CHAPTER 6 

CONCLUSION  

6.1 Introduction 

 The use of any models must include real-world challenges, possible resolutions, and 

where future opportunities may exist.  The value of these models carries much opportunity for 

usage in other automations systems.  A system can become more efficient when inclusive of 

additional processes and variables the such as chiller and water-side operations when used for 

GA.   

6.2 Constraints & Boundaries 

 The GA program randomly selects points between these two variables in different 

combinations for energy analysis.  Should the variables setpoints be determined to use excess 

energy, the program penalizes the data selection for non-fitness and selects a new, randomized 

variables into the next generation. Setpoint variables that cannot exist simultaneously together or 

jointly are also constrained and penalized by amplifying the energy consumption resulting in 

non-fit setpoints.  Furthermore, should the VAV program run a cycle or generation which airflow 

rate of the zone is higher than designed, then it is penalized.  The expression of airflow rate 

penalty is :  if Qz(i) > Qzd(i)*(Ps/Psd)^0.5 then Constraints = 1.  In Figure 19, if the airflow rate 

is higher than design, it will create a penalty per zone. 
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Figure 20. VAV System Model Airflow Constraint.  

 

 

Figure 21. HVAC Model Constraint Summary at Peak Load.  

In Figure 21, during peak load- July 15th, the system will reject any optimization more than four 

zones total that is starving by penalizing for higher airflow than designed by giving very low 

fitness via tremendous energy usage- 10,000 kW.  This kills off the solution set.   At partial load- 

April 10th, the system will not reject any optimizations with more than three zones total that is 

starving or providing less airflow than the VAV is designed for.  Of all four zones, it can be 

justified that not all rooms or zones are continuously occupied and thus the system will always 



50 

 

have adequate cooling.  Should the system starve any zones, the rooms will fluctuate a higher 

temperature to possibly 74°F but not any higher.  

 Upper and lower bound during the GA was bounded between 1.0 and 3.0 inWg for the 

supply air pressure.  The supply air temperature was also limited between 55°F and 65°F. 

However during the constraints, when the GA process selected a set of setpoints that created a 

higher airflow than designed as shown in Figures 20 and 21 the particular zones was 

automatically set to have to have 10,000 kW but not more than the maximum zones allowed by 

constraint.  The control logic tries to aim to meet all areas but in this case it was not possible to 

having three zones at most to over or undersupply air.  The zones may be under or oversupplied 

but this okay in this situation, as the minimum or maximum supply air pressure will still be 1.0 

and 3.0 inWg respectively- at no times will there not be no airflow, starving, or surging as 

limited by the boundary conditions. 

 Other optimized components such as the supply air temperature reset can be limited by 

60°F but at the cost of undercooling zones or under-dehumidifying.  At the other spectrum of 

lowering SAT reset temperature 44°F to 54°F, the fan energy can reduced and also allowing 

more dehumidification capability but at the cost of thermal comfort when dumping cold directly 

on occupants, condensation at the terminal zones, or icing of the coiling coils (Murphy, 2011). 

6.3 Application 

Proposed Application Logic:  Because of volatility within GA, the supply air pressure would to 

never move more than 0.2 to 0.5 inWg per 15 minutes which would cause instability because of 

big, sudden changes.  The changes in temperature would also involve the previous data if there 

was already an increase or decrease in demand for pressure.  If there was already in increase in 
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pressure, then it would instead move 1inWg per 15 minutes thus moving at a faster response and 

if it was a previous decrease followed by a increase, then it would move with normal operation at 

0.5 inWg per 15 minutes.  The default or err status also would move at a maximum of 3.0 inWg 

with a flagged signal to operator.  The minimum at which it would shut off beyond these 

extremes is 1.0 inWg  and maximum air fan pressure of 3.0.   

Proposed Application Logic:  The supply air temperature would follow the same strategy also to 

never move more than 1°F per 15 minutes which would cause instability because of big, sudden 

changes.  The changes in temperature would also involve the previous data if there was already 

an increase or decrease in demand for pressure.  If there was already in increase in pressure, then 

it would instead move 2°F per 15 minutes thus moving at a faster response and if it was a 

previous decrease followed by an increase, then it would move with normal operation at 1°F per 

15 minutes.  The default or err status also would move at a minimum of 55°F with a flagged 

alarm to operator.  The minimum at which it would shut off beyond these extremes is 51°F and 

maximum of 66°F. 

6.4 Future Research 

 GA provides an opportunity for other areas of research.  During the simulation it was 

conducted at steady state, so with a dynamic state with time changes per week and month, there 

are more parameters.  The central plant also has setpoint such as water temperatures that can be 

added as variables which also leads to condenser plants.   Condensers have the role of heat 

removal and is only as effective as the ambient temperatures outside which becomes really 

dynamic throughout the year.  During this study we used the default settings of GA which is used 

for all general cases but having a more tuned, improved model applicable to HVAC may provide 
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better case studies.  With improved models, we can also further our studies in real-time testing. 

The list is endless as where GA is applicable such as the growing use of variable refrigerant 

flow, VRVs, or buildings with multimode, different types of systems.   In addition, not only can 

GA provide better studies in HVAC but economic studies, mechanical design layouts, facility 

operations, and diagnoses for particular zones that are erroneously designed.   While the overall 

goal overall was to decrease energy consumption was the main focus, several other important 

strategies was uncovered.  These savings could be adjusted for higher returns when factoring in 

buildings running at above baselines particularly in old buildings or where HVAC systems may 

be timeworn.  With many contributing factors deciding the actual energy consumption that were 

held constant during the sequencing method such as the coiling coils, outside air, number of 

people and their activity,  chiller, and condenser operations, a more energy savings could be 

developed with more variables.    

 Advances in building automation systems allows for other benefits during 

implementations of reset controllers.  Fan-pressure optimization allows for the identification of 

rogue zones in which a specific zone is not working properly causing high loads that can be 

regulated (Murphy, 2011).  Furthermore, faults or improper working VAVs and equipment can 

significantly impact energy conservation.  Artificial intelligence can be utilized to find faults 

such as relying upon the sensory and control signal data available in building management 

control systems (BMCS) (Wang, Chen, Chan, & Qin, 2012).  
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Appendix A:  eQuest Data 

 
 

C:\Users\TonyNuge\Desktop\RESEARCH\EQuest 1\Research Project - Baseline Design 

Simulated:  2012-May-18 09:59:38 
     CSV Written:  2012-May-18 09:59:38 
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eQUEST 
3.64.7130 

       

    
Hourly Report 

    

    
EM1 Hourly Report Block Hourly Report Block 2 Hourly Report Block 3 
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SE Space (fG.s1) NE Space (fG.s10) Cor Space (fG.s3) 

   
Day Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 

7 15 8 6 8760.24 8760.24 19622.3 19622.3 1234.94 1234.94 

7 15 9 6 11280.1 11280.1 24570.5 24570.5 1202.75 1202.75 

7 15 10 6 13122.5 13122.5 27631.2 27631.2 1167.22 1167.22 

7 15 11 6 14216.4 14216.4 27316.3 27316.3 1128.23 1128.23 

7 15 12 6 15319.5 15319.5 25343 25343 1093.16 1093.16 

7 15 13 6 18219.5 18219.5 23288.3 23288.3 1058.15 1058.15 

7 15 14 6 23341.7 23341.7 22465.1 22465.1 1024.99 1024.99 

7 15 15 6 26186.4 26186.4 23332.2 23332.2 995.454 995.454 

7 15 16 6 28113.9 28113.9 22574.3 22574.3 963.672 963.672 

7 15 17 6 26461.4 26461.4 20909.2 20909.2 929.914 929.914 
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 NW Space (fG.s2) WNW Space (fG.s4) Cor Space (fG.s5) SE Space (fG.s6) SW Space (fG.s9) 

Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 

26135.4 26135.4 7324.23 7324.23 1199.8 1199.8 8992.56 8992.56 7044.92 7044.92 

28846.8 28846.8 7907.8 7907.8 1168.53 1168.53 12998.5 12998.5 9143.2 9143.2 

28117.7 28117.7 7852.33 7852.33 1134.01 1134.01 15620.3 15620.3 10670.5 10670.5 

24038.1 24038.1 7088.85 7088.85 1096.13 1096.13 17012.7 17012.7 11451.8 11451.8 

20918.4 20918.4 6591.2 6591.2 1062.05 1062.05 17938.6 17938.6 12048 12048 

20248.7 20248.7 6530.8 6530.8 1028.04 1028.04 19278 19278 12751.5 12751.5 

19303.5 19303.5 6421.28 6421.28 995.824 995.824 22626.8 22626.8 13111.8 13111.8 

20175.7 20175.7 6817.34 6817.34 967.125 967.125 25209.8 25209.8 16102 16102 

19023.4 19023.4 6885.35 6885.35 936.248 936.248 27244.6 27244.6 19678.8 19678.8 

17719.1 17719.1 6793.15 6793.15 903.45 903.45 26561.6 26561.6 21562.7 21562.7 
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Hourly Report 
Block 4 

Hourly Report 
Block 5 

Hourly Report 
Block 6 

Hourly Report 
Block 7 

Hourly Report 
Block 9 

SPACE 
 

SPACE 
 

SPACE 
 

SPACE 
 

SPACE 
 

NW Space (fG.s2) 
WNW Space 
(fG.s4) Cor Space (fG.s5) SE Space (fG.s6) SW Space (fG.s9) 

Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 

26135.4 26135.4 7324.23 7324.23 1199.8 1199.8 8992.56 8992.56 7044.92 7044.92 

28846.8 28846.8 7907.8 7907.8 1168.53 1168.53 12998.5 12998.5 9143.2 9143.2 

28117.7 28117.7 7852.33 7852.33 1134.01 1134.01 15620.3 15620.3 10670.5 10670.5 

24038.1 24038.1 7088.85 7088.85 1096.13 1096.13 17012.7 17012.7 11451.8 11451.8 

20918.4 20918.4 6591.2 6591.2 1062.05 1062.05 17938.6 17938.6 12048 12048 

20248.7 20248.7 6530.8 6530.8 1028.04 1028.04 19278 19278 12751.5 12751.5 

19303.5 19303.5 6421.28 6421.28 995.824 995.824 22626.8 22626.8 13111.8 13111.8 

20175.7 20175.7 6817.34 6817.34 967.125 967.125 25209.8 25209.8 16102 16102 

19023.4 19023.4 6885.35 6885.35 936.248 936.248 27244.6 27244.6 19678.8 19678.8 

17719.1 17719.1 6793.15 6793.15 903.45 903.45 26561.6 26561.6 21562.7 21562.7 

 

 

 

Hourly Report Block 8 
Hourly Report 
Block 10 

Hourly Report 
Block 11 

Hourly Report 
Block 12 

Hourly Report 
Block 13 

SPACE 
  

SPACE 
 

SPACE 
 

SPACE 
 

SPACE 

SW Space (fG.s7) 
 

NE Space (fG.s8) SE Space (fT.s1) NE Space (fT.s10) 
Cor Space 
(fT.s3) 

Var 42 Var 43 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 

2769.09 0 2769.09 7412.46 7412.46 7870.62 7870.62 18751.5 18751.5 866.417 

3202.31 0 3202.31 9264.29 9264.29 10231.7 10231.7 24154.4 24154.4 826.694 

3509.77 0 3509.77 10701.1 10701.1 12028.9 12028.9 27897.7 27897.7 787.035 

3662.01 0 3662.01 10927.2 10927.2 13234.4 13234.4 28387.3 28387.3 746.831 

3772.93 0 3772.93 10189.6 10189.6 14507.6 14507.6 27161 27161 713.016 

3909.06 0 3909.06 8790.4 8790.4 17626.5 17626.5 25699.2 25699.2 681.365 

3972.4 0 3972.4 7786.23 7786.23 22990.1 22990.1 25333 25333 653.315 

4582.58 0 4582.58 7794.53 7794.53 26028.3 26028.3 26385.8 26385.8 630.348 

5369.07 0 5369.07 7342.84 7342.84 28507 28507 25777.3 25777.3 606.343 

5874.71 0 5874.71 6820.53 6820.53 27827.6 27827.6 24181.6 24181.6 581.341 
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Hourly Report 
Block 14 

Hourly Report 
Block 15 

Hourly Report 
Block 16 

Hourly Report 
Block 17 

Hourly 
Report Block 
18 

 
SPACE 

 
SPACE 

 
SPACE 

 
SPACE 

 
SPACE 

 
NW Space (fT.s2) 

WNW Space 
(fT.s4) Cor Space (fT.s5) SE Space (fT.s6) 

SW Space 
(fT.s7) 

Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 Var 44 Var 42 

866.417 24300.4 24300.4 6907.13 6907.13 841.757 841.757 9311.5 9311.5 2550.91 

826.694 27667.8 27667.8 7613.66 7613.66 803.164 803.164 12894.8 12894.8 2963.98 

787.035 27838.6 27838.6 7725.58 7725.58 764.634 764.634 15835.7 15835.7 3275.42 

746.831 24759.3 24759.3 7134.11 7134.11 725.574 725.574 17553.2 17553.2 3451.38 

713.016 22454.5 22454.5 6770.93 6770.93 692.722 692.722 18546.1 18546.1 3598.69 

681.365 22237 22237 6809.07 6809.07 661.972 661.972 20244.6 20244.6 3778.2 

653.315 21546.3 21546.3 6754.37 6754.37 634.72 634.72 23874 23874 3889.32 

630.348 22416.1 22416.1 7198.53 7198.53 612.407 612.407 26999.5 26999.5 4551.09 

606.343 21266.3 21266.3 7305.86 7305.86 589.085 589.085 29464.1 29464.1 5407.45 

581.341 19885.3 19885.3 7254.02 7254.02 564.794 564.794 29248.3 29248.3 6009.27 

 

 

 

 

 

Hourly Report 
Block 19 

Hourly Report 
Block 20 

 
SPACE 

 
SPACE 

 

 
NE Space (fG.s8) SW SpcPlen (fT.s9) 

Var 44 Var 42 Var 44 Var 42 Var 44 

2550.91 7412.46 7412.46 191.031 191.031 

2963.98 9264.29 9264.29 786.753 786.753 

3275.42 10701.1 10701.1 1529.22 1529.22 

3451.38 10927.2 10927.2 2257.3 2257.3 

3598.69 10189.6 10189.6 2988.23 2988.23 

3778.2 8790.4 8790.4 3639.61 3639.61 

3889.32 7786.23 7786.23 4141.69 4141.69 

4551.09 7794.53 7794.53 4701.15 4701.15 

5407.45 7342.84 7342.84 4967.46 4967.46 

6009.27 6820.53 6820.53 5011.36 5011.36 
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Appendix B: HVAC Model 
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Appendix C: VAV Model 
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Appendix D: Optimization Using ASHRAE 62.1-2003 Peak Load, July 15
th 

 

 
 

Hour Optimal Non-Optimzed/ Constant or Actual

TEMP PRESSURE

(kW) 

ENERGY Temp Pressure (kW) Energy

8:00 8 56.5 2.52 71.1 55 3 75

8:15 8.25 56.2 2.6 73.5 55 3 76.7

8:30 8.5 55.8 2.54 75.3 55 3 78.2

8:45 8.75 55.6 2.55 77.2 55 3 79.8

9:00 9 55.4 2.53 79 55 3 81.3

9:15 9.25 55.4 2.54 79.6 55 3 81.8

9:30 9.5 55.2 2.49 80.2 55 3 82.4

9:45 9.75 55 2.45 80.5 55 3 82.6

10:00 10 55 2.44 81.3 55 3 83.4

10:15 10.25 55 2.4 80.7 55 3 83

10:30 10.5 55.4 2.49 79.5 55 3 82.5

10:45 10.75 55.3 2.41 78.5 55 3 82

11:00 11 55.1 2.33 77.4 55 3 81.5

11:15 11.25 55 2.28 77.8 55 3 82.2

11:30 11.5 55 2.26 78.5 55 3 81.2

11:45 11.75 55 2.25 78.9 55 3 81.7

12:00 12 55 2.24 79.6 55 3 82.3

12:15 12.25 55 2.25 79.6 55 3 82.3

12:30 12.5 55 2.25 79.9 55 3 82.6

12:45 12.75 55 2.26 80 55 3 82.6

13:00 13 55 2.27 80 55 3 82.6

13:15 13.25 55 2.31 80.8 55 3 83.3

13:30 13.5 55 2.35 81.5 55 3 83.9

13:45 13.75 55 2.4 82 55 3 84.3

14:00 14 55 2.44 82.8 55 3 84.9

14:15 14.25 55 2.46 83.6 55 3 85.7

14:30 14.5 55 2.46 83.9 55 3 86

14:45 14.75 55 2.46 84.2 55 3 86.3

15:00 15 55 2.52 85.9 55 3 87.9

15:15 15.25 55 2.55 86.8 55 3 88.6

15:30 15.5 55 2.58 87.5 55 3 89.2

15:45 15.75 55 2.62 88.1 55 3 89.7

16:00 16 55 2.65 88.9 55 3 90.3

16:15 16.25 55.5 2.3 83.4 55 3 87

16:30 16.5 57.2 2.27 83.2 55 3 90.8

16:45 16.75 59.7 2.54 84.9 55 3 106.6

17:00 17 -- -- -- 55 3 --
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Appendix E: Optimization Using ASHRAE 62.1-2013 Peak Load, July 15
th

 
 

 

 

 

Hour Optimal Non-Optimzed/ Constant or Actual

TEMP PRESSURE

(kW) 

ENERGY Temp Pressure

(kW) 

Energy

8:00 8 55 2.08 51.4 55 3 54.5

8:15 8.25 55 2.22 53.3 55 3 55.9

8:30 8.5 55 2.28 54.8 55 3 57.3

8:45 8.75 55 2.35 56.4 55 3 58.7

9:00 9 55 2.41 58 55 3 60.1

9:15 9.25 55 2.42 58.6 55 3 60.7

9:30 9.5 55 2.42 59.2 55 3 61.3

9:45 9.75 55 2.43 59.6 55 3 61.7

10:00 10 55 2.44 60.1 55 3 62.2

10:15 10.25 55 2.4 59.6 55 3 61.9

10:30 10.5 55 2.49 58 55 3 61.5

10:45 10.75 55.3 2.41 57.2 55 3 61

11:00 11 55.1 2.33 56.4 55 3 60.6

11:15 11.25 55 2.28 56.5 55 3 60.9

11:30 11.5 55 2.26 56.8 55 3 59.5

11:45 11.75 55 2.25 56.9 55 3 59.6

12:00 12 55 2.24 57.2 55 3 59.9

12:15 12.25 55 2.25 57.1 55 3 59.9

12:30 12.5 55 2.25 57.2 55 3 59.9

12:45 12.75 55 2.26 57.2 55 3 59.9

13:00 13 55 2.27 57.2 55 3 59.8

13:15 13.25 55 2.31 57.8 55 3 60.4

13:30 13.5 55 2.35 58.5 55 3 60.9

13:45 13.75 55 2.4 59 55 3 61.2

14:00 14 55 2.44 59.6 55 3 61.8

14:15 14.25 55 2.46 60.2 55 3 62.3

14:30 14.5 55 2.46 60.5 55 3 62.6

14:45 14.75 55 2.46 60.8 55 3 62.9

15:00 15 55 2.52 62 55 3 63.9

15:15 15.25 55 2.55 62.6 55 3 64.4

15:30 15.5 55 2.58 63.3 55 3 65

15:45 15.75 55 2.62 63.9 55 3 65.4

16:00 16 55 2.65 64.5 55 3 66

16:15 16.25 55.5 2.3 60.1 55 3 64.3

16:30 16.5 55 1.72 57 55 3 61.6

16:45 16.75 56.1 1.52 54.8 55 3 60.4

17:00 17 -- -- -- 55 3 --
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Appendix F: Optimization Using ASHRAE 62.1-2013 Partial Load, April 10
th 

 

 

Hour Optimal Non-Optimzed/ Constant or Actual

TEMP PRESSURE

(kW) 

ENERGY Temp Pressure

(kW) 

Energy

8:00 8 56.8 1.39 18.3 55 3 26.4

8:15 8.25 58.2 1.77 19.5 55 3 27.8

8:30 8.5 57.9 1.70 20.4 55 3 26.2

8:45 8.75 57.6 1.63 21.2 55 3 27.4

9:00 9 57.3 1.57 22.1 55 3 28.7

9:15 9.25 57.1 1.51 22.6 55 3 27.8

9:30 9.5 56.9 1.51 23.2 55 3 28.5

9:45 9.75 56.7 1.53 24.0 55 3 29.3

10:00 10 56.5 1.56 24.6 55 3 29.9

10:15 10.25 56.4 1.58 24.9 55 3 30.3

10:30 10.5 56.2 1.63 25.4 55 3 30.7

10:45 10.75 56.1 1.60 25.5 55 3 31

11:00 11 55.9 1.57 25.7 55 3 31.3

11:15 11.25 55.7 1.55 26.0 55 3 31.8

11:30 11.5 55.6 1.49 26.2 55 3 32.3

11:45 11.75 55.5 1.42 26.4 55 3 32.7

12:00 12 55.3 1.37 26.6 55 3 33.2

12:15 12.25 55.2 1.32 26.8 55 3 33.6

12:30 12.5 55.1 1.27 26.9 55 3 33.9

12:45 12.75 55.0 1.24 27.0 55 3 32.3

13:00 13 55.0 1.21 27.2 55 3 32.6

13:15 13.25 55.0 1.21 27.6 55 3 33.1

13:30 13.5 55.0 1.20 28.1 55 3 33.6

13:45 13.75 55.0 1.19 28.5 55 3 34.1

14:00 14 55.0 1.19 28.9 55 3 34.5

14:15 14.25 55.0 1.19 29.1 55 3 34.8

14:30 14.5 55.0 1.19 29.4 55 3 35.1

14:45 14.75 55.0 1.21 29.6 55 3 35.3

15:00 15 55.0 1.28 30.0 55 3 35.5

15:15 15.25 55.0 1.33 30.5 55 3 36

15:30 15.5 55.0 1.39 31.1 55 3 36.4

15:45 15.75 55.0 1.45 31.6 55 3 36.8

16:00 16 55.0 1.52 32.2 55 3 37.2

16:15 16.25 55.0 1.52 29.5 55 3 35.5

16:30 16.5 55.5 1.07 26.7 55 3 34.3

16:45 16.75 58.6 1.15 24.2 55 3 33

17:00 17 -- -- -- 55 3 --
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