
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University 

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship 

Theses Electronic Theses and Dissertations 

2014 

In Vitro Mycelial Growth And Root Infection Of Loblolly Pine In Vitro Mycelial Growth And Root Infection Of Loblolly Pine 

Seedlings By Bianchetto Truffle (Tuber Borchii) Seedlings By Bianchetto Truffle (Tuber Borchii) 

Osejie F. Oriaifo 
North Carolina Agricultural and Technical State University 

Follow this and additional works at: https://digital.library.ncat.edu/theses 

Recommended Citation Recommended Citation 
Oriaifo, Osejie F., "In Vitro Mycelial Growth And Root Infection Of Loblolly Pine Seedlings By Bianchetto 
Truffle (Tuber Borchii)" (2014). Theses. 232. 
https://digital.library.ncat.edu/theses/232 

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital 
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie 
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu. 

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/232?utm_source=digital.library.ncat.edu%2Ftheses%2F232&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu


 
 

 

In vitro Mycelial Growth and Root Infection of Loblolly Pine Seedlings                                       

by Bianchetto Truffle (Tuber borchii) 

Osejie F. Oriaifo 

North Carolina A&T State University 

 

 

 

A thesis submitted to the graduate faculty 

In partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Department: Natural Resources and Environmental Systems 

Major Professor: Dr. Omoanghe Isikhuemhen 

Greensboro, North Carolina 

2014 

 



i 
 

 

The Graduate School 

North Carolina Agricultural and Technical State University 

This is to certify that the Master‟s Thesis of 

 

Osejie F. Oriaifo 

 

has met the thesis requirements of 

North Carolina Agricultural and Technical State University 

 

Greensboro, North Carolina 

2014 

 

Approved by: 

 

   
Dr. Omoanghe S. Isikhuemhen 
Major Professor and Committee 
Chair 

 
Dr. Antoine J. Alston 
Committee Member 

 
Dr. Charles W. Raczkowski 
Committee Member 

 
Dr. Sanjiv Sarin 

Dean, The Graduate School 

 
Dr. Louis E. N. Jackai 
Department Chair 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Osejie F. Oriaifo 

2014 



iii 
 

Biographical Sketch 

Osejie F. Oriaifo was born in Kano, Nigeria in 1987. His primary education was at 

Federal Staff School, Benin City from 1990 to 1998. His secondary school education was 

obtained from 1998 to 2004 at UNIBEN Demonstration Secondary School, Benin City. He 

obtained his Bachelor of Science Degree in Microbiology in March, 2010 from Obafemi 

Awolowo University, Ile-Ife. In spring, 2012 he was admitted into the M.S. program of the 

School of Agriculture and Environmental Sciences, North Carolina A&T State University. His 

M.S. research focused on Mushrooms and Truffles under the tutelage of Dr Omoanghe 

Isikhuemhen. He is a member of the honor society of Gamma Sigma Delta. 



iv 
 

Dedication 

I dedicate this work to Almighty God who has given me grace and life.  

 

 



v 
 

Acknowledgements 

I appreciate the Lord, who has given me grace and strength. I thank my advisor, Dr 

Omoanghe S. Isikhuemhen for his advice, guidance, teaching and leadership. I thank my thesis 

committee members; Dr. Charles W. Raczkowski and Dr. Antoine J. Alston, for helping me 

shape this work from the science to the structure. My committee members made the learning 

process more rewarding with their advice and input. I appreciate the MBFBL staff and students 

whom I have worked with, all have significantly contributed to my success thus far. I want to 

also thank Dr. Anike for her unflinching support and encouragement. I thank the chairman, Dr. 

Louis Jackai for his leadership. I also want to thank Ms. Farmer, and Ms. Dixon who were 

always available and willing to assist me with matters pertaining to administration. 

To my friends, Dietrich Blum, kingley Ekwemalor and Emmanuel Asiamah, I say thank 

you for your input in this work. I want to acknowledge the love and care of my Uncle, Prince R. 

Okojie, who has stood by me all through my academic journey. Special thanks to my parents, 

siblings and my wife, Juliet, who daily encourages me to dream and strive for more. 

 



vi 
 

Table of Contents 

List of Figures ................................................................................................................................ ix 

List of Tables .................................................................................................................................. x 

Abstract ........................................................................................................................................... 2 

CHAPTER 1 Introduction............................................................................................................... 3 

1.1 Overview ............................................................................................................................ 3 

1.2 Objectives .......................................................................................................................... 5 

1.3 Hypotheses ......................................................................................................................... 5 

1.4 Justification ........................................................................................................................ 7 

CHAPTER 2 Literature Review ..................................................................................................... 9 

2.1 Brief History and Cultivation ............................................................................................ 9 

2.2 Taxonomy and Species Description ................................................................................ 11 

2.3 Biology and cology of Tuber borchii ............................................................................... 12 

2.3.1 Cultivation and production. ................................................................................... 14 

2.4 T. borchii Truffiere (Plantation) ...................................................................................... 15 

2.5 Truffle, Inoculation and Identification ............................................................................ 17 

2.5.1. Growth condition: pH ........................................................................................... 18 

2.5.2 Growth condition: temperature .............................................................................. 18 

2.5.3. Carbohydrate source ............................................................................................. 19 

2.5.4. Nitrogen source .................................................................................................... 20 

2.6 Pinus taeda Seed, Seedling and Stratification ................................................................. 21 

2.7 Percentage Success .......................................................................................................... 22 

CHAPTER 3 Materials and Methods ........................................................................................... 23 

3.1 Tuber borchii Strain History and Isolation ...................................................................... 23 



vii 
 

3.2 Mycelia Growth ............................................................................................................... 24 

3.2.1 pH experiment ....................................................................................................... 24 

3.2.2 Temperature experiment ........................................................................................ 25 

3.2.3 Carbohydrate studies ............................................................................................. 25 

3.2.4 Nitrogen studies. .................................................................................................... 25 

3.2.5 Nitrogen (yeast extract) concentration .................................................................. 26 

3.2.6 Carbohydrate (starch) concentration. .................................................................... 26 

3.3 Loblolly Pine, Pinus taeda Infection by Bianchetto Truffle, Tuber borchii Mycelia ..... 26 

3.3.1 Seed stratification and germination ....................................................................... 26 

3.3.2 Potting mix. ........................................................................................................... 27 

3.3.3 Mycelia infection of T. borchii on P. taeda. ......................................................... 27 

3.3.4 Morphological examination and characterization. ................................................ 28 

3.4 Experimental Design and Statistical Analysis ................................................................. 29 

CHAPTER 4 Results and Discussion ........................................................................................... 31 

4.1 Mycelia Growth ............................................................................................................... 31 

4.2 pH Studies ........................................................................................................................ 32 

4.3 Temperature Studies ........................................................................................................ 33 

4.4 Carbohydrate Studies ....................................................................................................... 35 

4.5 Nitrogen Studies .............................................................................................................. 36 

4.6 Nitrogen (Yeast Extract) Concentration Studies ............................................................. 37 

4.7 Carbohydrate (Starch) Concentration Studies ................................................................. 38 

4.8 Loblolly pine, Pinus taeda Infection by Bianchetto Truffle, Tuber borchii Mycelia ..... 39 



viii 
 

CHAPTER 5 Conclusion and Recommendations......................................................................... 43 

References ..................................................................................................................................... 46 

Glossary ........................................................................................................................................ 58 

  



ix 
 

List of Figures 

Figure 2.1. Taxonomic position of T. borchii ............................................................................... 16 

Figure 3.1 Germinating seedling after stratification ..................................................................... 27 

Figure 3.2. Infected pine seedlings in Microbox® ....................................................................... 28 

Figure 3.3 Roots of Loblolly pines being observed under the stereomicroscope ......................... 29 

Figure 4.1 Mycelia growth, in millimeters on a polynomial regression with pH of Modified 

Melin-Norkrans media .................................................................................................................. 32 

Figure 4.2 Mycelia growth, in millimeters on a polynomial regression with temperature of 

incubation, in degree Celsius (OC) ................................................................................................ 34 

Figure 4.3 Mycelia growth, in millimeters on a polynomial regression with yeast extracts 

concentration, in grams per liter. .................................................................................................. 37 

Figure 4.4 Mycelia growth, in millimeters on a polynomial regression with starch concentration, 

in grams per liter ........................................................................................................................... 38 

Figure 4.5. Tuber borchii mycorrhized root tips of Pinus taeda ................................................... 41 



x 
 

List of Tables 

Table 4.1  Analysis of Variance (P>F) for Mycelia Growth for In-vitro Study ........................... 31 

Table 4.2  Mycelia Growth from Nine Carbohydrate Sources on Six Strains of Tuber borchii ... 35 

Table 4.3  Mycelia Growth from Five Nitrogen Sources on Six Strains of Tuber borchii ........... 36 

Table 4.4  Comparison of seedling morphological parameters……………………………………...39 

Table 4.5  Comparison between the three months and four months sampling data, using 

individual seedling ........................................................................................................................ 40 



2 
 

Abstract 

Decline in Tuber borchii production has led to exploration of new cultivation strategies. 

Contemporary techniques including the use of spore slurry and root induction are both marred 

with low success rates, contamination, and are costly. Mycelia inoculation avoids the challenges 

of contemporary techniques, increases colonization rates, and increases the levels of 

mycorrization. In order to develop an optimized medium to culture T. borchii and use same for 

onward infection of Pinus taeda seedling, this research was conducted with two main intents: 

(1.) seeking the optimum growth conditions and concentrations of six strains of T. borchii on 

solid Modified Melin-Norkrans (MMN) media and (2.) assessing effect and mycorrization of 

mycelia generated T. borchii strains on P. taeda seedlings. 

For growth conditions studies, the optimum pH for most strains was basic (7.5 and 9.0), 

incubation at 20OC was optimum for most of the given strains, optimum carbohydrate source 

was starch in all strains and the nitrogen source preference varied. Starch and yeast extract 

concentration studies revealed that at 10 g/L Starch, the optimum concentration of yeast extract 

was 0.25 g/L for most strains and at 10 g/L of yeast extract, optimum starch concentration was 

strain dependent. In the T. borchii mycelia infection of Pinus taeda seedlings, morphological 

examination revealed positive mycorrhization. Statistical difference in shoot-root length ratio 

was observed at post infection sampling of three months. This was also revealed in the shoot-root 

weight ratio at four months sampling.
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 CHAPTER 1 

Introduction 

1.1 Overview 

Current cultivation techniques have not been able to meet the rising demand of Tuber 

borchii. These current techniques; root induction and spore inoculation do not require laboratory 

techniques, and are fairly easy to carry out but are marred with low success rate, high cost, and 

high rate of contamination. Mycelia based inoculation, which this research is geared towards, 

will produce cheaper inoculated seedling, which will have higher success rates and T. borchii 

infection that will less likely be replaced by other ectomycorrhizae. T. borchii, like most other 

highbrow truffles grow slowly and are difficult to maintain pure culture (Iotti, Piattoni, & 

Zambonelli, 2012). In order to accelerate the growth of T. borchii axenically, there is need to 

seek optimum conditions and compositions for the growth media for T. borchii. Alternative 

inoculation technique, mycelia based inoculation requires further testing as it promises better 

rates at a cheaper cost. 

Truffles are an ectomycorrhizal ascomycete characterized by the succession of three 

distinct phases including the vegetative (mycelia), symbiotic (ectomycorrhizal) and reproductive 

(sporic) stages (Saltarelli et al., 1998). With the high organoleptic properties of the truffles‟ fruit 

bodies, truffles are greatly demanded as gourmet delicacy and truffles are also of interest to those 

in the forestry and agronomy businesses (Pierleoni et al., 2004). Truffles are economically 

important costing $2300/lb for T. magnatum, T. melanosporum costing $800/lb, T. indicum 

costing $50/lb and T. borchii $200/lb (Bonito, 2009). 

Tuber borchii, commonly known as Bianchetto is a member of the Puberulum group, 

Clade V, and Subclade V-4 (Jeandroz, Murat, Wang, Bonfante, & Tacon, 2008). T borchii Vittad 
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is found in the wild in most of Europe (Jeandroz et al., 2008; Kües & Martin, 2011). Bonito 

(2009) stated that attempts to cultivate European truffle species in North America and other parts 

of the world have not been successful. Problems associated with truffles in general includes: (a.) 

cost and ready availability; (b.) disease and pest; (c.) deforestation;  and (d.) global warming 

(Hall, Yun, & Amicucci, 2003). Other causes of decline includes introduction of exotic forest 

species, which do not have symbiotic compatibility with edible mycorrhizae, indiscriminate 

harvest of truffle fruit bodies, pollution and acid rain (Giomaro, Sisti, & Zambonelli, 2005).  

Tuber borchii has not been a favorite because it has been confused with the 

morphologically similar species which have poorer flavors such as T. maculatum, T. foetidum, T. 

dryophilum and T. puberulum. Another cause for the insufficient appreciation of European 

truffles is the invasion of Chinese variants under fraudulent means (García-Montero, Díaz, 

Massimo, & García-Abril, 2010). Presently, the decline of natural truffle production and increase 

in demand has resulted in the quest for development of technologies for fructification and 

conservation. 

T. borchii can be found in association with both angiosperm and gymnosperm hosts 

including broad leave trees like Oaks, Hazel, Poplar, Linden, Chestnut and alder and coniferous 

species like Pine and Cedar (Bonito., 2009). Calcareous soils with pH between 7 and 8 have been 

found to be more supporting of this truffle‟s growth but they have also be found in acidic soils 

(Zambonelli, Lotti, Giomaro, Hall, & Stocchi, 2002). 

Studies have demonstrated that T. borchii undergoes self-anastomosis within same 

isolates (by both plate-pairing and microscopic analysis) with evidence of protoplasmic flow and 

presence of nuclei in fusion bridges (Giovannetti, Roth-Bejerano, Zanini, & Kagan-Zur, 1994; 

Sbrana, Nuti, & Giovannetti, 2007). Most of the ongoing research are tied by strict confidential 
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agreement and are not under permit to publish/patent their findings (Hall et al., 2003). Further 

research needs includes efficient techniques for its culture, host inoculation, and mass 

production. This study was conducted with the following three main objectives: (1). to determine 

the best media condition- pH and temperature for in-vitro cultivation of T. borchii. (2). to 

determine the optimum nutrient requirement and concentrations for in-vitro cultivation of 

T.borchii and (3). to determine the presence and effect of mycelia based inoculation of T. borchii 

on P. taeda seedling. The primary goals of this research were to obtain an optimized medium and 

in-vitro condition for the mycelia generation of T. borchii and also the successful mycorrization 

of optimally generated T. borchii mycelia and P. taeda seedling. 

1.2 Objectives 

1. To determine the optimum pH level for the in-vitro cultivation of T. borchii. 

2. To determine the optimum temperature for the in-vitro cultivation of T. borchii. 

3. To determine the best carbohydrate source for the in-vitro cultivation of T. borchii. 

4. To determine the best nitrogen source for the in-vitro cultivation of T. borchii. 

5. To determine the optimum concentration of the best carbohydrate source for in-vitro 

cultivation of T. borchii. 

6. To determine the optimum concentration of the best nitrogen source for in-vitro 

cultivation of T. borchii. 

7. To determine the presence and effect of T. borchii mycelial based inoculation on 

mycorrization of P. taeda seedling. 

1.3 Hypotheses 

1. Optimum pH of MMN media will be basic; 7.0 to 8.0. T. aestivum has been reported to 

have an optimum pH of 7.51 in natural fields while T. melanosporum is found between 
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pH 7.0 and 8.0 (Chevalier, Gregori, Frochot, & Zambonelli, 2002; Thomas, 2012). Also, 

the pH of the locations where these truffles are commonly found are fairly acidic to basic 

(De Bellis et al., 1998). 

2. The optimum incubating temperature of T. borchii will be 20OC considering the average 

temperature of Italy, where T.borchii originates from. 

3. We hypothesize that at optimal media condition, the preferred carbon sources will be 

glucose. T. borchii mycelia is reported to perform better in glucose and fructose as 

against sucrose as carbohydrate source, and of the three carbon sources, glucose 

containing media produced optimum for hypha growth (Saltarelli et al., 1998). 

4.  At optimal media condition, the preferred nitrogen source will be ammonium chloride. 

MMN media, which is known to isolate and sustain the growth of fungi, has ammonium 

chloride as its nitrogen source. 

5. 10 g/L would be the optimum concentration of the preferred carbohydrate source. In 

MMN media composition, the amount of glucose is 10 g/L. 

6. The preferred nitrogen source would be optimum at a concentration of 0.25 g/L. In MMN 

media, the amount of glucose added per liter is 0.25 g. 

7. We hypothesize that P. taeda root tips will be positively colonized by T. borchii mycelia 

and the presence of mycorrization will affect the shoot-root ratio. Some mycelia strains of 

T. borchii have been reported to infect Querscus robur L. (Personal communication)(Iotti 

et al., 2012).  
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1.4 Justification 

P. taeda L is a principal economically viable tree species in the United States (USDA 

newsroom, 2013(Moorhead & David Dickens, 2012). It is found in abundance in the South-

Eastern U.S.A from Texas to District of Columbia (USDA Plant database). 58% percent of 

timber in the U.S and 15% of global timber are from southern pines (USDA newsroom, 2013). 

According to the USDA-NRCS database, loblolly pine is adapted to a wide range of textured soil 

from fine to coarse, and can survive at soil pH ranging from 4.0 to 7.0. Lowest acceptable 

temperature for survival of loblolly pine is -8OF while acceptable precipitation is between ranges 

of 35 to 65. The economic importance of loblolly pines plantations can be stretched by alley 

cropping and truffle production (Benucci, Bonito, Falini, Bencivenga, & Donnini, 2012; Susaeta, 

Lal, Alavalapati, Mercer, & Carter, 2012). 

T. borchii is the third most demanded truffle after T. melanosporum and T. magnatum. 

Current international price of T.borchii is about $200 with online/ virtual market rate between 

$19 - 20 an ounce. Unlike most Tuber species that are found in association with either 

angiosperms or gymnosperms, T. borchii can be found on both angiosperm and gymnosperm 

hosts including association with broad leave trees like Oaks, Hazel, Poplar, Linden, Chestnut and 

alder and coniferous species like Pine and Cedar (Bonito., 2009). T. borchii is commonly found 

in calcareous soils with pH between 7 and 8 but can also be found in acidic soils (Zambonelli et 

al., 2002). Presently, the decline of natural truffle production and increased demand for truffles 

has resulted in the search for new technologies for the fructification and conservation of truffles.  

Truffle cultivation is done either by spores, roots induction and use of mycelial pure 

cultures  (Iotti et al., 2012). Root induction is the oldest technique while spore inoculation is the 

most used and reported technique. Both the root induction and the spore inoculation techniques 
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are known to have low success rates, high rate of contamination by undesired species, and are 

costly as they require mature truffle fruit bodies or mycorrhized roots. Mycelia based inoculation 

avoids the challenges of the other techniques while providing trace to high performing strains, 

ability to preserve these strains. The challenges of mycelia based inoculation includes difficulty 

to culture and sustain these pure cultures of truffles (Iotti et al., 2012). Mycelia based inoculation 

requires further study, including the nutrients and conditions necessary for the optimum growth. 

There is also need to access the effect of mycelia based inoculation on the plant shoot and root 

ratios as well as the amount of mycorrhization. Most available works on T.borchii are not 

targeted at the cultivation while works done on the optimum nutrients and conditions are not 

extensive to include multiple strains and treatments. 

Co-farming T. borchii and P. taeda would among numerous benefits, increase 

reforestation, and provide farmers with multiple sources of income while producing healthier 

trees. Successfully infecting P. taeda with mycelia generated T.borchii would translate to less 

production cost for farmers and higher colonization of roots by T. borchii, and higher production 

rates. In the in-vitro section of this study, six strains from diverse sources have been used and in 

the four parameters investigated, no single work has been as extensive to include the range of 

treatments designed in each parameter. With multiple strains tested and a robust treatment range, 

this study would yield more specific results pertaining to the preferences of pH and temperature 

ranges, and the preferences and concentrations of carbohydrate and nitrogen sources. 
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 CHAPTER 2 

Literature Review 

2.1 Brief History and Cultivation 

The word truffle may have been derived from the Latin term tuber, meaning “lump”. The 

Latin word may have sprung other common European terms including: French Truffe, and Dutch 

Truffel. Prehistorically, truffles have been mentioned severally; Plutarch thought truffles resulted 

from lighting strikes, soil water and warmth as no obvious stem or root was found, making their 

origin elusive. Juvenal also assumed that thunder and rain were instrumental to their origin while 

Cicero regarded them as the children of the earth and Pedanius Dioscorides (40 to 90 AD) 

suggested that they were tuberous roots. Since truffles became more popular, availability moved 

from hand picking from natural fields to organized cultivation. Potential cultivators searched for 

means to domesticate these truffles. By 1808, the French term trufficulture was coined after 

Joseph Talon planted acorns picked from oak-truffle plantations and discovered that the truffles 

were found growing around the newly planted oak. Joseph talon is thus recognized as the first to 

cultivate truffles (Hall, Brown, & Zambonelli, 2007). This success led to wide spread cultivation 

of truffles in 19th century France and peaked at the end of the 19th century. By the 20th century 

however, there was a great decline in truffle production in France due to the French 

industrialization and move of farmers to urban areas. Industrialization matched with the World 

War caused a sharp decline in male work force due to death and handicap (Hall et al., 2007). 

Owing to these events, the acquired trufficulture skills were lost. The coming of the Second 

World War brought about the loss of more man power and experts. By the 19th century, truffle 

plantations had become none reproductive due to age, soil deteriorated, disease-forces and use of 

pesticides. As a result, since the 20th century, truffle production has plummeted drastically to 
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about 50 tons from approximately 1000 tons per year, this has further led to a sharp increase in 

demand and price (Hall, Zambonelli, & Wang, 2005). 

Talon‟s inoculation method is still used today with a measure of success though the 

method is marred by irregularities including a harvest of mixed mycorrhizae population, transfer 

of pest, diseases and pathogens (Hall & Zambonelli, 2012). Other inoculation methods exists, 

including use of a piece of truffle of interest for inoculation, use of pieces of infected roots, 

truffle puree and spore inoculation are also employed today (Hall et al., 2005). All these 

techniques can be summarized as two main techniques; root induction and spore inoculation. 

Both techniques share similar disadvantages which this thesis intends to address. Mycelia based 

inoculation would provide tractability, increase infection, reduce contamination and be cheaper 

to use. T. borchii like other truffles grow slowly in-vitro, making it imperative to develop 

optimized growth medium and conditions. Achieving this will foster faster growth with thicker 

mycelia. 

T. borchii is found in association with a wide range of host trees including oak, hazel, 

poplar, linden, chestnut, alder, cedar and pines (Iotti, Lancellotti, Hall, & Zambonelli, 2010). The 

size varies from a pea to an egg while color could be pale yellow to reddish brown. It has a 

smooth peridium and is usually found and collected in soils of varying pH though most common 

pH is basic; between 7 and 8 (Iotti et al., 2010; Zambonelli et al., 2002). T. borchii has also been 

shown to prefer natural soils to potting mix and harvest is usually from winter to spring (mid-

January to late April) usually as early as four years post inoculation in pines and harvest can 

continue for decades, usually 30-80 years (Donnini, Baciarelli Falini, Di Massimo, Benucci, & 

Bencivenga, 2009; Shaw, 1995). In the US, an Idaho farmer planted Hazelnut inoculated with T. 
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borchii in 2008 and harvested a single truffle in 2012, fifty in 2013 and is currently harvesting 

more this season in 2014 (Personal communications) 

2.2 Taxonomy and Species Description 

The order Pezizales includes the following families; Ascobolaceae, Morchellaceae, 

Helvellaceae, Pyronemataceae, Sarcosomataceae, Pezizaceae, and Tuberaceae. Members of 

Tuberaceae are popular and expensive fungi. Truffles are members of the Tuberaceae family as 

their fruiting bodies are produced subterranean (underground or hypogenous). Tubers are 

referred to as “true truffles”. True truffles are found only in symbiotic mycorrhizae association 

with several varieties of deciduous trees including oak, poplar, hazel and pine (Iotti et al., 2010). 

The word truffle is used to refer to fruiting body produced by the fungi. They are collected year 

round with various species fruiting at specific seasons of the year. Those of common interest are 

Tuber melanosporum Vitt (Black perigord truffle), Tuber magnatum (Italian white), Tuber 

aestivum (summer or burgundy truffle), Tuber borchii (Bianchetto), and Tuber brumale Vitt 

(Black winter truffle). The fruit body (the truffle), which is protected from the weather slowly 

matures within the soil. Once mature, it gives out its unique species-dependent perfume/aroma 

which attracts fungivores for dispersal. If they are not harvested, after about ten days they 

become poisonous and rot (Jepson, 2008). 

Truffles are usually harvested by trained dogs, pigs, wild boars or by humans who can 

either sniff or watch for columns of fungivorous flies (Jeandroz et al., 2008; Ramsbottom, 1953; 

Shaw, 1995; Talou, Gaset, Delmas, Kulifaj, & Montant, 1990). Of Hogs and dogs, the latter is 

preferred although both of them have strong sense of smell. Hogs usually eat the fruit bodies as it 

contains a compound similar to androstenol, the sex pheromone of boar saliva which keenly 

attracts the sow. 
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Tuber borchii closely resembles Tuber magnatum, which is commonly known as “white 

truffle”. The differentiation is not helped with T. borchii also commonly referred to as “whitish 

truffle”. Tuber borchii also has an aroma close to Tuber magnatum, although a bit more garlicky. 

T.borchii is spring harvested while T. magnatum is harvested in autumn and early winter. T 

.borchii has been wild collected in a wide range of edaphic conditions but is more pronounced in 

well-drained, sandy calcareous soils (Iotti et al., 2010). Natural Italian collection sites include 

Tuscany, Romagna and the Marche. Natural hosts include hazelnut, and oaks. 

The outer surface of Bianchetto has a slightly hairy appearance, irregularly shaped, 2-3 

cm in size, pubescent initially but at maturity becomes glabrous. The Gleba is firm, which is 

whitish initially then becomes beige briefly before maturation into reddish brown. It has a 

somewhat garlicky aroma, which is pleasant initially but becomes unpleasant with age. The 

strong garlicky taste is rich and gratifying. The ascospore of T. borchii is globose to subglobose, 

possessing 1 to 3 spores (Chen, Wang, & Liu, 2008). Peridium of T. borchii can measure up to 

500 µm while the hyphae of the inner peridium measures 9 µm in diameter (García-Montero et 

al., 2010). The current taxonomic position of T.borchii is shown in Figure 2.1 

2.3 Biology and cology of Tuber borchii 

As an ectomycorrhizae; a form of fungus-root symbiosis, it is found forming a symbiotic 

association with the roots of plants (both angiosperms and gymnosperms) where they provide 

their host plant with trace minerals and protection and receive organic carbon from their hosts 

(Pruett, 2008). Ectomycorrhizae increases the area in contact with soil compared with non-

mycorrhizal conditions (Rygiewicz & Andersen, 1994). T. borchii is not an obligate 

ectomycorrhizal fungi and can grow in axenic mycelia culture by taking advantage of their 

restricted saprotrophic capabilities (Soragni et al., 2001). The production of volatile organic 
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compounds (VOCs) appears to be the source of the flavorful aroma which is characteristic to 

each species.  It is also suspected that the flavorful aroma of truffles is also contributed by yeast 

present and do this by “the independent synthesis of yeast-specific volatile constituents” (Ijah & 

Antai, 2003). 

Mycorrhiza fungi are particularly of interest to forestry as they are involved in 

carbohydrate, water and mineral exchange while increasing resistance of the host plant 

(Alvarado, Honrubia, & Manjén, 2013). Like other ectomycorrhizae symbiotic relationships, 

truffles adsorb water and mineral nutrients from the soil and transfer them to the plant. In return 

the mycelium receives carbohydrate from its host plant. This specialization association reduces 

the function of the roots to merely transport, consequently, causing the root hairs to disappear 

(Giovannetti et al., 1994). 

Like other mutualistic symbiotic filamentous fungi, truffles life cycle involves the 

sequence of three developmental phases; firstly, the vegetative growth phase where the mycelia 

develops without coming in contact with the roots. Secondly, the mycelia form ectomycorrhizae 

with the root (this is referred to as the symbiotic phase). The third and final phase, the 

development of a fruit body which contains sexual spores that are ready for dispersal (Zeppa et 

al., 2003). These fruit bodies possess a complex combination of several types of specialized 

tissues, containing the sexual spores and emit volatile sulphuric hydrocarbons (Soragni et al., 

2001; Zeppa et al., 2003). 

Fungal hyphae are repaired, and mycelia colonies get intertwined to form hyphal 

networks by a process known as, Anastomosis (connection of two structures) (Sbrana et al., 

2007). In their work, Sbrana et al., 2007 showed that Self-anastomosing Isolates (SAIs) and Non-

self-anastomosing Isolates (NSAIs) occurred within Tuber borchii species. SAIs produced larger 
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growth than NSAIs. “Compatibility either self- or non-self could play important role in the life 

circle of Tuber borchii, by permitting hyphal interconnection and protoplasm mingling” (Sbrana 

et al., 2007). 

2.3.1 Cultivation and production. As other mycorrizal fungi, T. borchii extends the 

absorptive surface area of the plant root. Thus, increasing efficient uptake of nutrients and in 

return receives metabolites, carbohydrate and a place to live. Apart from wild cultivation, the 

first recorded organized cultivation of truffles was done by Joseph Talon. Around year 1810, 

Talon observed that when he transferred oak seedling found under Périgord black truffle 

producing oaks, the resulting trees also produced périgord black truffle. Though he kept this as a 

secret for years but his explanation of the concept later made it the main production strategy till 

the 1970s. This production method came with various challenges including low inoculation-

success rate, transplanting pathogens and insect, and offsetting the microbial species in the 

plantation. 

Currently, cultivation is done either by spores (gamic inoculum), mycelial pure cultures 

(vegetative inoculum) and colonized roots (symbiotic inoculum) (Iotti et al., 2012). Mycelia 

based inoculation has great advantages over other inoculation methods as its availability would 

not be seasonal, less prone to contamination, increased rate of infection, and may also provide 

uniformity of growth and development since they are from pure cultures. According to Iotti et al. 

(2012), mycorrhizae from pure culture colonize faster than spore inoculation, since there is less 

incidence of contamination during plant growth as seen in T. borchii forming mature 

mycorrhizae on Quercus robur L in less than a month (Iotti et al., 2012).  
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2.4 T. borchii Truffiere (Plantation) 

Since the 20th century, there has been a call for nursery inoculation of truffles (Trappe, 

1977). To achieve this, two major steps are required: seed stratification and seedling inoculation. 

Mycorrhiza fungi are particularly of interest to forestry as they are involved in carbohydrate, 

water and mineral exchange while increasing resistance of the host plant (Alvarado et al., 2013). 

T. borchii is known to be adapted to a wide array of soil conditions but are found in calcareous 

soils with pH ranging from 7-8. 

The problems of establishing a truffle plantation includes availability of certified 

inoculated seedlings, mycorrhizae monitoring to ensure target truffle are still present in the roots 

and has not been overthrown by other mycorrhizae fungi. Poaching and influx of poor flavored 

truffles also pose big concern in the truffle industry. During a truffiere establishment, 

ectomycorrizal plants/seedlings with competing ectomycorrizal fungi should be avoided as they 

could displace target truffle (Hall et al., 2005). According to Hall et al. (2005), some possible 

problems associated in setting up a truffiere includes exposing inoculated seedlings to direct 

sunlight, soil temperatures above 40 OC, competition with other ectomycorrizal fungi, 

insufficient organic and inorganic requirements for truffle cultivation. In the event of 

contamination with a non-target ectomycorrhizae, the plant should be removed immediately and 

the soil should be fumigated with methyl bromide, methyl isothiocyanate or Basamid granules 

(Hall, Brown, & Zambonelli, 2008). In stabilizing a truffle orchard, many have mentioned the 

possibility of helper bacteria contributing to the dynamics and stabilization the system (Aspray, 

Eirian Jones, Whipps, & Bending, 2006; Citterio, Malatesta, Battistelli, Marcheggiani, & et al., 

2001; Frey-Klett, Garbaye, & Tarkka, 2007). 
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Figure 2.1. Taxonomic position of T. borchii 

Different standards have been setup to guide the sale of truffles. Similarities exist in the 

2004 United Nations publication which seems to have stemmed from the earlier versions of the 

2006 French standards and the Australia-New Zealand standards for truffle (Hall & Nelson, 

2008; United Nations, 2004; Vignaud, 2006). These standards dealt on collection practices, 

grading and packaging for sales. These standards were geared towards protecting the reputation 

and value of prized truffles. These standards vehemently kicked against adding a lower valued 

truffle to priced species. 
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2.5 Truffle, Inoculation and Identification 

Inoculation methods include spore slurry, root induced inoculation and mycelia based 

inoculation. In order to grow the inoculum, a good mycorrhizal development must be obtained in 

the nursery after inoculation. To obtain good seedling survival and growth post planting, 

understanding of the temperature requirement must be known (Trappe, 1977). Guaranteed 

methods need to be developed to inoculate these truffles commercially. 

For spore inoculation, inoculum is prepared by blending truffle in a sterile warring 

blender. To prevent the heat from destroying the spores, blending is done with distilled water and 

crushed ice for 5 minutes. The spore-slurry is then be mixed with sterile potting mix of crushed 

limestone, peat, vermiculite and perlite (0.5:1:2:2) and each Seedling then inoculated with 1g 

Tuber borchii fruit body (Bonito, Trappe, Donovan, & Vilgalys, 2011; Pinkas et al., 2000). 

Seedling cells is then filled with the potting mix and each cell will have a seedling in it through 

origin of seeds and container diameter (volume and depth) affects rooting quality (Lebude, 

2005).  On Pinus taeda, Tuber indicum was detected after five months (Bonito et al., 2011). 

According to Iotti et al. (2012), mycorrhizae from pure culture colonize faster than spore 

inoculation, since there is less incidence of contamination during plant growth as seen in T. 

borchii forming mature mycorrhizae on Quercus robur L in less than a month (Iotti et al., 2012). 

Conventional identification- size and shape of their spores, wall ornamentation, structure 

of the peridium and gleba may not suffice when hypha of the mantle are developed at the area of 

contact with plant root (Mello, Nosenzo, Meotto, & Bonfante, 1996). Internal Transcribed 

Spacers (ITS) is the most popular locus for taxonomic characterization of ectomycorrhizal 

mycobionts (Iotti et al., 2010). The nuclear region lies between the small subunit (SSU) and the 

large subunit (LSU) ribosomal RNA (rRNA) genes and contains two noncoding spacer regions 
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separated by the 5.8S rRNA gene (Horton & Bruns, 2001). The amplification of the ITS1-4 

region together with Restriction Fragment Length Polymorphism (RFLP) show a distinct pattern 

for T. borchii on Quercus robur against the interaction between other ectomycorrhizae and their 

host plants (Mello et al., 1996). Before and after planting, it is advisable to check for the 

presence of the mycorrhization of the tuber borchii and its interaction with pre-existing 

ectomycorrhizae (Gandeboeuf, Dupre, Chevalier, Nicolas, & Roeckel-Drevet, 1997). 

2.5.1. Growth condition: pH Tuber aestivum syn. T.  uncinatum requires a pH of 7.0 to 

8.0 or higher but in peat based medium, the optimum pH for is between 6.7 to 7.5 (Chevalier et 

al., 2002; Pruett, Bruhn, & Mihail, 2009). In a study including natural and artificial Tuber 

melanosporum fields, the average soil pH was 8.0. Most truffles require calcareous soils with pH 

between 7 and 8 with the exception of T. borchii, which can be found in acidic soils (Mello, 

Murat, & Bonfante, 2006). T. borchii, has been cultured at a range from 6.5 to 6.6 (Ceccaroli, 

Saltarelli, Cesari, Zambonelli, & Stocchi, 2001; Pierleoni et al., 2001; Saltarelli et al., 1999). T. 

aestivum has an optimum pH of 6.7 and 7.5 in peat based potting-mix and at a pH of 7.51 in 

natural fields (Thomas, 2012). T. melanosporum is found between pH 7.0 to 8.0 (Chevalier et al., 

2002). The pH of the locations where these truffles are commonly found, which range from 

fairly acidic in some regions but mainly basic soil (De Bellis et al., 1998). 

2.5.2 Growth condition: temperature Truffles can withstand extreme temperatures but 

the Mediterranean climate seems ideal (Bonet et al., 2009). In controlled conditions, optimized 

rhizosphere temperature for T. melanosporum is between 20-25 OC while in-vitro, 25 OC is 

optimal (Bustan, Ventura, Kagan-Zur, & Roth-Bejerano, 2006). Optimum temperature of T. 

melanosporum is about 20 OC with decline at 26.5 OC (Michaels, 1982). In the production of T. 

olbiensis, the fermentor is kept at 23 OC (Morte, Honrubia, & Gutiérrez, 2008). Minimum 
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temperature for fungi is between 2-5 OC, with maximum temperature of 35-40 OC and optimum 

within the range of 22-27 OC (Ingold & Hudson, 1993). Also, in-vitro, the optimum pH for fungi 

is between 5-6.5, with only a few developing below 3 and above 9 (Ingold & Hudson, 1993). 

2.5.3. Carbohydrate source Simple monosaccharaides; glucose and fructose have been 

observed to be preferred to sucrose by T. borchii while another report showed that mannose was 

preferred to mannitol and glucose (Ceccaroli et al., 2001; Saltarelli et al., 2003). In another work, 

glucose was preferred to sucrose and maltose which produced thinner and less branched hyphae. 

It is also reported by Saltarelli et al. (2003) that high glucose concentration inhibits mycelia 

growth of T.borchii, and high concentration of fructose or mannitol do not influence growth of T. 

borchii. A  high sucrose concentration (80 g/ L) is unsuitable for polysaccharide accumulation in 

T. melanosporum (Liu et al., 2009). Sucrose is utilized by Hymenoscyphus ericae, an 

ectomycorrhizae though same carbohydrate source supports T. borchii poorly, if at all (Hughes 

& Mitchell, 1995; Saltarelli et al., 1998). Hughes and Mitchell (1995) showed that a 1:1 

combination of glucose and fructose doubled the mycelial growth as against when grown solely 

than in either. T. melanosporum growth is supported by sucrose and mannose (Mamoun & 

Olivier, 1991). 

Mannose was preferred to mannitol and glucose  in T. borchii culture media (Ceccaroli et 

al., 2001). Mannitol has also been reported to be present in high quantities after high exposure of 

T. borchii to glucose suggesting that mannitol may be a storage carbon form for T. borchii as 

formation is via a direct channel after absorbing glucose (Ceccaroli et al., 2003). In another 

report, T. borchii mycelia performed better in glucose and fructose as against sucrose as 

carbohydrate source, and of the three sources, glucose containing media produced healthiest 

hypha (Saltarelli et al., 1998). According to Nehls (2004), glucose, fructose and mannose confer 
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best growth to ectomycorrhizae fungi. Though high glucose concentrations inhibit T. borchii 

growth and that T. borchii exhibits “intraspecific variability”, slight variations in optimum 

conditions is expected within rational limits (Saltarelli et al., 1999; Saltarelli et al., 2003). 

Glucose and fructose are known to be the major sources of carbonhydrate supporting mycelia 

growth of most ectomycorrhizae though ectomycorrhizae fungi are also known to absorb and 

convert glucose and fructose from their host into mannitol, glycogen and trehalose. 

2.5.4. Nitrogen source T. melanosporum growth was stimulated more by ammonium 

than nitrate though the combination of both yielded the best result (Mamoun & Olivier, 1991). 

Ammonium and nitrate are usually preferred by ectomycorrhizae (France & Reid, 1983). 

Organic nitrogen sources, yeast extract followed by peptone were preferred nitrogen source for 

the Chinese truffle, T. sinense (Liu, Li, Li, & Tang, 2008). Soils supporting the growth of T. 

uncinatum have a C/N ratio of 18-20 (Chevalier & Frochot, 1990). For liquid fermentation, 

introduction of nitrogen thrice is optimal for T. melanosporum (Liu et al., 2009). It has been 

noted that increase in soil nitrogen also changes the diversity and dynamics of ectomycorrhizal 

communities (Avis, McLaughlin, Dentinger, & Reich, 2003). Cantharellus cibarius, a 

basidiomycetes has been shown to selectively prefer ammonium to nitrate and bovine serum 

albumin (Rangel-Castro, Danell, & Taylor, 2002). According to Gobert and Plassard 

(2008),selection of ammonium over nitrate is a common phenomenon. In another report where 

ammonium sulphate (0.28 g l-1), calcium nitrate (0.5 g l-1) and bovine serum albumen (0.375 g l-

1) were compared, ammonium support growth of all ten species (Finlay, Frostegard, & 

Sonnerfeldt, 1992).  
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2.6 Pinus taeda Seed, Seedling and Stratification 

Pinus taeda, Loblolly pine, was prehistorically a minor species in the south, with those 

growing in swamps surviving fires and pure P. taeda stands were established only after the fire 

control efforts of 1900s (Schultz, 1997). Loblolly pine also has the ability to grow rapidly, 

reproduce in large quantities and provide many market-ready produce at an early age. Loblolly 

pines have been found performing well on diverse sites, and reaching maturity in 80 years with 

an average life span of 300 years (Schultz, 1997). Pinus taeda is the principal economically 

viable tree species in the United States, (Moorhead and Dicksens, 2012; USDA newsroom, 

2013). According to the plant database, P. taeda is found in abundance in the South-Eastern 

U.S.A from Texas to District of Columbia. 58% percent of timber in the U.S and 15% of global 

timber are from southern pines (USDA newsroom, 2013). Economically, loblolly pines 

plantations can be made more viable by alley cropping and truffle production (Truffiere) 

(Benucci et al., 2012; Susaeta et al., 2012). Mycorrhizal formation of tuber borchii on Pinus 

taeda, like other mycorrhizal association, would also likely improve the mineral adsorption, 

drought resistance and pathogen defense of P. taeda (Mitchell, 1993). 

The embryo‟s ability to mobilize seed storage protein, which is a biochemical marker of 

early seedling growth is not affected by moist chilling (Cooke, Cooke, & Gifford, 2002). Moist 

chilling only minimally affects gene expression in the embryo or germinant and also alleviates 

some factors in the seed coat that significantly inhibits germination. Seed dormancy is a key 

limitation to immediate and synchronous germination, early seedling growth and of all the 

southern pine species, loblolly pine produces the most dormant seeds (Barnett, 1996; Bonner, 

1991). Thus, overcoming seed dormancy is an important component of efficient and cost-
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effective seedling production. Loblolly pines and other conifers are usually stratified by moist 

chilling at 1 to 5 OC for at least 35 days (Cooke et al., 2002). 

It is generally accepted that the hard, thick loblolly pine seed coat mechanically restrains 

swelling of the embryo and mega gametophyte, and thus restricting water uptake by these 

tissues. There is circumstantial evidence that moist chilling-induced changes in the embryo at the 

cellular level may contribute to dormancy breaking and germination in loblolly pine. 

2.7 Percentage Success 

In a report by Alvarado et al. (2013), two years old Quercus ilex infected with T. 

melanosporum, above 40 percent mycorrhization is expected with the lowest acceptable 

threshold being 30 percent. 30 percent mycorrization is acceptable although an increased 

percentage would in turn encourage persistence of the truffle in the field (Iotti et al., 2012). 

According to Morte, Andrino, Honrubia, and Navarro-Ródenas (2012), sampling roots of 12 

seedling in a lot of 1,000 and achieving 33 percent is a good success. 
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 CHAPTER 3 

Materials and Methods 

3.1 Tuber borchii Strain History and Isolation 

Six strains of T. borchii isolates were obtained from the Mushroom Biology and Fungal 

Biotechnology Laboratory (MBFBL), North Carolina A&T State University. The MBFBL IDs 

were MBFBL 1320, 1321, 1322, 1323, 1324 and 1325. MBFBL 1320 and 1321 were isolated 

from fruit bodies, MBFBL 1322 1323 and 1324 were derived from plate cultures (obtained from 

Bologna University, Italy) and MBFBL1325 was obtained from ATCC (America Type Culture 

Collection) in Rockville, MD, USA. Isolation from fruiting bodies was done by excising <1mm 

of the gleba, preferable vein (Iotti et al., 2012). In a bid to rid the cultures and isolates of 

contaminants, inoculation was done on four sets of MMN media; MMN alone; MMN and 

benomyl; MMN, benomyl, chlortetracycline and chloramphenicol. The composition of MMN 

was 10 g glucose, 0.25 g NH4Cl, 0.025 g NaCl, 0.5 g KH2PO4, 0.05 g CaCl2, 0.15 g MgSO4.7 

H2O, 0.012g FeCl3. 6 H2O, 0.001 g thiamine (filter sterilized after autoclaving), 15 g agar, per 1L 

distilled water.  

After the MMN media is prepared and autoclaved for 15 minutes at 121OC. On cooling to 

about 55OC, thiamine chloride was introduced using a sterile filter. For MMN media containing 

antibacterial and/or antifungal agents, they were also added to the warm media by sterile filter. 

Then, the media was then poured into 100 X 15mm Petri dishes (8.5mm in diameter) under the. 

laminar flow hood. On cooling and setting, inoculation was done using 4mm cork borer and 

incubation was done at 25 OC. All plates were observed daily and when pure cultures were seen 

growing from both the treated and untreated plates, subcultures were made immediately unto 100 

X 15mm Petri dishes. These subcultures were then monitored weekly to ascertain the time length 
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it took the fastest growing inoculum to fully colonize a plate. A 35 day period incubation was 

hence selected. 

3.2 Mycelia Growth 

After the first pilot experiment was conducted, it was derived that the fastest growing 

strains colonized 100 X 15mm Petri dishes in five weeks while most were fully colonized in six-

seven weeks on average. Thus, each study was conducted for five weeks and mycelia growth 

was measured weekly. To take a reading, the reverse of each plate was divided into two axis in 

the form of a “+”. The vertical axis was labeled „A‟, while the horizontal labeled „B‟. At weekly 

intervals, the growth was measured using mycelia length on each axis and the average taken 

(Miles & Chang, 2004; Weitz, Ballard, Campbell, & Killham, 2001). Though data was collated 

on weekly basis, only data from the final reading at day 35 is shown in this work. 

3.2.1 pH experiment. For identification of optimal pH, the six given T. borchii strains 

were grown in a range of eleven treatment values i.e. from pH of 4.0 to 9.0 at 0.5 increments. 

The six given strains had five replicates each. MMN media was prepared without inclusion of 

agar. The pH was then adjusted 0.2 above the desired treatment pH by adding drops of 2M 

Calcium carbonate, CaCO3 while the media was stirring. The 0.2 adjustment was done as it was 

observed that after pH adjustment, inclusion of agar, heating and autoclaving, the pH level 

reduced by 0.2. Inoculation was then carried out from actively growing mycelia using 4mm cork 

borers. After inoculation, plates were sealed and labeled accordingly and incubation was done at 

25 OC. The inoculated plates were read weekly for mycelia growth. After 35 days of incubation, 

mycelia growth was taken. With 11 treatments, 6 strains and 5 replicates, a total of 330 petri 

dishes were used per run for the pH studies. 
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3.2.2 Temperature experiment. Five incubating temperature treatments were used; 15 

OC, 20 OC, 25 OC, 30 OC and 35 OC. MMN media was prepared and the pH was altered to 8.0 as 

the pH studies showed that MMN media at a pH level of 8.0 supported the mycelia growth of all 

strains without statistical difference from their individual optimum pH value. Inoculation was 

then done from actively growing mycelia using sterile 4 mm cork borer from the six given strains 

and five replications were made per strain. The plates were randomized and incubated at 

different incubators depending on the temperature treatment. The inoculated plates were read 

weekly for mycelia growth. With 5 treatments, 6 strains and 5 replicates, a total of 150 petri 

dishes were used per run for the temperature studies. 

3.2.3 Carbohydrate studies. To identify the best carbon source used by T. borchii, nine 

carbohydrate sources were used including four monosaccharides (Glucose, Fructose, Xylose and 

Mannose), one disaccharide (Sucrose), one polysaccharide (soluble starch) and three sugar 

alcohols (Sorbitol, Mannitol and Glycerol). In the MMN media for the carbohydrate studies, 10 g 

of the treatment sugar replaced the conventional 10 g of glucose. The pH of the media was 

adjusted to 8.0 and after inoculating from actively growing mycelia using 4 mm cork borer, 

incubation was done at 20 OC. The inoculated plates were read weekly for mycelia growth. With 

9 treatments, 6 strains and 5 replicates, a total of 270 petri dishes were used per run for the 

carbohydrate studies. 

3.2.4 Nitrogen studies. To determine the preferred nitrogen source, five nitrogen sources 

including yeast extract, peptone, corn steep liquor, ammonium chloride and ammonium nitrate. 

The MMN media was prepared using soluble starch as carbohydrate source, and the pH was 

adjusted to 8.0. In preparing this treatment, the 0.25 g of Ammonium chloride (NH4Cl) in MMN 

media was replaced with equal amount of the treatments; nitrogen sources. After inoculating 
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from actively growing mycelia using 4 mm cork borer, incubation was done at 20 OC. The 

inoculated plates were read weekly for mycelia growth. With 5 treatments, 6 strains and 5 

replicates, a total of 150 petri dishes were used per run for the nitrogen studies. 

3.2.5 Nitrogen (yeast extract) concentration. In determining the appropriate amount of 

nitrogen (yeast extract) in MMN media required by T. borchii, the amount of yeast extract per 

liter of MMN was varied i.e. 0.25, 0.5,1,5,10,15,20,25,30,35,40 g/L. MMN media was prepared 

using 10 g of starch and the pH was adjusted to 8.0. After inoculating from actively growing T. 

borchii mycelia using sterile 4 mm cork borer, incubation was done at 20 OC. The inoculated 

plates were read weekly for mycelia growth. With 11 yeast extract concentrations, 6 strains and 5 

replicates, a total of 330 petri dishes were used per run for the nitrogen concentration studies. 

3.2.6 Carbohydrate (starch) concentration. In determining the suitable quantity of 

carbohydrate (starch) in MMN media required by T. borchii, the amount of starch per liter of 

MMN was varied i.e. 5, 10, 15, 20, 25, and 30 g/L. MMN media was prepared using 10 g of 

yeast extract and the pH was adjusted to 8.0. After inoculating from actively growing T. borchii 

mycelia using sterile 4 mm cork borer, incubation was done at 20 OC. The inoculated plates were 

read weekly for mycelia growth. With 8 starch concentration treatments, 6 strains and 5 

replicates, a total of 240 petri dishes were used per run for the carbohydrate concentration 

studies. 

3.3 Loblolly Pine, Pinus taeda Infection by Bianchetto Truffle, Tuber borchii Mycelia 

3.3.1 Seed stratification and germination. The seeds of Pinus taeda were surface 

sterilized in a solution of 0.005% (V/V) tween 20 with agitation for 30 minutes. The tween 20 

was rinsed off the seeds and then surface sterilized for 10 minutes in 1% (V/V) hypochlorite, and 

rinsed thoroughly the second time with deionized water. The seeds were then subjected to 35 
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days stratification between layers of sterile moist paper towels placed in petri dishes. The petri 

dishes were wrapped with aluminum foil and kept to stratify at 2 OC for 35 days. Moist chilling, 

imbibition, stratification is done to break seed dormancy. Germination was carried out in the 

growth chambers at 30 OC under constant light of 19 µmol-2s-1 (Cooke et al., 2002) as seen in 

figure 2. The seed were spread evenly and the paper towel was kept moist. 

 

 

Figure 3.1 Germinating seedling after stratification 

3.3.2 Potting mix. After a series of potting mix were studied (data not shown) to 

determine a suitable medium capable of holding pH levels. The potting mix selected consisted of 

Lime: Peat: Sand: Vermiculite: Perlite in the ratio of 0.055:1:1:2:2. 350 g of potting mix was 

introduced into Microbox® micropropagation containers (transparent polypropylene containers 

with covers having filters). The potting mix contained in the Microbox® were then autoclaved 

twice; first time, for 15 minutes at 121 OC and then, for 1 hour at 121 OC. The Microbox® was 

then transferred to the laminar flow hood. 

3.3.3 Mycelia infection of T. borchii on P. taeda. Two fully T borchii colonized 8.5 mm 

agar plates were cut into pieces under the laminar flow hood using sterile a blade. The pieces 
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were then introduced into the Microbox® containing the potting mix. The Microbox® was then 

thoroughly shaken to evenly spread the inoculum. Seedlings were then carefully planted 

allowing about 2 inches between seedlings. After the inoculation and planting, the Microbox® 

was covered and sealed with parafilm wax. Each Microbox® was then separated in autoclave 

bags and heat-sealed individually as seen in figure 3. The Microbox® were kept at room 

temperature for two weeks and then transferred to the greenhouse. After two months of close 

observation in the greenhouse, the autoclave bags were unsealed, the lids taken off, the plants 

watered and 250 mls of water was introduced between the autoclave bag and the Microbox® to 

improve humidity. Sampling was done at three months and four months post cultivation. 

 

Figure 3.2. Infected pine seedlings in Microbox® 

3.3.4 Morphological examination and characterization. To ascertain if T. borchii 

persisted as ectomycorrhizas on roots of seedlings inoculated with T. borchii, root samples were 
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taken. The Microbox® was gently shaken to detach the root system from the potting mix. The 

detached root systems were put into petri-dishes containing water to loosen attached soil debris. 

Morphological examination was done under a stereomicroscope, total number of root tips was 

counted and then the number of mycorrhized root tips was also counted as seen in figure 4. After 

morphological characterization, the seedling was cut into two; above ground and below ground 

and measurements were taken. The parameters measured included; shoot weight, root weight, 

shoot height and root height were measured from the above ground and below ground sections. 

 

Figure 3.3 Roots of Loblolly pines being observed under the stereomicroscope 

3.4 Experimental Design and Statistical Analysis 

All statistical interpretations were made at the 5% level of significance. All experiments 

were conducted using a completely randomized design. Inoculated Petri dishes of each treatment 

were completely randomized before placing them in the incubator while in the greenhouse 

studies, all Microbox® were also completely randomized. The entire study was conducted is a 
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step wise manner with the pH study completed first, then the temperature study was conducted 

using the results of the pH study and this included altering the pH level of MMN to the preferred 

level. With the completion of both pH and Temperature studies, the optimum pH and 

temperature requirements were used to obtain the preferred carbohydrate source. With the 

completion of the carbohydrate source studies, the preferred and cheapest source of 

carbohydrate, starch was used to conduct the nitrogen study. Starch of the same quantity, 10 g, 

replaced glucose in MMN media composition and the derived media were then used with the 

optimum conditions to obtain the optimum nitrogen source. On obtaining the optimum nitrogen 

source, a new media composition was generated, further modifying the MMN media. The new 

media composed of starch as carbohydrate source and yeast extract as nitrogen source. Optimum 

starch and yeast extract concentrations were then evaluated. The nitrogen level was kept constant 

at 10g/L while the carbohydrate level was varied. After results were obtained, starch was kept at 

10 g/l while the concentration of yeast extract was varied. With the optimized media condition 

and nutrient requirements obtained, it was then used to generate Tuber borchii mycelia for 

infecting Pinus taeda. 

Regression analysis was conducted to model the function of pH and temperature on mycelia 

growth. For nutrient requirements, statistical analysis were performed using SAS 9.2 (32) 

(English) software for analysis of general linear model (GLM) procedures and paired 

comparisons were performed using Duncan‟s multiple range test (Institute, 1990). GLM 

procedure was used when testing between groups as data points per treatment were not equal as 

contamination of some replicates led to losses. For uniformity, all data were analyzed and 

reported with GLM. Duncan‟s multiple range tests were used to determine significant differences 

between treatment means. 
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 CHAPTER 4 

Results and Discussion 

4.1 Mycelia Growth 

After five weeks of incubation, radial mycelia growth was used to measure the effect of 

each treatment (Fenn & Coffey, 1984) in all in-vitro studies; pH, temperature, carbohydrate, and 

nitrogen studies. 

Table 4.1  

Analysis of Variance (P>F) for Mycelia Growth for In-vitro Study 

Study Source of variationƗ /P>F CV, % 

pH S/0.0001 p/0.0001 S*p/0.0001 16.1 

Temperature S/0.0001 T/0.0001 S*T/0.0001 24.2 

Carbohydrate S/0.0002 C/0.0001 S*C/0.4068 29.6 

Nitrogen S/0.0001 N/0.0001 S*N/0.0001 11.4 

ƗSources of variation: pH study: S= strain; p=pH; S*p= strain*pH; temperature study: S= strain;  T=Temperature; S*T= strain*temperature; carbohydrate 
study: S= strain; C=carbohydrate; S*C=strain*carbohydrate; nitrogen study: S= strain; N=nitrogen, S*N= strain*nitrogen. 
CV= coefficient of variation 

 

ANOVA test was performed to determine if there was interaction between the given 

Tuber borchii strains and each of the in-vitro treatments (pH, temperature, carbohydrate and 

nitrogen). As shown in Table 1, there was interaction between the given strain and all treatments 

except for carbohydrate. Also, the table shows that the strain effect and all the treatment effect 

were highly significant. 
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4.2 pH Studies 

 

Figure 4.1 Mycelia growth, in millimeters on a polynomial regression with pH of Modified 

Melin-Norkrans media 

In order to investigate the effect of initial pH on mycelial growth, T borchii was 

cultivated in MMN media with different initial pH values (pH 4.0- pH 9.0 with 0.5 increments). 

According to fig1.1, the pH effect for all strains was highly significant except for MBFBL 

1323.The optimal pH for mycelial growth was 7.5 for MBFBL 1320, and 1322 while it was 9.0 

for MBFBL 1324 and 1325. Results show that regardless of the pH between 4.0 and 9.0, the 

mycelia growth of MBFBL 1323 was the same. Fig 1.1 also shows a steady progression for 
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MBFBL 1224 and 1325, which both peak at pH of 9.0. MBFBL 1322 steadily increased, peaking 

at pH level of 7.5 and steadily decreases. 

The results obtained were similar to those for Pezizales, which are found in neutral to 

basic soils (Bonito, Smith, Brenneman, & Vilgalys, 2012). Iotti et al. (2012) suggested a pH of 

8.0 was appropriate when preparing potting mixture for truffles. T. melanosporum is also favored 

by moderately basic pH (García-Montero, Díaz, Martín-Fernández, & Casermeiro, 2008; García-

Montero, Quintana, Valverde-Asenjo, & Díaz, 2009). With French truffiere producing T. 

melanosporum having soil pH of between 7.7 and 8.35 while those of Italy have a pH level of 

7.05 to 8.25 (Chevalier & Sourzat, 2012), probably explains the affinity of most of the given 

strains to pH of 7.5 and 9.0. Tuber sinense have also been found in broad pH range of 5.5 to 8.5 

(Wang, 2012). Terfezia, a member of the Pezizales is found in soils ranging from pH level of 

6.58 to 8.7 (Morte et al., 2012). Soils supporting truffles range from are mostly alkaline, from 7.5 

to 8.0 (Benucci et al., 2012). Tuber borchii is found in calcareous soils having pH between 7 and 

8, but are also present in acidic soils (Iotti et al., 2010).  

4.3 Temperature Studies 

According to fig 1.2, the temperature effect for all strains is highly significant. The 

optimum temperature for mycelial growth was 20 OC for MBFBL 1320, 1321, 1323 and 1325 

while the optimum for MBFBL 1322 and 1324 was 17.5 and 22.5 OC respectively. For all 

strains, no growth was recorded at 35 OC while at 30 OC, only MBFBL 1322 and 1325 showed 

no growth. 



34 
 

 

 

*Arrows pointing to temperature of maximum mycelia growth: GOT; growth at optimum temperature 

Figure 4.2 Mycelia growth, in millimeters on a polynomial regression with temperature of 

incubation, in degree Celsius (OC) 

After 9 years post cultivation in New Zealand, T. melanosporum was found on warm sites 

(Hall & Haslam, 2012). Mean daily temperature for truffle producing areas in the summer 

months are 15.3 to 25.5 (Hall, Frith, & Haslam, 2008). Terfezia, a member of the Pezizales has 

been prescribed to culture at a temperature between 16 and 26 OC (Morte et al., 2012). 
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4.4 Carbohydrate Studies 

Table 4.2  

Mycelia Growth from Nine Carbohydrate Sources on Six Strains of Tuber borchii 

Carbohydrate 

source 

Strains  

1320 1321 1322 1323 1324 1325 Average† 

 ------------mm------------  

Fructose 47.4 37.8 50.6 40.1 33.8 45.2 42.7b 

Sorbitol 49.3 47.6 51.6 37.9 38.9 53.5 46.3b 

Mannitol 50.8 43.2 44.3 51.8 47.3 33.3 45.3b 

Sucrose 42.9 53.3 52.3 46.7 44.9 50.3 48.4b 

Glucose 51.9 47.3 45.6 48.2 30.3 46.4 45.5b 

Starch 68.8 65.4 72.4 67.8 57.6 68.3 67.7a 

Mannose 56.8 51.9 49.7 32.9 42.2 55.9 49.4b 

Glycerol 46.8 44.3 54.9 50.5 52.9 55.0 50.3b 

Xylose 0.00 0.00 30.2 0.00 0.00 0.00 05.0c 

Average† 45.7ab 43.4b 50.2a 39.7bc 36.0c 42.7b  

†Within individual averages, means with a letter in common are not significantly different at 5% level of significance as indicated by Duncan‟s 

multiple range test for mycelia growth. 
 

To find a suitable carbohydrate source for T. borchii mycelial growth, various 

carbohydrate sources were provided at a concentration of 10 g/L in MMN media. According to 

Table 1, there was no interaction between strain and carbohydrate source hence Table 2 reports 

the strain effect and the carbohydrate effect separately. As shown in Table 1, among the 

carbohydrate sources tested, the highest mycelial growth for all strains was obtained in starch 
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medium. The starch containing medium had the highest mean of 67.7 mm and was statistically 

different from all other tested carbohydrate sources. 

4.5 Nitrogen Studies 

To investigate the effect of nitrogen sources on mycelial growth, T. borchii strains were 

cultivated in media containing various nitrogen sources, where each nitrogen source was added 

at concentration of 0.25 g/L. 

Table 4.3  

Mycelia Growth from Five Nitrogen Sources on Six Strains of Tuber borchii 

Nitrogen source Strains 

1320 1321 1322 1323 1324 1325 

-----------mm†-------- 

Yeast extract 43.1a 62.0a 60.4a 42.2a 44.7a 45.6a 

Corn steep liquor 45.1a 61.0a 46.1b 46.5a 51.5a 53.8a 

Ammonium chloride 42.2a 54.7a 59.9a 41.8a 29.5c 39.1b 

Ammonium nitrate 43.8a 38.7b 34.1c 43.0a 45.9a 41.7b 

Peptone 41.3a 56.4a 44.2b 40.9a 39.0b 42.6b 

†Within each strain, means with a letter in common are not significantly different at 5% level of significance as indicated by Duncan‟s multiple 

range test for mycelia growth. 

 

According to Table 1, there was highly significant interaction between strain and nitrogen 

source, hence Table 3 reports the strain effect and the nitrogen effect. As shown in table 3, all 

nitrogen treatments effect was the same for MBFBL 1320, and 1323 with no statistical difference 

between the treatments. For MBFBL 1321, all treatments but ammonium nitrate was preferred. 

For MBFBL 1322, yeast extract, and ammonium chloride had the highest mean and thus were 

preferred. MBFBL 1324 preferred yeast extract, corn steep liquor and ammonium nitrate while 
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MBFBL 1325 preferred yeast extract and corn steep liquor. Though each Tuber borchii strain 

had specific nitrogen preference, yeast extract was the only nitrogen source present as optimum 

for all strains. 

4.6 Nitrogen (Yeast Extract) Concentration Studies 

 

*Arrows pointing to nitrogen concentration: OG; optimum growth. 

Figure 4.3 Mycelia growth, in millimeters on a polynomial regression with yeast extracts 

concentration, in grams per liter. 
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To find a suitable yeast extract concentration for T. borchii mycelial growth, various 

yeast extract concentrations were provided at concentrations of 0.25, 0.5, 

1,5,10,15,20,25,30,35,40 g/L in MMN media. According to fig1.3, the yeast extract 

concentration effect for all strains is highly significant. The optimal yeast extract concentration 

for mycelial growth was 0.25 for MBFBL 1320, 1321, and 1323 while 10 g/L was optimum for 

MBFBL 1322 and 1324 and 6 g/L for 1325. 

4.7 Carbohydrate (Starch) Concentration Studies 

 

*Arrows pointing to optimum nitrogen concentration: GOS; growth at optimum starch concentration 

Figure 4.4 Mycelia growth, in millimeters on a polynomial regression with starch concentration, 

in grams per liter 
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In order to find suitable starch concentrations for mycelial growth, T borchii was 

cultivated in MMN media with different starch concentrations 5,10,15,20,25, and 30 g/L. 

According to fig 1.4, the starch concentrations effect for all strains is significant except for 

MBFBL 1322. The optimal starch concentration level for mycelial growth was different for each 

strain 17.5 g/L for MBFBL 1320, 12.5 g/L for MBFBL 1321, 22.5 g/L for MBFBL 1323, 30 g/L 

for MBFBL 1324, and 15 g/L for MBFBL 1325. 

4.8 Loblolly pine, Pinus taeda Infection by Bianchetto Truffle, Tuber borchii Mycelia 

Table 4.4  

Comparison of seedling morphological parameters 

Source of variation P>F CV, % 
-------90 days sampling------- 

Shoot length 0.1576 10.0 

Root length 0.0678 28.5 

Shoot: Root Length 0.0426* 24.4 

Shoot weight 0.1215 20.7 

Root weight 0.3078 40.3 

Shoot: Root Weight 0.2782 50.2 

-------120 days sampling-------- 

Shoot length 0.4353 24.3 

Root length 0.5295 46.0 

Shoot: Root Length 0.5095 37.3 

Shoot weight 0.5370 45.9 

Root weight 0.3425 59.5 

Shoot: Root Weight 0.0110* 19.0 

*denotes significance at 5% rejection level 
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To determine the effect of tuber borchii mycelial inoculation on the roots of Pinus taeda, 

morphological parameters were measured at three months and four months post inoculation. As 

shown in Table 4, there was no statistic difference for all parameters tested except for shoot to 

root length at 90 days and shoot to root weight at 120 days post inoculation, which were both 

significant at the 5% rejection level. 

Table 4.5  

Comparison between the three months and four months sampling data, using individual seedling 

Strain Shoot : Root ratios (Standard error)Ɨ Percent 

mycorrhization 

 Length Weight  

---------------90 days--------------- 

1320 0.8 (0.1)ab 3.5 (0.8) 25.1 (1.9) 

1322 0.6 (0.1)ab 1.9 (0.1) 18.3 (1.3) 

1323 0.4 (0.04)b 1.6 (0.1) 16.0 (1.5) 

1324 0.9 (0.1)a 1.8 (0.2) 24.8 (3.8) 

1325 0.4 (0.05)b 1.6 (0.1) 14.4 (0.9) 

Control 0.5 (0.1)b 1.3 (0.3) 16.3 (1.9) 

---------------120 days--------------- 

1320 0.7 (0.1) 2.3 (0.3)a 16.7 (2.5) 

1322 0.7 (0.1) 2.2 (0.1)a 18.2 (8.3) 

1323 0.5 (0.1) 1.5 (0.2)b 18.0 (4.3) 

1325 0.6 (0.1) 1.4 (0.1)b 27.2 (8.1) 

Ɨmeans with a letter in common are not significantly different at 5% level of significance as indicated by Duncan‟s multiple range test for 

mycelia growth. 
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With shoot: root ratios being significant both at the 90 days and 120 days, Table 5 shows 

the means and the standard errors in parenthesis, measuring how accurate and precise the sample 

is an estimate of the population parameter. As shown in table 4, shoot to root length ratio and 

shoot to root weight ratio are significant at 90 and 120 post inoculation days respectively. At 90 

days of post inoculation, MBFBL 1324 produced the highest shoot to root ratio which was not 

statistically different from 1320 and 1322 while MBFBL 1323 and 1325 was not statistically 

different form the control. At 120 days of post inoculation, 1320 and 1322 produced the highest 

shoot to root weight ratio means of 2.3 and 2.2 mm respectively which was statistically different 

from 1.5 and 1.4 mm for MBFBL 1323 and 1325. 

 

 

Figure 4.5. Tuber borchii mycorrhized root tips of Pinus taeda 

Usually, level of mycorrhization is checked after 6 months of inoculation while mature T. 

borchii mycorrhizae have been seen on Quercus robur L. in less than a month (Boutahir, Iotti, 



42 
 

 

Piattoni, & Zambonelli, 2013; Iotti et al., 2012). Figure 9 shows T. borchii mycorrhized root tips 

of Loblolly pine seedlings. 
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 CHAPTER 5 

Conclusion and Recommendations 

In the in-vitro mycelia growth study, the optimum pH of solid MMN is between 7.5 and 

9.0 for most strains with only one strain, MBFBL 1321 producing highest growth at pH 6.5. 

According to Figure 4.1, growth pattern for each strain was different. This signifies that though 

final pH preferences may be similar, there was difference in response at each pH level. The 

intermittent increase and decrease in growth present in all given strains but prominent in MBFBL 

1320 and 1321 may have been due to unavailability of some ions at certain pH levels. Both 

MBFBL 1320 and 1321 were derived from similar sources; fruit bodies, thus, may have not been 

adapted to artificial medium conditions. Of the given strains, MBFBL 1323 showed capability of 

growing in MMN media irrespective of the pH of the medium. 

Temperature studies revealed that 35 OC is unsuitable for the growth of T. borchii as none 

of the strains grew at this temperature. 30 OC supported the growth of T. borchii but very poorly 

for all strains except MBFBL 1322 and 1325 which showed no growth at 30 OC. Incubating at 20 

OC was optimum for MBFBL 1320, 1321, 1323 and 1325. Using the model as shown in figure 

4.2, the optimum temperature for MBFBL 1322 and 1324 are 17.5 and 22.5 OC respectively. 

With the average of 17.5 and 22.5 is 20, it can be deduced that 20 OC is the optimum incubating 

temperature for T. borchii. This compares to previous works, expectations and average 

temperatures of natural T. borchii fields. 

Of the nine carbohydrate sources tested, starch was preferentially selected by all the 

given T. borchii strains. Comparing the averages of the other carbohydrate sources shows that all 

other sources except xylose were comparable to glucose. Though glucose is a regular constituent 

of MMN media, T. borchii has been shown to yield better growth in alternate carbohydrate 
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sources. This result also shows that starch is preferred to mannose which has been shown to be 

preferred to glucose for T. borchii and T. melanosporum. Xylose did not produce any growth for 

all strains except for MBFBL 1322, which had poorly grown and sparing mycelia. Examination 

of the concentration of starch revealed that the amount of starch required for the growth of T. 

borchii is strain dependent as no two strains required the same amount of starch.  

Nitrogen source preference and utilization varied amongst the strains of T. borchii as 

each strain showed different trends. Each strain had a selection of sources which were optimum. 

Yeast extract was the only nitrogen source present in the selected optimums for each strain. With 

yeast extract being the only reoccurring optimum nitrogen source for all strains, it is the 

recommended nitrogen source in MMN media for culturing T. borchii. For MBFBL 1320 and 

1323, nitrogen source did not have any effect. In the concentration examination carried out to 

determine the appropriate amount of yeast extract required to culture T. borchii in MMN media, 

0.25 g/L of yeast extract was optimum for MBFBL 1320, 1321 and 1323 while MBFBL 1322 

and 1324 showed preference for high concentrations of yeast extract at 10 g/L. Yeast extract 

provides the best source of nitrogen for T. borchii but the appropriate amount is strain dependent. 

Loblolly pine, Pinus taeda infection by Bianchetto truffle, T. borchii generated on solid 

MMN media produced mycorrization at both the 90 and 120 days post infection and also the 

presence of mycorrhization caused increase in the shoot: root length ratios at 90 days post 

infection. This difference in shoot: root length ratio was not seen at the 120 days sampling but 

rather a difference was seen in the shoot: root weight as MBFBL 1320 and 1322 produced higher 

fractions than 1323 and 1325. These same strains, MBFBL 1323 and 1325 had the similar ratios 

with the control at 90 days of sampling. 
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More work needs to be done to develop new inoculation techniques and also to 

understand the role played by other nutrients including calcium, iron and thiamine in mycelia 

generation. The knowledge herein should be considered when selecting strains and appropriate 

media. The root infection results in this thesis serves as prove that T. borchii mycelia generated 

on solid MMN can positively infect roots of P. taeda.  

In repeating this work to achieve optimized medium, the temperature treatments should 

be increased with closer treatment points; 15, 17, 19, etc. In repeating the infection of T.borchii 

mycelia and roots of P. taeda, seedlings should not be destroyed during sampling rather, only a 

fraction of the root should be examined. This will enable the same seedling be observed over a 

period of time. Also, the sampling time should be increased, extending up to a year and the 

presence and abundance of T.borchii should be confirmed with molecular techniques. 
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Glossary 

Ascomycete. Any fungus of the phylum (or Ascomycetes), including the 

molds and truffles. They bear their sexual spores in a sac. 

Agar. A gelatinous substance obtained from seaweed and used in 

biological culture media as a thickener. 

Anastomosis. A cross-connection between adjacent fungi mycelia. 

Ascospore. A spore contained in an ascus. This kind of spore is specific is 

characteristic for ascomycetes (Ascomycota). 

Axenic. Relating to, or signifying a culture medium that is free from living 

organisms other than the organism of interest 

Ectomycorrhizae. A type of symbiotic mycorrhizae association composed 

of a fungus sheath around the outside of root tips. 

Fungal hyphae. Fungi hypha is the branching filaments that make up the 

mycelium. Hyphae are divided into cells by internal cross-walls called 

"septa" (singular septum). 

Fungivores. Fungi eating organism including birds, mammals, insects, 

plants, amoeba, gastropods, nematodes and bacteria. 

Gleba. The fleshy spore bearing inter mass of a certain fungi 

In-vitro. Taking place outside a living organism. Studies undergone in a 

test tube, culture dish, or flasks though these conditions attempt to mimic 

living organisms. 

Peridium. This is the outer skin of a sporangium or other fruiting body 

(truffle) of a fungus 
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Rhizosphere. The region of soil in the vicinity of plant roots. 

Saprotroph. An organism that feeds on or derives nourishment from 

decaying organic matter. 

Subclade. A subgroup of a haplogroup 

Subglobose.  Imperfectly or nearly globose 

Trufficulture. The cultivation of truffles 

Truffle. A strong-smelling underground fungus that resembles an irregular, 

rough-skinned potato. They are prized by the amount of flavors they 

produce. 
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