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Abstract 

Material properties and performance are governed by material molecular chemistry 

structures and molecular level interactions. Methods to understand relationships between the 

material properties and performance and their correlation to the molecular level chemistry and 

morphology, and thus find ways of manipulating and adjusting matters at the atomistic level in 

order to improve material performance, are required. A computational material modeling 

methodology is investigated and demonstrated for a key cement hydrated component material 

chemistry structure of Calcium-Silicate-Hydrate (C-S-H) Jennite in this work. 

The effect of material ion exchanges on the mechanical stiffness properties and shear 

deformation behavior of hydrated cement material chemistry structure of Calcium Silicate 

Hydrate (C-S-H) Jennite was studied. Calcium ions were replaced with Magnesium ions in 

Jennite structure of the C-S-H gel. Different level of substitution of the ions was used. The 

traditional Jennite structure was obtained from the American Mineralogist Crystal Structure 

Database and super cells of the structures were created using a Molecular Dynamics Analyzer 

and Visualizer Material Studio. Molecular dynamics parameters used in the modeling analysis 

were determined by carrying out initial dynamic studies. 64 unit cell of C-S-H Jennite was used 

in material modeling analysis studies based on convergence results obtained from the elastic 

modulus and total energies. NVT forcite dynamics using COMPASS force field based on 200 ps 

dynamics time was used to determine mechanical modulus of the traditional C-S-H gel and the 

Magnesium ion modified structures. NVT discover dynamics using COMPASS forcefield was 

used in the material modeling studies to investigate the influence of ionic exchange on the shear 

deformation of the associated material chemistry structures. A prior established quasi-static 

deformation method to emulate shear deformation of C-S-H material chemistry structure that is 
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based on a triclinic crystal structure was used, by deforming the triclinic crystal structure at 0.2 

degree per time step for 75 steps of deformation. 

It was observed that there is a decrease in the total energies of the systems as the 

percentage of magnesium ion increases in the C-S-H Jennite molecular structure systems. 

Investigation of effect of ion exchange on the elastic modulus shows that the elastic stiffness 

modulus tends to decrease as the amount of Mg in the systems increases, using either COMPASS 

or universal force field. On the other hand, shear moduli obtained after deforming the structures 

computed from the stress-strain curve obtained from material modeling increases as the amount 

of Mg increases in the system. The present investigations also showed that ultimate shear stress 

obtained from predicted shear stress – strain also increases with amount of Mg in the chemistry 

structure. Present study clearly demonstrates that computational material modeling following 

molecular dynamics analysis methodology is an effective way to predict and understand the 

effective material chemistry and additive changes on the stiffness and deformation 

characteristics in cementitious materials; these methods can also be applied to other materials.
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1 CHAPTER 1 

Introduction 

Research has suggested that at least 20% of all product innovation is based on the 

introduction of new and innovative materials. It has also been established that material properties 

and performance is governed by molecular structures and molecular level interactions [1]. Hence 

it behooves engineers and scientists to find ways of understanding the relationships between the 

material properties and performance that are influenced by molecular level chemistry and 

morphology, and thus find innovative ways of manipulating and adjusting matters at the 

atomistic/molecular level in order to improve material performances.  For example, cementitious 

materials that are the binders for mortar and concrete have material, geometrical features ranging 

from material chemistry/molecular/nano, micro, meso, and macro scales. Features and changes at 

the material chemistry/nanoscale level influence the hydration process, formed micro scale 

morphology, associated properties and behavior at engineering length scales. In order to engineer 

the material, it is required to develop a thorough understanding of the material chemistry and 

processes that define the material structure, this is particularly important for complex material 

systems such as cement. A brief background discussion of the material chemistry of cement and 

its multi-scale features is presented next. 

1.1 Cement: Evolution of Material Chemistry 

Because of its chemical durability, remarkable mechanical properties and high versatility, 

cement has remained the most widely utilized material in the world [2].  The starting material of 

cement is the clinker phase which is the unhydrated cement. The unhydrated cement phase is 

comprised of tri-calcium silicate (alite), di-calcium silicate (belite), tri-calcium aluminate, tetra-

calcium aluminoferrite, and additional trace compounds [3]. Table 1 below shows the various 
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cement clinker constituents and their corresponding mass percentages in a typical Portland 

cement clinker. 

Table 1 

Unhydrated Cement Constituent 

Cement Clinker 

Chemical 

Formula 

Oxide Formula 

Shorthand 

Notation 

Mass 

% 

Tri-Calcium Silicate (alite) Ca3SiO5 (CaO)3SiO2 C3S 50-70 

Di-Calcium Silicate (belite) Ca2SiO4 (CaO)2SiO2 C2S 10-30 

Tri-Calcium Aluminate Ca3Al2O5 (CaO)3Al2O3 C3A 3-13 

Tetra-Calcium Aluminoferrite Ca4Al2Fe2O10 (CaO)4.Al2O3Fe2O3 C4AF 5-15 

Calcium Sulfate Dehydrate 

(Gypsum) 

CaSO4.2H2O (CaO)(SO3)(H2O)2 C-S-H2 3-7 

Source: ref [3]. 

Cement paste is made by combining dry Portland cement and water. The process of 

making cement paste is referred to as hydration, during which, there is loss of workability, 

solidification and hardening. The hydration of the different clinker phases results in different 

hydration product phases, which makes up the cement paste. The hydrated cement phases 

include; calcium silicate hydrate (C-S-H), calcium aluminum hydrate (C-A-H) and calcium 

hydroxide (C-H) [3, 4], see Table 2 for the common components of hydrated cement paste. 
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Table 2 

Hydrated Cement Constituent 

Name or Mineral Phase Chemical Formula Cement Chemical 

Notation (CCN) 

Calcium Silicate Hydrate 2(CaO).SiO2.0.9-1.25(H2O) and/or 

CaO.SiO2.1.1(H2O) and/or 

0.8-1.25(CaO).SiO2.1.0-2.5(H2O)  

C-S-H 

Calcium Hydroxide Ca(OH)2  OR CaOH2O CH 

Calcium Aluminium Hydrate More complex than C-S-H C-A-H 

Aluminate Ferrite Trisulfate C3AS3H30-32 Aft 

Aluminate Ferrite C2ASH12 AFm 

Hydrogarnet 3CaO.Al2O3.6(H2O) C3AH6 

 

The C-S-H phase which constitutes a significant percentage of the hydrated cement paste 

is of interest because it is primarily responsible for the strength and load bearing attributes of 

cement [3, 5].  However, because of its complex material chemistry [6], C-S-H molecular 

structural representation is still inconclusive, and hence has been described by different 

molecular model crystal structures [7]. Some of these molecular structures are discussed in 

chapter 3.  

The interest and motivation of the present work is to understand the effect of material ion 

exchange and material chemistry level changes on mechanical stiffness properties and shear 

deformation behavior obtained through computational material chemistry level modeling of 

hydrated cement constituent C-S-H Jennite. 
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1.2 Cement: Multi-Scale Nature 

A phase in continuum micromechanics, is a material domain that can be identified at a 

given length scale with homogenous deformation state and constant material properties.  

Continuum micromechanics have made it possible to represent heterogeneous regions with 

homogeneous phases, with equivalent mechanical properties [8]. Individual homogenous phases 

at microscopic state have, on-average, a constant strain state; and classical homogenization 

techniques helps to predict the overall behavior of heterogeneous materials from that of their 

constituents [9]; hence the possibility of homogenizing the lower scale into higher scale and 

delivering specific scale phase properties, volume fraction and specific morphologies [3]. 

 Cement paste exhibit multi-scale features; it has a complex nature with random microstructure at 

different length scales and the concept of the continuum micromechanics have been used in 

cement structure studies [8-10]. Several application properties, have utilized the continuum 

micromechanics length scale framework; including heterogeneous thermoelasticity, rate-

independent elastoplasticity, nonlinear elasticity, viscoplasticity, viscoelastic coupling and rate-

dependent effects [4], these are primarily at the microstructure level. However, in cement paste, 

four levels of scales have been identified [8] i.e. molecular /nano-scale level determined by the 

material chemistry features, micro-scale with microstructural morphology features, meso-scale 

and macro-scale. Distinct length scales and features are based on the requirement that each scale 

should be separated from the next scale by at least one order of length magnitude, which is also 

stated in the literature as a prerequisite for the application of continuum micromechanics [3, 4]. 

As a result of the multi-scale nature of cement paste, the properties and material composition of 

the macro and engineering scale cement can be controlled or affected by the molecular level. A 
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potential ability to alter and manipulate the chemistry level structure of hydrated component of 

traditional C-S-H, a structure predominantly influenced by calcium - a major constituent of the 

cement paste at the fundamental material chemistry level - will imply that the elastic and shear 

deformation properties of the paste would be impacted. Figures 1 and 2 shows the different 

levels of scale associated with cementitious materials. Figure 1 shows a schematic of the muti-

scale material structure while Figure 2 shows the associated forms of cement in engineering 

applications. 

Figure 1. Schematics of multi-scale material structure of cement-based materials. 

source ref [8]. 

Figure 2. Multiscale nature of cement-based materials. 
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1.3 Objectives 

Traditional cement paste is primarily calcium-based, but engineering community, the cement-

producing industry, and government establishments such as the U.S. Department of Defense are 

looking for alternate formulations of cement; which may provide tailored properties for specific 

applications, could utilize local, and cheaper materials. Another factor influencing the alternate 

forms cement cited in the literature is the need to reduce the energy required to produce the 

clinker phase, and the carbon foot print of the cement industry [2]. Hence there have been efforts 

to look for alternate cement formulations that are not calcium-based, might be cheaper, and have 

the potential for reducing carbon footprint in the manufacturing stage of calcium based cement. 

Several forms of cement formulations has been sought, for instance, other forms of belitic 

cements are sought by trial and error to improve the reactivity of the clinker phase.  Some 

additional approaches that have been used trying to improve the properties of cement-based 

materials include thermal processing [11, 12] and addition of new chemical compounds and ions 

[2, 11, 12]. Most common types of ionic substitution which has been used in cement phases 

include; Mg
2+ 

for Ca
2+

, 2Al
3+

 and 2Fe
3+

 for 3Ca
2+

, and 2Ca
2+

 for Si
4+

  [2, 13]. The present work

investigates the influence of replacement of calcium ion with magnesium ion in the material 

chemistry level of C-S-H with a focus on mechanical stiffness and shear deformation 

characteristics via computational material modeling. 

Several studies have focused on different aspects of cement material improvement. Hegoi 

and co-workers [2] studied the effects of the presence of chemical substitution on the 

physicochemical properties of cement clinker phases - alite and belite. They incorporated Mg
2+

,

Al
3+

 and Fe
3+

 into the structure using classical forcefield methods and reported that the

crystallographic site within the unit cell is equally probable for Mg, Al and Fe substitution. It has 
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also been reported that Mg incorporation does not change the electronic structure appreciably 

compared to Al and Fe incorporation [2], and that there are no preferential substitution for any 

calcium sites, when Mg
2+

, Al
3+

 and Fe
3+

 were incorporated. The main focus of their research was

on the reactivity of the clinker phase for reduced energy production. Research efforts to study the 

effect of Mg ion exchange on the mechanical stiffness and deformation have not been reported. 

As discussed in the literature, Mg provides a feasible incorporation option in cement 

paste. In their study of the hydration process of cement, Stephan and co-workers [13], provided 

analytical evidences that in low concentrations, Mg
2+

 does not change the hydration process of

C3S – a component of cement (Table 1), although the reactivity may increase with weight 

percent and with cement age. Also, because of the relative availability and the ionic similarities 

to Calcium, Mg can be considered as a potential candidate for ionic replacement. Additionally, 

with the replacement of Ca by Mg a lower temperature for processing the clinker phase can be 

achieved. 

The objective of this work is to understand the influence of the effects of the exchange of 

Calcium ion with Magnesium ions in hydrated cement material chemistry structure based on the 

shear deformation behavior and mechanical stiffness properties of the modified material using 

computational material modeling and simulations. Different computational simulation methods 

have been employed in the past to study heterogeneous materials. Hegoi et al [2] used a 

combination of forcefield and DFT atomistic simulation in their mentioned prior mentioned 

study, others have used ab initio methods to study the structure of C-S-H [14, 15]. There are also 

studies of the mechanical behavior of heterogeneous materials using multi-scale modeling, and 

studies to understand cement hydration with finite element modeling as well as temperature 

dependency of the microstructure of cement hydrates [8, 16-18] reported in the literature. To the 
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best knowledge of the author, no other studies have been focused on the effects of chemistry 

level ion exchange on the mechanical stiffness and deformation behavior of cement hydrates. 

The present study focuses on the effect of Calcium ion substitution with Magnesium on 

chemistry level structure of C-S-H and to understand the variations on the predicted mechanical 

stiffness and shear deformation. 

1.4 Computational Modeling 

 In order to move nanotechnology research from the nascent exploratory research which 

was initiated mostly to understand underlining principles to designing new materials that will 

meet existing and new needs, and thus become commercially viable; a rational nanomaterial 

design and rigorous engineering design would be required. The knowledge and understanding of 

the properties based on atoms and molecules that form the material chemistry structure at a nano-

scale is very critical to achieving this rational design. At the bottom line of this understanding is 

the use of computational algorithms and relevant analysis code developments that would help in 

predicting the behavior of new material performances even before they are formed and subjected 

to any laboratory efforts.  Material chemistry level modeling following the principles and 

techniques commonly grouped under Computational Material Science is one of the key 

facilitator of material science that is experiencing fast growth pace and forms the basis of the 

present work [19].  

The background of computational modeling methods and framework followed in the present 

research is presented and discussed in Chapter 2. 
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2 CHAPTER 2 

Computational Modeling Methods – Background 

This chapter presents the background details of the computational modeling methods 

employed in the present work. In particular, material chemistry level modeling is based on 

molecular configurations formed with atoms and bonds and their interactions. A brief discussion 

of the background of Molecular Dynamics (MD) modeling techniques is presented next. 

2.1 Molecular Dynamics Techniques 

Quantum mechanics offers an accurate solution to the position-space wave function of 

electron level systems. However, it is computationally complex and difficult to solve the wave 

function for larger systems [20]. Hence, Molecular Dynamics (MD) methods has been developed 

and used to solve atomic/ molecular level systems. Unlike quantum mechanics, molecular 

dynamics can be applied to larger and complex systems; it is also computationally less expensive 

and faster. Molecular Dynamics helps to fill the gap created when statistical mechanics –which 

uses partition function of systems in equilibrium, meets a roadblock due to essentially lack of 

system equilibrium. This is because, once out of equilibrium, theory cannot provide quantitative 

solutions unless several approximations are applied; hence simulations like Molecular Dynamics 

are employed to solve this equilibrium challenges [21]. A particular subset of Molecular 

dynamics modeling techniques is the one denoted as Classical Molecular Dynamics, which is a 

numerical technique that uses classical mechanics to model atomic scale systems. In it, the 

position and velocities of atoms forming a molecular system are estimated based on the solution 

of the classical equations of motion, Newton’s laws of motion. This technique cannot be used to 

study the chemical reactions or predict chemical reactivity of molecules. 
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Unlike lattice-based simulation methods like cellular automata, MD simulations operates 

in continuum and are not spatially discrete [22], hence problems like unfavorable effects due to 

lattice symmetry and lack of range of particle velocities are not encountered in MD, although it 

is computationally more demanding [21]. Other simulations techniques, like Monte-Carlo 

simulations, eliminate the momentum part of the phase space and considers only configuration 

space, hence, can only be used to study systems in equilibrium and process consequences. 

However, MD enables a detailed study of the dynamics (path and consequences) of a molecular 

system [23]. In Classical MD, atoms are viewed as mass points, and are described by mass (m), 

charge (q), position (x, y, z) and velocities  (Vx, Vy, Vz) – this has been described by the particle 

model with the particles carrying the properties of physical objects [20]. By virtue of their 

existence and vicinity, these particles/atoms interact with one another (bonds can be viewed as 

springs and the bond strength are related to the spring constant), and these interactions are 

referred to as interatomic potential. Figure 3 shows a 3-atom system with their various 

interactions. In molecular dynamics, the interatomic potentials are evaluated via force-field 

calculations [21, 24]. 

Figure 3. Atomic positions and interaction forces on a 3-atom system. 
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2.2 Force Field/Interatomic Potential  

In Classical MD, the energy associated with molecular systems is based upon energy 

associated with the atomic level interactions of different atoms in a molecular system. The 

potential energy of atomic system is expressed as the sum of various interactions that exist in a 

given molecular [25] system as; 

                                             Equation 1 

                                                   Equation 2 

                                     Equation 3 

where        is the total energy of an atomic system accounted for by a combination of both 

bonded and non-bonded components of the interactions of the atoms. The bonded component of 

the interaction potential comprise of; the bond stretching component (        ), which views the 

bonds as springs under harmonic oscillation and thus the relation in figure 4 below. The bond 

angle bending, and dihedral angle torsion components of the angular distortion (       and 

         ) [25], relate the interactions between three and four atoms, with respect to the angles 

between three atoms and the angles between different planes of four atoms, and the inversion 

term (              . The non-bonded component is comprised of Vander Waals interactions 

(    ) which relates the long range attractive and short range repulsive effects on neutral atoms 

using the Lennard-Jones potential [21, 25], figure 4, and electrostatic interactions (              ) 

[26].  
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Figure 4. Bonded and unbonded interactions. 

The interatomic force can then be obtained as the spatial gradient of the total potential energy of 

the system [20, 21, 27].  

     
  

   
            Equation 4 

The trajectories of individual particles,       of the system can be estimated solving the 

Newton’s equation of motion [20, 21, 27].  

            
   

  
   

    

   
        Equation 5 

During the time-evolution of the dynamics of a molecular system the positions and 

velocities are updated after each time step. Since all the thermodynamic properties of the 

molecular system can be estimated based on the set of positions and velocities, a time-profile of 
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them can be created during the time-evolution of the molecular system. The physical properties 

under thermodynamic conditions employed in the simulations can, therefore, be average of large 

enough periods of time as to satisfy the conditions required by the Ergodic hypothesis. Figure 5 

shows a typical molecular dynamic process step.  

 

Figure 5. Molecular dynamics process. 

Figure 6 shows a time average line for a thermodynamic or physical quantity. Section 2.5 

discusses the approaches used in executing this transient dynamic process. 

 

Figure 6. Time average. Quantities of interest are obtained as average over a dynamic time. 
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The solutions to the equations of motion are based on constraints such that certain 

thermodynamic properties are controlled. Hence, the system under investigation can be subjected 

to constraints such as constant temperature, pressure and volume. The combination of these 

thermodynamic constraints is called ensembles which are discussed later. In Molecular 

dynamics, the potential energy for bonded and non-bonded interactions of different material 

atoms has been defined by different forcefields that have been developed and applicable to 

material atoms involved in the molecular system. The predicted properties of a molecular 

dynamics analysis for material modeling are influenced by the underlying forcefields used in 

analysis. Two such force fields have been employed in the present study on material modeling 

based on material chemistry structure of hydrated C-S-H Jennite. 

2.2.1 Universal force field (UFF). Universal Force Field (UFF) provides the possibility 

of constructing and defining most structural features across the elements in the periodic table. 

The limitation of prior existing forcefield applications to proteins, nucleic acids and organic 

molecules deepened the efforts resulting in the development of the Universal force field which 

could be applied to the entire periodic table. It is generated using parameters which include 

hybridization dependent atomic radii, Van der Waals parameters, hybridization angles, effective 

nuclear charges, as well as inversion and torsional barriers. UFF has 126 atom types, which are 

described by a five character mnemonics. The force field assigns potential energy related to the 

geometry of the molecules as a superposition of various two, three or four body interactions. For 

atoms that are bonded to each other in a 1, 2 interaction or those bonded to a common atom in a 

1, 3 interactions, UFF follows the convention of excluding Van der Waals and electrostatic 

interaction [28]. 
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2.2.2 COMPASS force field (COMPASS). Condensed-phase optimized molecular 

potentials for atomistic simulation studies or COMPASS force field was developed as a general 

all-atom forcefield for atomistic simulations of common organic, small inorganic molecules and 

polymers. This is a proprietary forcefield within the MD analysis and visualizer code Materials 

Studio. Ab-initio and empirical parameterization techniques were used [29], and validated using 

condensed-phase properties for molecules in isolation. This force field can be used for a broad 

range of molecules in isolation and in condensed phases. It is capable of predicting numerous 

solid state properties, unit cell structures, lattice energies, elastic constants and vibrational 

frequencies [30] and under a wide range of conditions of temperature and pressure

2.3 Ensembles and Controls 

Molecular dynamics is based on the integration of classical equations of motion on 

molecular systems to simulate their kinetic and thermodynamic properties. It samples micro-

canonical ensembles (NVE) [31], since a system is usually characterized by a time–independent, 

translationally and rotationally invariant Hamiltonian. The integration of the classical equations 

of motion leads to a trajectory that maps several dynamic micro-canonical ensembles  (NVE), 

where all the forces which appear in the Newton’s equations of motion, are related to the 

potential energy of the system, and the total energy of the system (                 

           ) is conserved (NVE – fixed number of particles, volume and energy). But there are 

cases when it is desirable to make a system comparable with experiments. For instance when 

average temperature must be at desirable values, this leads to a canonical sample configuration 

with fixed number of particles and volume and with the temperature having a specified 

macroscopic average but with fluctuating instantaneous total energy or Hamiltonian (NVT 

ensembles). Other possibilities include, grand canonical ensembles (𝜇VT) where there is a 
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constant volume and temperature as in canonical ensembles but it is however open to particle 

exchange with the surrounding bath. In grand canonical ensembles, the chemical potential of 

different species have a specified average [31]. In isothermal-isobaric (Gibbs) ensembles (NPT), 

the pressure has a specified average and the instantaneous volume of the system can fluctuate 

[31]. Thermostats algorithms are the various computational based methods in molecular 

dynamics which are introduced to modify the time dependent changes in atom positions and 

velocities to achieve this temperature controls [31, 32]. The purpose of these thermostat controls 

is to ensure the average temperature of a molecular system is maintained at and close to a desired 

temperature [32].  A brief background of the different thermostats employed in molecular 

dynamics analysis and studied in the present work is presented next.  

2.3.1 Andersen thermostat. It works by coupling the molecular system to a heat bath, by 

an occasional stochastic collision that acts randomly on selected particles, imposing a desired 

temperature on the system [32]. The instantaneous stochastic collision affects the momentum 

(velocity) of one particle and other particles are unaffected by the collision [32, 33]. The 

Hamiltonian equations for all the particles are integrated until the time for next instantaneous 

collision [32-34]. Andersen thermostat can be used for non-equilibrium processes where large 

amount of heat is liberated for systems with low heat capacity, and for processes such as 

nucleation and phase separations which require large energy and density fluctuations [34]. 

2.3.2 Velocity scaling. It is probably the most straight forward temperature control 

method. Maxwell-Boltzmann distribution is used to draw the distribution of velocities of 

material components. The average kinetic energy of each component per degree of freedom can 

be obtained and related to the temperature using equipartition theorem, and this is averaged over 

all the particles to obtain the instantaneous temperature of the finite sized material system. If the 
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temperature used to generate the velocity distribution does not coincide with the instantaneous 

temperature, then the velocity is rescaled until the temperature coincides [35]. Velocity scaling 

does not reproduce the canonical ensembles  [35, 36], and it is not deterministic or time 

reversible and does not remove localized and unwanted correlation motions [36].  

2.3.3 Nosé thermostat. Instead of using stochastic collision to introduce energy 

fluctuations into the simulation system, a Lagrangian with artificial coordinates and velocities 

also referred to as extended Langragian method are used in Nosé thermostat. A Nosé thermostat 

controlled system has more independent variables than equivalent statistical mechanics approach 

giving more accurate results for static quantities [32, 37, 38]. It has also been shown that the 

simulations of extended systems (which includes a real micro-canonical system and a heat bath) 

produces a canonical ensemble in the real systems due to heat exchange between fictitious 

degree of freedom and real systems, with coupling between the two controlled by a fictitious 

mass [35]. The method offers a stable and efficient approach to molecular dynamics analysis 

simulations. However, its more expensive to carry out each optimization steps [32], and it is not 

Ergodic (i.e. the system does not have has a finite chance to go everywhere in phase-space in a 

finite time)  in some difficult cases such as in harmonic systems [33]. 

2.3.4 Berendsen thermostat. Berendsen et al [39] introduced weak coupling of system 

to heat bath thereby limiting the temperature fluctuations in canonical ensembles found in 

velocity scaling. In this temperature control method, the coupling adds or removes energy form 

the system to maintain the temperature and the velocities are scaled at each step such that the rate 

of temperature change is proportional to the difference between the target and instantaneous 

temperature given by; 

  

  
  

1

 
  0              Equation 6 
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 When the target temperature T0 is less than desired system temperature T, the temperature 

will increase and if T>T0, heat will be removed from the system. A generally employed value for 

τ is 0.4ps, which result in modest temperature fluctuations in most MD analysis simulations [35, 

39]. Berendsen thermostat leads to exponential relaxation of the temperature to a target one, it 

does not strictly fix the temperature [35] . Also when the coupling is weak (τ = 0.01ps) there 

may be perturbation of the various quantities that will not lead to correct canonical averages [35]. 

2.3.5 Andersen barostat. The methods in MD by which the time dependent changes in 

atomic configurations can be modified as a function of pressure are called the barostat. Andersen 

barostat mimics the action of a piston by coupling the system to external variable [27], by 

addition of an extra degree of freedom to the volume of the simulation box as well as associated 

potential and kinetic energy terms. It allows for volume change within the simulation with 

average volume determined by a balance between the internal pressure of the system and the 

desired external pressure of the system. 

 2.3.6 Parinelo barostat. Parinelo barostat controls the pressure by the introduction of 

additional degrees of freedom to the whole system of atoms in time and space, via the 

transformation of the spatial coordinates    into scaled positional coordinates,       1 3. This is 

possible by transforming the Lagrangian describing the system into the corresponding 

Hamiltonian [20]. 

2.3.7 Berendsen barostat. Similar to the Berendsen thermostat, the barostat is coupled 

with a pressure bath by a weak coupling with coupling constant τp and the volume of the system 

is scaled by a scaling factor λ. The rate of change of pressure is given by Equation 7 and scaling 

factor is defined by Equation 8. 

     

  
  

1

  
                    Equation 7 
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  1   
  

  
  

1

  
                 Equation 8 

where; Pbath is the pressure of bath, P(t) is the actual pressure at time t and atomic coordinates are 

scaled by a factor of  
1

3⁄   new atom position is defined as; 

         
1

3⁄              Equation 9 

2.4 Energy Minimization 

Consider a simulation box with the atoms of the molecular structure located on certain 

defined locations in the x,y,z space. The structures that define the molecular material model 

configuration are assigned specific locations for each of their atoms which may not necessarily 

be the equilibrium positions with a minimal energy. In order to evaluate the energy of the 

system, we need a force-field or interaction potential which is nothing but a mathematical 

expression of the relationships that are dependent upon the atom type, locations of each atoms 

and the resulting energy based on bonded and non-bonded interactions. Hence, the potential 

energy is          in general. In the present work, we use the UNIVERSAL and COMPASS 

force fields to relate the above interactions. Before any dynamics run in a molecular dynamics 

analysis, energy minimization is employed to get a low energy stable configuration of the 

material system. There are numerous mathematical algorithms that can be employed for energy 

minimization of the multi-dimensional energy function: conjugated gradient, Newton-Rapson 

iteration etc. The numerical integration method used for solving the classical equation of motion 

is presented next. 

2.5 Time Integration Method 

The integration of the equations of motion is done numerically and there are different 

methods of doing this in principle [21, 40]. However, there are selection criteria which include 

limited calculation of the force component, a corresponding increase in time step if force 
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components are calculated but without crossing the upper bound limit constraints placed by 

Lennard-Jones repulsive force at short distances [21]. Hence Runge-Kutta and adaptive methods 

of time integration which could not increase their time steps beyond the Lennard-Jones limits are 

quickly discarded in most MD analysis. Of common use are the leap frog methods, Verlet 

methods and the predictor corrector methods. 

Leap frog and Verlet method are algebraically equivalent [21] and are perhaps the most 

widely used time integration methods in molecular dynamics, easy to implement, stable and time 

reversible. Verlet method is used in the MD simulations performed in this study. It is a direct 

solution to the second order equation 5 [21, 27]. It follows from the Taylor’s series expansion of 

coordinates and based on the previous particle position        , present position      and 

acceleration     . The next position can be written without necessarily evaluating velocity the 

term as: 

        2               2          Equation 10 

The velocity term which is not needed for trajectory calculations have been eliminated by 

Taylor series expansion about     . It can however be computed when needed for kinetic energy 

calculations as [21, 27]. 

     
               

2  
         Equation 11 

2.6 Periodic Boundary Condition 

Finite and infinite systems behave in different manner [21]. The aim of Periodic 

Boundary conditions (PBC) in the molecular dynamics analysis is to ensure that the molecular 

system does not have an abrupt boundary with a vacuum, to remove any significant peripheral 

surface effects [30]. In order to capture the typical state of interior atoms, wall/boundary effects 

are eliminated [21] using PBC. Periodic boundary can be viewed as an array of infinite identical 
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copies of a simulation region implemented in order to reduce the fraction of atoms near the 

walls/boundary [27, 41]. Particles that leave a simulation boundary reenters through the opposite 

face, hence the boundary of the central cell are not rigid and there are no particle reflection in the 

central cell [20], but the periodic images of the central cell behaves in the same way. It is 

important to know if the properties of both macroscopic and small infinite periodic system are 

the same. The common practice in computational simulation is to ensure the choice of periodic 

size has little effect on the equilibrium thermodynamic properties of the structure, and depending 

on computational resources available, to increase the box size to maintain constant density. 

Cubic box is usually used in most periodic repetition [27].  

2.7 Dynamic Simulations and Post-Analysis of Physical Quantities 

The positions and velocities of molecular system, as a result of their molecular 

interactions, carry information that can be used to evaluate their instantaneous thermodynamic 

properties such as their temperature, pressure, kinetic energy and potential energy (Equations 1-5 

and figure 4). From section 2.5 above, we saw that we can evaluate new positions of particles 

based on the numerical time integration methods. Hence, at each time steps the required 

thermodynamic properties can be computed and profiled. 

The positions and velocities of the molecular system in their initial state are chosen such 

that no particles occupy exactly the same position [21, 27, 42]. Lattice locations are often used to 

place particles and velocity components are attributed to the particles [42] from Gaussian 

distribution (Equation 13), with magnitudes conforming to the required temperature of the 

system. This is then corrected such that overall momentum is zero [27].  

  ∑     
 
  1             Equation 12 

       (
  

2    
)

 

 
    (

      
 

2   
)        Equation 13 
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where        is the probability density function of the velocity component     [27].  

Most times the simulation is started from disordered configuration at different density and 

temperature. Equilibration is done to bring the molecular system to a new equilibrium state. This 

is done up to a satisfactory time where there is small oscillation of tracked properties such as 

potential energy about a steady mean value [27].   

The interatomic potential is dependent on the positions and velocities of the atoms. As shown in 

the equations in figure 4.  

Also, the kinetic energy of the molecular system can be derived from equation 14 [27]; 

    ∑
1

2
    

2
           Equation 14 

Base on the velocities of the atoms, the molecular system temperature can be obtained 

from the average of a kinetic temperature function derived from Virial theorem and equipartition 

principle for N atoms with Nc internal molecular constraints as [27, 43]; 

  
2 

 3       
 

1

 3       
∑ |  |

2   
 
  1        Equation 15 

where;   is the kinetic energy in phase function,    is the Boltzmann constant and    is the 

momentum of the particle. The pressure can also be obtained from the average of the pressure 

function [27, 43, 44]. 

                   Equation 16 

where;   is defined as the internal virial restricted for intermolecular interactions, and   is the 

potential energy in phase function.  

Virial expression can also be used to obtain the internal stress and strain tensors of 

molecular systems in atomistic simulations [30, 45], these are also based on the position and 

velocities of the atoms (Equations 17, 18).  
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1

  
[(∑   

 
      

  )  (∑            
 ) ] Equation 17 

where  0 is the un-deformed system volume and fi is the force acting on particle i. In order to 

obtain the stress tensor of the molecular structure in its static state, applied force stress term, 

(∑            
 ) in Equation 17 is omitted [30, 45]. The virial expression for the strain tensor is 

given by; 

   
1

2
   0

   1      0
 1  1]  Equation 18 

where ho, and h are the matrices formed by the column vectors defining the material system at a 

reference state and at corresponding new state. When Hooke’s law is applied on the stress and 

strain tensors, elastic compliance and stiffness matrices can be obtained for the molecular 

material configuration [30]. 

       
     

    
   Equation 19 

derivations of how the elastic constants of continuum particle can be obtained from the material 

strain tensor for either isothermal or adiabatic process can be obtained in dedicated textbooks 

[45]. The next section gives the summary of the elastic constraint matrix used for elastic stiffness 

property determinations. 

2.8 Predictive Mechanical Properties 

Computational simulation enables prediction of the mechanical stiffness properties of 

materials (bulk modulus, shear modulus and young’s modulus) using their elastic constants 

which can be determined using [45, 46]; 

    
1

 

   

      
   Equation 20 

Where: εi, εj are lattice strain components, U is potential energy, V is simulation cell volume. 

The 6×6 elastic stiffness matrix, C can be obtained from the above relation. 
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    (
 11   16
   

 61   66

)        Equation 21 

And elastic compliance matrix, S = C
-1 

can also be obtained. 

    (
 11   16
   

 61   66

)         Equation 22 

Hence the mechanical stiffness properties for the homogeneous stiffness modulus can be 

predicted following Voight, Reuss or Hill elastic stiffness relations from the elastic and 

compliance matrix coefficients as [47]: 

   
1

              2             
         Equation 23 
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          Equation 25 
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      Equation 26 
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     Equation 27 
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          Equation 28 

  
3  2 

6  2 
           Equation 29 

  2  1              Equation 30 

where; KR= Reuss bulk modulus, KV = Voight bulk modulus, KH = Hill bulk modulus,  

GR= Reuss shear modulus, GV = Voight shear modulus, GH = Hill shear modulus, E= Young’s 

Modulus,   = Poisson ratio [48] and Cij and Sij are the components of the stiffness and 

compliance matrix respectively [47, 49] . 
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2.9 Estimation of Material Property Based on Deformation and Stress-Strain Behavior 

Most of the present work in molecular dynamics modeling of mechanical properties is 

determination of stiffness modulus as discussed earlier. Material characteristics are defined by 

their stress-strain behavior under deformation loading and the elastic properties of a material 

during deformation can be obtained from the stress-strain curve.  Subjecting a material to shear, 

compressional or tensile force are ways of implementing such deformation. For material under a 

loading condition, an increase in the load results in an increase of the strain, first linearly 

following Hooke’s law in the elastic deformation region, after which a slippage, non-linear, 

plastic deformation occurs [48] that causes response that is observed in a typical stress-strain 

curve, as shown in figure 7. 

Figure 7. Typical stress-strain response 

Source: Ref [48] 

Computational material modeling of this stress-strain behavior based on material 

chemistry is still limited and has not been fully studied and understood. Recently, shear 

deformation versus strain behavior was recently investigated in our research group [50].  Other 
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recent literature had studied the unidirectional tensile, quasi-static shear deformation for 

nanoscale C-S-H Tobermorite. Molecular Dynamics modeling of the stress-strain behavior based 

on material chemistry molecular structures provides a fundamental methodology to understand 

the predicted behavior of a material solely based on its material chemistry, and provides an 

avenue to investigate the effect of the changes in the material chemistry on the mechanical 

behavior.  

Following the molecular dynamics modeling methodology established in our research 

group, the effect of material chemistry of Magnesium-modified Jennite on shear deformation of 

nanoscale traditional Jennite is investigated in the present study. In the current work, shear 

deformation is implemented by deforming the molecular structure by increasing a particular 

angle of the crystalline structure while adjusting the length of the system to guarantee that the 

volume remain constant during the deformation process.  Figure 8 shows a triclinic structure 

under shear, along the cb-plane by a gradual change in the angle-𝛼, thus subjecting the structure 

to deformation with resulting shear strain given by      𝛼  . For every increment of the 

angle-𝛼, the material experiences a shear strain ,  δ𝛼  given by Equation 31. 

𝛼i = 𝛼i-1 + δ𝛼          Equation 31  
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Figure 8. Shear deformation 

The resulting stress strain curve from the computation model can then be used to estimate and 

predict the stress-strain behavior and elastic properties of the material under deformation loading 

for all the three crystallographic planes as discussed later in chapter 4. 
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3 CHAPTER 3 

Computational Material Modeling Analysis of C-S-H Jennite 

3.1 Software Analysis Codes for Molecular Dynamics Modeling 

Different molecular dynamics modeling analysis codes have been developed and are 

available [21].  Some of which are open source codes or commercial codes.  Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) and GROningen MAchine for 

Chemical Simulations (GROMACS) are examples of open source MD modeling analysis codes. 

Accelrys Material Studio is an example of commercial analysis code [21]. In the present work, 

MD modeling computational analysis was conducted using Materials Studio. 

3.2 C-S-H Gel 

As mentioned in chapter 1, C-S-H gel is a major component in the cement paste that is 

responsible for the load bearing attributes and strength of cement. C-S-H has a complex material 

chemistry [6]. The molecular structural representations of the C-S-H gel are still inconclusive, 

hence more than one structural representations are available [7]. Some of these molecular 

representations include: 

 Wollastonite group which comprises of Foshagite (Ca4(Si3O9)(OH)2) [51],

Hillebrandite (Ca2(SiO3)(OH)2) [52], Xonotlite (Ca6Si6O17(OH)2) [53], Okenite 

([Ca8(Si6O16)(Si6O15)2(H2O)6]
4-

[ Ca2(H2O)9)
.
3H2O]) [54], and others that are

compiled by Richardson [7] 

 Tobermorite group which comprises of Clinotobermorite
c  

(Ca5Si6O17
.
5H2O),

Clinotobermorite
d  

(Ca5Si6O17
.
5H2O),   Clinotobermorite 9 A

o,c
 (Ca5Si6O16

.
(OH)2),

Clinotobermorite 9 A
o,d

 (Ca5Si6O16
.
(OH)2) [55, 56], anomalous and normal



31 

 

 

Tobermorite 11A
o
 (Ca4Si6O15

.
(OH)2

.
5H2O and Ca4.5Si6O16

.
(OH)2

.
5H2O 

respectively) [57, 58] and Tobermorite 14A
o
 [59] 

 Jennite group comprising Jennite and Metajennite (Ca9Si6O18(OH)6
.
8H2O). Most 

of the crystal structures are similar to one another than might seem apparent at 

first look, and a complete composition and crystal information for most of the C-

S-H and other related phases has been tabulated by Richardson [7].  

From the various molecular chemistry structural representations, Tobermorite 14A
o
 and 

Jennite structures are the traditionally accepted, widely used and adapted molecular structural 

representation for most C-S-H cement paste studies [4, 6, 7, 60, 61]. For this study, Jennite 

structure of the material chemistry configuration of hydrated cement C-S-H was used.  

3.2.1 Jennite. Jennite is a representative mineral form of calcium silicate hydrate (C-S-

H). It has a chemical formula of       6 1     6    2   [7, 60, 61]. It was named after 

Clarence Marvin Jenni (1896-1973) for its discovery [62]. Jennite is composed of single chains 

with repeating unit of three SiO4 (Wollastonite-type dreier single chains), ribbons of edge 

sharing CaO6 octahedral and additional CaO6 octahedral on inversion centers [60, 62]. Jennite 

has a triclinic structure (figure 9) with dimensions of a single unit cell shown in table 3 [60]. The 

MD modeling analysis employed in the present study is based on the material chemistry structure 

configuration of C-S-H Jennite. 

Table 3 

Cell Parameters of a Single Unit Cell Jennite 

a b c α β γ 

10.576A
0

 7.265A
0

 10.931A
0

 101.300
0

 96.980
0

 109.650
0
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Figure 9. Jennite structure 

The MD modeling analysis methodology employed in the present study with Accelrys Materials 

Studio is briefly presented next. 

3.3 Molecular Dynamics Modeling Process 

 To initiate a MD simulation, the initial positions of the atoms forming the molecular 

structure is subjected to energy minimization and geometric optimization using Material Studio. 

The minimal energy configuration is then subjected to thermodynamic pressure and temperature 

constrains followed by a dynamic analysis (time evolution of the system). The flow diagram of 

the general MD simulation scheme is presented in figure 10.  
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Figure 10. MD material modeling process 

The present study focuses on the understanding the effect of material chemistry changes 

in C-S-H Jennite via MD analysis and development of relevant MD based material modeling 

methodology. The exchange of Calcium ions with Magnesium as discussed earlier was achieved 

in MD modeling with Accelrys Materials Studio as follows. 

3.3.1 Molecular Structural Magnesium Exchange Approach. The traditional Jennite 

unit cell molecular structure was obtained from the American Mineralogist Crystal Structure 

Database [63]. This initial molecular structure configuration was loaded into Material Studio and 

was labeled as J0. For supercell structures to be made in Material Studio, a P1 space group must 

be used to impose the symmetry and was followed.  The C-S-H Jennite unit cell structure 
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contains 9 calcium ions. The Magnesium-modified C-S-H Jennite molecular structure was 

obtained by successively replacing the calcium atoms by magnesium atoms. The Magnesium–

modified molecular structures were then employed in the present work to understand the 

influence of the ion exchange.  

A systematic study of replacing the different number of Magnesium ions in place of 

Calcium ions was conducted in the present work starting with the replacement of 2 Magnesium 

ions. Manzano et al, had established that there are no significant preferential tendencies about 

where the Ca ions are replaced by Mg ions, i.e. a random substitution pattern in the MD model 

accounts for the molecular structures expected in physical experimentation [2]. In the first 

modified C-S-H Jennite configuration with Magnesium atoms, two calcium ions were randomly 

replaced with magnesium ions, creating a modified Jennite structure, J1. The two Magnesium 

ions configuration resulted in a 14.8% Mg/(Mg+Ca) ratio. Additional Magnesium modified 

structures were created by the exchange of 4 – 9 calcium ions resulting in different magnesium 

concentrations by weight. The various Magnesium modified molecular structural configurations 

of C-S-H Jennite considered for the present study are shown in table 4.  

Table 4 

Traditional and Modified Jennite Structures (% Weight) 

Jennite n-Ca n-Mg n-H n-O n-Si Atomic Mass %Weight =   

     
     

J0 9 0 20 33 6 1077.35 0.0 

J1 7 2 20 33 6 1045.80 14.8 

J2 5 4 20 33 6 1014.25 32.7 
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Table 4 

Cont. 

J3 3 6 20 33 6 982.71 54.8 

J4 1 8 20 33 6 951.16 82.9 

J5 0 9 20 33 6 935.39 100.0 

Molecular Mass: Ca = 40.08, Mg = 24.31, H = 1.01, O = 16.00, Si = 28.09 

 

Figure 11 shows the traditional and modified structures of the single unit cell of C-S-H Jennite 

with different color representations to distinguish the atoms. 

 

Figure 11.  Traditional and modified Jennite structures. 

Traditional Jennite 
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A systematic MD analysis study of these different molecular structures was conducted. As 

discussed earlier, several computational MD simulation parameters were determined for this 

material system prior to full MD analysis. These different MD parameters that were investigated 

and established is discussed next. 

3.4 Parameter Determination Analysis 

 There are several parameters that need to be established for specific material system 

when using MD simulations. Further, in Material Studio, the configurations for the specific 

material system need be established. Hence several preliminary MD simulation analysis runs 

were used to test and obtain the appropriate dynamics analysis time, appropriate pressure and 

temperature controls to be used as well as the appropriate material system size. 

3.4.1 Dynamic time average. As discussed in the background sections, MD simulations 

are based on time-averaged values of the computed thermodynamic and physical properties of 

the molecular system. The longer the time dynamic duration of a MD simulation, the better the 

time average would be. However, in order to make effective use of the available and limited 

computational resources, an appropriate duration of the simulation must be established.   

3.4.1.1 Determination of dynamic time. The dynamic simulation time was chosen based 

on the dynamics time duration of 100 ps, 200 ps and 300 ps. In order to choose an appropriate 

dynamic time for the C-S-H Jennite material system, the 1x1x1 unit cell of the traditional Jennite 

molecular structure was subjected to energy relaxation using COMPASS forcefield and NVT 

ensemble using different temperature controls. The dynamics time was obtained based on the 

convergence of the energy.  

Figure 12, shows the energy fluctuation during the dynamics analysis for these different 

dynamic times durations with Nosé thermostat. As shown in figure 12, there was a good 



37 

 

 

convergence in the energy values for all these three dynamic durations. Figures 12 and 13 

(simulations run using Andersen and Velocity Scale thermostat) also showed good convergence 

for all the three transient dynamic analysis durations. However, with Berendsen thermostat as 

shown in figure 14, a longer dynamic time was required for the energy convergence. Based on 

the above simulation results, in other to provide a good accuracy and computational efficiency, 

the dynamic duration of 200 ps was chosen for all the full analysis studies. In the case of 

Magnesium modified Jennite, the systematic study of the dynamics time duration was performed 

with Universal Force Field and was found to show similar behavior as in the case of traditional 

C-S-H Jennite. See Appendix A1 for the NVT dynamics for the data on 54.8% Mg modified 

Jennite.  

 

 

Figure 12. Total energy versus simulation time - Nosé thermostat 
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Figure 13.Total energy versus simulation time - Andersen thermostat 

 

 

Figure 14.Total energy versus simulation time - Velocity Scale thermostat 
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Figure 15.Total energy versus simulation time – Berendsen thermostat 

3.4.2 Thermodynamic temperature and pressure control. The thermodynamic 

parameter of temperature and pressure in MD simulations is based on kinetic energy of the atom 

configurations. A stable temperature control is obtained by different computational temperature 

control methods. A choice needs to be made from the various temperature and pressure control 

algorithms that was discussed in section 2.3.  In order to do this, MD system equilibration using 

NVT and NPT ensembles were used.  

3.4.2.1 Determination of temperature control method. To determine the temperature 

control algorithm to be used, the NVT dynamic runs discussed earlier (figures 12 to 15) were 

used. From these figures, the dynamic energy fluctuations in Nosé thermostat tends to be smooth 

and less noisy than the Andersen and Velocity Scale thermostat. The Berendsen result showed a 

larger fluctuation and is noisy, and was not selected. 
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3.4.2.2 Determination of dynamic pressure control method. The already established 

dynamic time of 200ps and Nosé thermostat were used to determine the pressure control method 

to use. An NPT equilibration dynamics based on a single unit cell traditional Jennite, using 

COMPASS forcefield was conducted with different pressure control algorithms. The results are 

shown in the figures 16 -18.   

 

Figure 16. Total energy versus simulation time - Parinelo barostat 

 

It is seen that using the Parinello barostat provides a smoother and less noisy total energy 

profile during pressure equilibration than those from the Andersen and Berendsen barostat. 
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Figure 17. Total energy versus simulation time – Andersen barostat 

 

 

Figure 18. Total energy versus simulation time - Berendsen barostat 
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3.4.3 Material system size. The MD simulation uses periodic boundary conditions in 

order to minimize the boundary effects on boundary atoms, and simulate a larger material 

configuration. However, a critical system size that shows a convergence of the physical 

properties should be established for a given molecular system. In the present study, we seek a 

material system size that gives a good convergence on elastic stiffness modulus and total 

energies as the material system size increases. The appropriate cell size was chosen from the 

following possibilities using the MD simulations conducted for these sizes: 1 unit cell (1x1x1), 8 

unit cells (2x2x2), 27 unit cells (3x3x3), 64 unit cells (4x4x4), and 125 unit cells (5x5x5).    

3.4.3.1 Determination of material system size. In addition to a single unit cell 

configuration, 8units, 27 units, 64 units and 125 units supercells were created from single unit 

cell traditional Jennite and one of the modified Jennite (54.8%Mg) in the present work. Figure 

19 shows the pictures of 1, 8 and 64 unit cells of 54.8% modified Jennite structure. 

 

Figure 19. Material system sizes, 1, 8 and 64 unit cells of a Mg modified Jennite 

All these different configurations for both traditional C-S-H Jennite and Magnesium 

modified C-S-H Jennite were employed for the MD analysis. The time averaged total energies 

64uc 8uc 1uc 
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and the elastic moduli obtained were compared. Figures 20 and 21 show that there is a 

convergence of the average total energies per Mol of the structure as the size increases.   

  

 

Figure 20. Normalized average total energy for traditional C-S-H structures: 1, 8, 27, 64, 125 

unit cells 

 

Figure 21. Normalized average total energy for 55%Mg modified structures: 1, 8, 27, 64, 125 

unit cells 
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Likewise the elastic stiffness modulus, determined using the Hill average, shows that as 

the size of the cell increases the moduli converges for both traditional and modified Jennite. See 

figures 22 and 23. 

 

Figure 22. Elastic stiffness modulus (Hill average) for traditional C-S-H structures: 1, 8, 27, 64 

and 125 unit cells. 

 

Figure 23. Elastic stiffness modulus (Hill average) for 55%Mg Modified C-S-H structures: 1, 8, 

27 and 64 unit cells 
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From figures 20-23, the system size of 64 unit cells was chosen as the size of the material 

molecular structure configuration to work with in future MD analysis simulations for the 

material modeling. This material system size showed good convergence and is within the 

computational capacity available to us in the present time. This molecular system size will be 

sufficient to handle the dynamics analysis within reasonable computational time, while giving 

reliable results to understand the effect of magnesium ion exchanges. 

3.4.4 Influence of forcefield. As discussed earlier on the background of MD, the choice 

of forcefield plays an important role in the fidelity of results obtained from MD simulations. 

Hence in order to choose between the UNIVERSAL and COMPASS forcefields, a NVT 

dynamic simulation was performed on two of modified and traditional Jennite structures using 

the 64 unit cell size, Nosé thermostat and 200ps dynamics analysis time, results obtained is 

shown in figure 24. 

 

Figure 24. Total energy profile for 64 unit cell traditional and modified Jennite (55%Mg) using 

COMPASS and universal forcefields. 
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From figure 24, the values of the total energy for the traditional Jennite and the 55% 

modified Jennite when Universal forcefield was used is higher than the values obtained when 

COMPASS forcefield was used. Other modified structures were also studied using the same MD 

simulation analysis with both forcefields. Similar result is obtained when 33% modified Jennite 

(figure 25) and 83% modified Jennite (figure 26) were used.  

 

Figure 25. Total energy profile for 64 unit cell traditional and modified Jennite (33%Mg) using 

COMPASS and UNIVERSAL forcefields. 

In  all the cases, it was also observed that the COMPASS forcefield profile appears 

smoother with less noise fluctuations when both forcefield were plotted on the same scales 

figures 24-26. Based on these, COMPASS forcefield was chosen and used in the material 

property determinations as discussed in Chapter 4.  
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Figure 26. Total energy profile for 64 unit cell traditional and modified Jennite (83%Mg) using 

COMPASS and universal forcefields. 

3.4.5 MD parameters summary. Following the above discussions, in summary, the 

parameters used for the mechanical property determination and shear deformation studies to 

understand the influence of Magnesium ion exchanges in the current work are;  

• Dynamic time: 200 ps  

• Thermostat: Nosé 

• Barostat: Parinello  

• Cell size: 64 unit cell 

• Forcefield: COMPASS  
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4 CHAPTER 4 

Results and Discussions 

The focus of the present work is to understand the effect of magnesium ion exchange in 

traditionally calcium based C-S-H on mechanical stiffness properties and the shear deformation 

behavior following the material modeling methodology outlined in chapter 2. These are now 

presented and discussed in this chapter.  

4.1 Elastic Stiffness Modulus 

 The MD modeling analysis parameters obtained and discussed in chapter 3 were used to 

investigate the influence of the Magnesium inclusion and ion exchange using the 64 unit cell 

structure of C-S-H Jennite structure at a temperature of 298K. The elastic modulus, mechanical 

properties for the traditional calcium based and the various magnesium based molecular 

configurations of C-S-H Jennite were obtained. Figure 27 shows the initial and final molecular 

structures - after dynamics simulations on the systems.  

 

Figure 27. Initial and final Jennite structures – Traditional and Mg Ion Exchanged C-S-H  

J0: Traditional Jennite (0%Mg) 

J1: Modified Jennite (33%Mg) 

J2: Modified Jennite (33%Mg) 

J3: Modified Jennite (55%Mg) 

J4: Modified Jennite (83%Mg) 

J5: Modified Jennite (100%Mg) 
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Figure 28 shows the average total energy for various magnesium modified C-S-H structures as a 

function of various magnesium percentages in the modified C-S-H structures.  

 

Figure 28. Change in total energy per mole for various Mg ion exchange percentages 

The elastic moduli was determined using Hill’s averages for the traditional and 

Magnesium ion exchanged 64 unit cell C-S-H Jennite structures. Figure 29 shows the variation 

in the predicted elastic moduli with COMPASS forcefield following the MD based material 

modeling methodology.  

Latter studies, involving Calcium ion replacement of all 1 to 9 calcium atoms was also 

performed to obtain mechanical stiffness properties for other calcium replacement percentages of 

7%, 23%, 43% , 68%Mg, and 100% Mg. In addition to this; statistical analysis with 95% 

confidence level was performed to obtain the number of different variations of each modified 

structures (with respect to location of the calcium ion replaced) that is required to have a 95% 

confidence level, and was analyzed. Appendix A2 shows the table of all variants obtained. 
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Figure 29.  Predicted elastic modulus (Hill Average) for various Mg ion exchange percentages of 

64 unit cell C-S-H Jennite structures-COMPASS forcefield. 

Figure 30 shows the mean values of the normalized average total energies for all the Mg 

ion exchange percentages in C-S-H Jennite structure. The errors associated with the energies are 

very small and not visible form figure 30. Appendix A3 show the table of the result of the total 

energies and the corresponding error associated with each Mg modified structure following the 

statistical analysis of the atom locations employed for the magnesium exchange. 

In the same manner, the various variants of the Mg modified Jennite were also used to 

obtain the elastic stiffness modulus, and figure 31 shows the mean values of the elastic modulus 

versus the %Mg. 

 



51 

 

 

 

Figure 30. Total energy per mole for various Mg ion exchange percentages. 

 

Figure 31. Predicted elastic modulus (Hill Average) for various Mg ion exchange with the 

variants and associated errors-COMPASS forcefield. 

The variation in the predicted elastic modulus values presented in figure 29 shows a sharp 

increase in the elastic modulus of Jennite from the traditional for 33% magnesium ion exchange, 
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followed by reduction in the elastic modulus as the percentage of the magnesium increases 

further. 

The values of the predicted mechanical and other material properties depend on the 

forcefield that defines the energy of the molecular level interactions. A slightly different result 

with higher values was observed when universal forcefield was used to determine the elastic 

moduli. Figure 32 shows the variation in the predicted modified elastic modulus for different 

magnesium ion exchange percentages using universal forcefield. 

 

Figure 32. Predicted elastic modulus (Hill Average) for various Mg ion exchange percentages of 

64 unit cell C-S-H Jennite structures-Universal forcefield. 

The corresponding predicted bulk and shear modulus and the as well as the Poisson’s 

ration were obtained and are presented in figures 33-35 below. Negative values obtained for the 

predicted bulk moduli and Poisson’s ratios are based on the mechanics based theories of defined 

effective bulk modulus from compliance matrix as discussed in Chapter 2 and needs further 

investigation.    
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Figure 33. Predicted shear modulus (Hill Average) variations for various magnesium ion 

exchange percentages studied. 

 

Figure 34. Predicted bulk modulus (Hill Average) variations for various magnesium ion 

exchange percentages studied. 
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Figure 35. Predicted Poisson ratio (Hill Average) variations for various Magnesium ion 

exchange percentage studied. 

4.1.1 Mechanical properties summary. Elastic modulus investigation showed that 

material chemistry does affect structural material stiffness modulus properties, and varies as the 

amount of Mg inclusion increases. These predicted material properties are based on MD 

simulations and material chemistry level modeling and thus provides an effective computational 

methodology to understand the expected variations due to material chemistry changes such as 

due to Magnesium ion exchange of C-S-H Jennite. Further  investigation is needed to explain 

some of the non-physical computational modeling values noted in the predicted values of bulk 

modulus and Poisson’s ratio that are based on mechanics based approximations following the 

compliance matrix definitions in MD simulation analysis. 

The prior MD material modeling predictions are based on the time averaged values of the 

modulus values from derivatives of energy as defined in chapter 2 for effective values of 

material stiffness modulus. Engineering scale properties of interest is the stress-strain 
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deformation behavior and effective prediction of estimated stress-strain behavior due to material 

chemistry changes in the systems, such as those discussed due to Magnesium exchange in C-S-H 

Jennite. In the present work, the influence of magnesium exchange on shear deformation of C-S-

H Jennite molecular structure is studied. Details of the shear deformation with emphasis on the 

Magnesium ion exchanged C-S-H Jennite is presented next. 

4.2 Shear Deformation 

 Shear deformation was implemented by imposing a constant volume angular deformation 

change on each crystallographic plane of the triclinic C-S-H Jennite structure and the 

Magnesium modified systems. In the shear deformation process, the C-S-H molecular structures 

were subjected first to NPT conditions. Then, they were subjected to an incremental angular 

change making sure the volume remains constant defining the shear deformation process as 

outlined in chapter 2. The resulting structure was relaxed after which an NVT dynamic analysis 

for each of the deformed structural configuration was performed to obtain the corresponding 

stress value following the Virial definition of shear stress. The shear deformation process was 

applied to all three triclinic faces of C-S-H Jennite as shown in figure 36.   
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Figure 36. Shear deformation modeling along three crystallographic planes of triclinic C-S-H 

structure. 

The schematics presented Figure 37 shows the procedure of the MD modeling analysis 

for the shear deformation. To define the complete shear deformation process, the original and 

quasi-static deformation of the triclinic structure was performed for 75 different sheared 

configurations. Each shear deformed configuration provides the corresponding shear stress, 

associated strain for each of the deformed configuration due to shearing along the three surfaces 

of the triclinic traditional and modified C-S-H structures. 

 

Shear deformation (ba) 
Increase γ -angle 

Elongation of a-side 
Shear deformation (ac) 

Increase β-angle 

Elongation of a-side 
Shear deformation (cb) 

Increase 𝛼�-angle 

Elongation of c-side 
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Figure 37. MD implementation of shear deformation. Showing an NPT relaxation of the initial 

structure, followed by an incremental angular change - the deformation step, corresponding NVT 

equilibration of the deformed structure to obtained the shear stress of the deformed structure and 

continuation of the iterative process. 

In the present work, two of the Magnesium ion exchange modified structures were 

analyzed (33%Mg and 83%Mg) in addition to the traditional Jennite which had been obtained 

earlier in our research group [50]. Shear stress-strain deformation on the three shearing planes 

cb, ba and ac of the triclinic C-S-H system were studied and compared.  
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4.2.1 Shear deformation, cb-plane. Figures 38-40 shows the MD modeling predicted 

shear stress-strain curves for the shear deformation along the cb-plane for the traditional C-S-H, 

33% magnesium modified C-S-H and 83% magnesium modified C-S-H Jennite structures 

respectively. 

 

  

Figure 38. Predicted Shear Stress-strain deformation behavior for shearing along the cb-plane for 

traditional Jennite. Ref [50] 

Employing the predicted stress-strain deformation behavior, shear modulus was obtained, 

as the slope of the linear region of the shear stress – strain deformation behavior shown in figure 

38-40. The ultimate shear stress was defined as the maximum stress observed within the shear 

strain of the shearing deformation studied. 

Traditional C-S-H, (0%Mg) 
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Figure 39 . Predicted Shear Stress-strain deformation behavior for shearing along the cb-plane 

for 33% magnesium modified Jennite 

 

Figure 40. Predicted Shear Stress-strain deformation behavior for shearing along the cb-plane for 

83% magnesium modified Jennite 

Modified C-S-H, (33%Mg) 

Modified C-S-H, (83%Mg) 
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The MD material modeling predicted values for shear modulus, strength and ultimate 

shear stress is presented in table 5. These engineering material properties for traditional C-S-H 

and magnesium modified Jennite have been solely obtained from MD modeling analysis of the 

material chemistry structure and provides an effective material modeling methodology to 

understand the estimated variations in the stress – strain deformation behavior due to material 

chemistry changes.  

Table 5 

Shear Modulus, Strength and Maximum Shear Deformation of cb-plane 

Plane- CB 0%Mg 33%Mg 83%Mg 

Shear Modulus (GPa)  11.0±2.4  12.88± 1.21  18.19 ± 1.75  

Shear Strength (GPa)  0.5193  0.8014  1.038  

Ultimate Stress (GPa)  1.1  1.275  1.48  

 

The plot of the shear moduli and the ultimate shear stress is also presented in figures 41 

and 42. It is observed that as the percentage of Magnesium increases, these two predicted 

material properties also show an increase for shear deformation of cb-plane. 
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Figure 41. Shear Modulus variations due to Mg Ion Exchange, cb-plane 

 

 

Figure 42. Ultimate shear stress variations due to Mg Ion Exchange, cb-plane 



62 

 

 

Shear deformation of the traditional and Magnesium modified C-S-H Jennite along other 

crystallographic planes is presented next. 

4.2.2 Shear deformation, ba-plane. Shear stress – strain deformation behavior due to 

shearing along the crystallographic ba-plane is presented in figures 43-45 for traditional and 

Magnesium modified C-S-H. 

 

 

Figure 43. Predicted Shear Stress-strain deformation behavior for shearing along the ba-plane 

for traditional Jennite. Ref [50] 

 

 

 

 

 

Traditional C-S-H 
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Figure 44. Predicted Shear Stress-strain deformation behavior for shearing along the ba-plane 

for 33% magnesium modified Jennite 

 

 

Figure 45. Predicted Shear Stress-strain deformation behavior for shearing along the ba-plane 

for 83% magnesium modified Jennite 

Modified C-S-H, (33%Mg) 

Modified C-S-H, (83%Mg) 
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The corresponding shear moduli and ultimate shear stress obtained for shear deformation along 

ba-plane is presented in figures 46 and 47. 

 

Figure 46. Shear Modulus variations due to Mg Ion Exchange, ba-plane 

 

Figure 47. Ultimate shear stress variations due to Mg Ion Exchange, ba-plane 
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4.2.3 Shear deformation, ac-plane. Shear stress – strain deformation behavior due to 

shearing along the crystallographic ac-plane is presented in figures 48-50 for traditional and 

Magnesium modified C-S-H. 

 

 

Figure 48. Predicted Shear Stress-strain deformation behavior for shearing along the ac-plane for 

traditional Jennite. Ref [50] 

 

Traditional C-S-H, (0%Mg) 
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Figure 49. Predicted Shear Stress-strain deformation behavior for shearing along the ac-plane for 

33% magnesium modified Jennite. 

 

 

Figure 50. Predicted Shear Stress-strain deformation behavior for shearing along the ac-plane for 

83% magnesium modified Jennite 

Modified C-S-H, (33%Mg) 

Modified C-S-H, (83%Mg) 
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The corresponding shear moduli and ultimate shear stress obtained for shear deformation stress – 

strain curves along ac-plane is presented in figures 51 and 52. 

 

Figure 51. Shear Modulus variations due to Mg Ion Exchange, ac-plane 

 

Figure 52. Ultimate shear stress variations due to Mg Ion Exchange, ac-plane 
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4.2.4 Shear deformation analysis results summary. The results discussed earlier from MD 

material modeling methodology for shear deformation along the three crystallographic planes of 

triclinic C-S-H structure show the following changes in the predicted material properties. 

• Predicted shear modulus for shear deformation along all three crystallographic planes  

increases as the %Mg increases 

• The predicted ultimate shear strength before material failure increases as the %Mg 

increases 

Table 6 summarizes the predicted shear modulus values for shear deformation along the three 

crystallographic planes of traditional and Magnesium ion exchange modified C-S-H 

configuration studied. The corresponding ultimate shear strength obtained from the shear 

deformation behavior along the three crystallographic planes of triclinic C-S-H molecular system 

is presented in Table 7. 

Table 6 

Predicted Shear Modulus (GPa) all planes 

Shear Modulus (GPa) 

% Mg  0%  33%  83%  

ac-Plane 9.7±1.1 15.66±1.9 16.91±0.7 

cb-Plane 11.0±2.4 12.88±1.2 18.19±1.75  

ba-Plane 13.1±1.0 18.38±0.7  27.55±3.6   
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Table 7 

Ultimate Shear Stress (GPa) all planes 

Ultimate Shear Stress (GPa) 

% Mg  0%  33%  83%  

Plane - ac  1.2 1.302 1.287 

Plane - cb  1.1 1.275 1.48 

Plane - ba  1.3 1.536 2.038 

 

Next section discusses a closer look at the shear deformation process and the atom by 

atom deformation study. The traditional Jennite and two modified Jennite structure were 

analyzed below and is required to understand the shear deformation and failure captured in the 

stress-strain curves. 

4.3 Shear Deformation Atom Trajectory Study 

 The shear deformation response was studied by tracking the positions of the atoms as the 

deformation proceeds and to observe the movement of each atom as the stress is applied to the 

structure. In order to do this, the atoms in the initial structure were grouped into 10 different 

sections or layers. C-S-H molecular structure shows calcium oxide layers with free water and 

silica chains interspersed between these layers. Each group/section is designated as layers 1 to 

10, with the topmost layer being the tenth layer. The location of CaO molecules was used to 

obtain the centroid of the associated CaO (Ca) molecules. The locations of the centroids of the 

CaO atoms in a single layer were consequently used to determine the centroid of each layer. In 

the present analysis, the centroid is independent of the atomic mass of the constituent atoms. So 
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that when Ca is replaced with Mg, the effect of mass is not taken into account. The displacement 

each centroid is tracked, as the material is deformed. The actual displacement of the centroid 

versus strain curves was obtained for each layer. Also a hypothetical linear elastic behavior 

curve, which assumes that the material continues to behave elastically throughout the strain 

region was also plotted for each layers. This was done for the traditional Jennite and the 33% and 

83% magnesium modified Jennite for all the crystallographic planes. The strain region on the 

displacement-strain curves where there is non-linear movement of the layer centroid was 

correlated to the strain region when non-linear deformation starts to manifest in their respective 

stress-strain curves. The results of ba-planes is compared and presented next. 

4.3.1 Shear deformation, atom trajectory study, ba-plane. The movement of the 

centroid of each layer along the x-axis as the strain is increased is presented. Figures 53 and 54 

show the displacement-strain curves along the ba-plane, for layers 3-6 and layers 7-10 

respectively for the traditional Jennite. Figures 56 and 57 shows the displacement-strain curves 

for 33 % modified Jennite along the ba-plane. Also, Figures 59 and 60 show those for the 83% 

modified Jennite, along the ba-plane. The figures (53 and 54) also show the hypothetical 

continued linear displacement behavior of each material with strain as they undergo shear 

deformation. The hypothetical curve assumes that the material behaves linearly throughout the 

strain region. The actual/observed behavior is different from the hypothetical behavior, the 

deformations in most cases follow linear deformation but as the strain level increases, they began 

to exhibit deviation from the linear behavior. The strain values when there is a significant change 

in linear to non-linear behavior, depicted by either the change in slope or deviation from the 

hypothetical curve is observed and compared with the strain values at highest stress in the stress-

strain curves.  
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Figure 53. Atomic Centroid Displacement-Strain Curves for Layers 3-6 along x-axis for 

Traditional Jennite when sheared along ba-plane. 

From Figures 53 and 54, and as expected, the first few bottom layers (3-5) appear to 

move only slightly along the x-axis compared to the upper layers (7-9) for all the Jennite types. 

The atomic centroid movement of the first four layers for all the Jennite appears to move slightly 

less than the centroids of the topmost six layers.  
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Figure 54. Atomic Centroid Displacement-Strain Curves for Layers 7-10 along x-axis for 

Traditional Jennite when sheared along ba-plane 

The expanded inset in the figures shows vertical lines drawn through the location where 

the non-linear behavior is found. This is found to be strain of about 0.04 for layer-3. The strain 

values for layers 4-6 in Figure 53 are 0.05, 0.055, and 0.075, while those for layers 7-10 in 

Figure 54 are: 0.065, 0.068, 0.077 and 0.07. From the stress-strain curve of figure 55, the 

traditional Jennite experiences the highest stress and transition to non-linear behavior within the 

strain range of 0.04 to about 0.076, this values corresponds to the strain region in the 

displacement-strain curves (Figures 53 and 54) where non-linear displacement of the atom is 

found.  
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Figure 55. Stress-Strain Curve for Traditional Jennite when sheared along the ba-Plane 

This displacement of the atom hence gives the region where the material starts to yield 

and shows a linear to non-linear transition due to the applied deformation.  

Similarly for the 33%Mg modified Jennite, the non-linear deformation starts occurring at 

a strain between (0.06, 0.055, 0.048, 0.074, 0.07, 0.047, 0.056 and 0.068) for layers 3-10 

respectively as depicted in Figures 56 and 57 below.  
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Figure 56. Atomic Centroid Displacement-Strain Curves for Layers 3-6 along x-axis for 33% 

Magnesium Modified Jennite when sheared along ba-plane 

 

The strain values from the displacement-strain curves above were also found to 

correspond to the strain at the yield region in the stress–strain curve (0.04-0.076) for the ba-plane 

of the 33% modified Jennite as shown in Figure 58. 
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Figure 57. Atomic Centroid Displacement-Strain Curves for Layers 7-10 along x-axis for 33% 

Magnesium Modified Jennite when sheared along ba-plane 
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Figure 58. Stress-Strain Curve for 33% Mg Modified Jennite when sheared along the ba-Plane 

 Lastly, 83% traditional Jennite also experience a similar strain values, first there was 

slight non-linear deformation around values of 0.035-0.05 in most of the layers. However there 

was a return to linearity before a final non-linear deformation at a later strain values of; 0.055, 

0.06, 0.057, 0.07, 0.064, 0.068, 0.07 and 0.08 for layers 3 -10 respectively (Figures 59 and 60). 

The same observation can be noticed in the stress-strain curve as depicted in Figure 61.  
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Figure 59. Atomic Centroid Displacement-Strain Curves for Layers 3-6 along x-axis for 83% 

Magnesium Modified Jennite when sheared along ba-plane 
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Figure 60. Atomic Centroid Displacement-Strain Curves for Layers 7-10 along x-axis for 83% 

Magnesium Modified Jennite when sheared along ba-plane 
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Figure 61. Stress-Strain Curve for 83% Mg Modified Jennite when sheared along the ba-Plane 

In general, the strain values in the stress strain curve falls between 0.04-0.076, which is 

similar to those from the displacement strain curve for all the layers considered. From the 

observations, it can be seen that the movement of the atoms can give information about the strain 

region where the material starts behaving in-elastically and a transition from linear to non-linear 

behavior occurs.  

The same analyses were done for cb-plane and ac-plane, the displacement-strain curves 

for layers 3-10 for 33% Mg modified Jennite for cb-plane and 83% Mg modified Jennite for ac-

plane can be found in Appendices B1 and B2 respectively.  
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5 CHAPTER 5 

Discussion and Future Research 

5.1 Discussion of Results 

 From the results, we have been able to establish that material chemistry of traditional C-

S-H Jennite will be affected by ionic replacement of the Ca ions by Mg ions. By including 

Magnesium in increasing proportion in the C-S-H Jennite, the total energy of the structure was 

observed to decrease with the increase in the amount of Magnesium added. By carrying out the 

computational mechanical stiffness property evaluation on the structures, the elastic modulus of 

the system structures were determined. It was found to decrease as the amount of Magnesium in 

the molecular structure increased. COMPASS force field and UNIVERSAL force field tends to 

describe the same behavior of the total energy of the molecular system, although the values 

obtained using UNIVERSAL force field were found to be higher. It should be noted that 

experimental determination of these elastic properties is a complex task. What we have been able 

to establish here is that material chemistry play important role in the elastic stiffness properties 

of the C-S-H Jennite structure. The trends have been established by using the two force fields, 

but there is a need to further improve the fidelity of the elastic stiffness modulus with further 

studies and comparative verification and validations.  

Results obtained from the study of the influence of Magnesium on shear deformation, 

shows that by deforming the traditional and modified C-S-H Jennite, the shear modulus obtained 

from the stress-strain curves shows an increasing trend as the amount of Magnesium in the 

system increases. We refer to the peak stress value of the stress-stress curves as the ultimate 

shear stress that can be absorbed by the materials within 0.025 strain, and any further 

deformation results in failure. The ultimate shear stress values were seen to increase as the 
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amount of Magnesium in the systems increases. We can also establish here that material 

chemistry definitely affects the engineering scale properties of the cement structure. The present 

results are based on an assuming that structure of the modified C-S-H Jennite remains triclinic , 

even though Magnesium ion are smaller than Calcium ions. Present study clearly demonstrated 

that computational material modeling following molecular dynamics analysis methodology is an 

effective way to predict and understand the effect of material chemistry, and additive changes on 

the stiffness and deformation characteristics in cementitious materials. Such methodology is also 

extendable to others. 

5.2 Recommendations for Future Work 

Future research should validate the results obtained in the present work by using the other 

mineral forms of C-S-H Jennite such as Tobermorite 14A
0
. It is also recommended that if 

computational capacities allows, a larger system size should be used to validate results. Since all 

results were obtained with material chemistry structure and computational molecular dynamics, 

future attempts should investigate potential experimental scale relevant validations using nano-

indentation and investigate potential methods for low length scale characterization for further 

validations and comparisons. 
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Appendix A1 

Energy versus Time for NVT dynamics of 1 unit cell modified Jennite (54.8%Mg) using 

UNIVERSAL forcefield. 

 
 

 
 

 

 

 

 

 

 

Nose Thermostat 

Andersen Thermostat 
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Berendsen Thermostat 

Velocity Scale Thermostat 
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Appendix A2 

Spatial location of Calcium atom in Jennite. 

Ca position identity 

S/N: Spatial Location of 

Ca 

X Y Z 

1 -0.373 2.779 0.227 

2 2.621 5.851 0.525 

3 3.500 0.409 0.551 

4 9.118 0.423 -0.024 

5 3.965 5.001 5.517 

6 8.446 5.099 5.931 

7 7.310 5.319 6.677 

8 0.779 3.222 8.302 

9 3.423 0.852 8.955 

 

 

 

 

 

 

\ 
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The number of sampled variation based on 95% confidence level  

%Mg No of Mg No of Ca No of possibilities Sampled size 

0% 0 9 
9
C0=1 1 

7.08% 1 8 
9
C1=9 4 

14.80% 2 7 
9
C2 = 36 5 

23.27% 3 6 
9
C3=84 6 

32.67% 4 5 
9
C4 = 126 6 

43.12% 5 4 
9
C5=126 6 

54.81% 6 3 
9
C6 = 84 6 

67.97% 7 2 
9
C7=36 5 

82.80% 8 1 
9
C8=9 4 

100% 9 0 
9
C9=1 1 

   

      1   

  

1  
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Appendix A3 

The Magnesium modified Jennite, the variants and the mean averages of Total Energies and 

Elastic stiffness modulus are presented. 

J-14.8%Mg -- 64unit cell structure 

Variant Name Ca replaced Average TE (Kcal/Mol) E(GPa) 

J15-i 1,5 -4212.42 6.504627 

J15-j 2,6 -4211.7 7.616457 

J15-k 3,7 -4207.3 6.445543 

J15-l 4,8 -4209.48 6.984129 

J15-m 1,9 -4211.5 5.609928 

 AVERAGE = -4210.48 6.632137 

 STD DEV = 1.867129 0.66163 

 

J-(23.27%Mg) -- 64 unit cell structure 

Variant Name Ca replaced Average TE (Kcal/Mol) 

J23-i 1,2,4 -4250.69 

J23-j 1,2,3 -4247.81 

J23-k 4,6,9 -4251.55 

J23-l 3,8,9 -4243.57 

J23-m 4,6,7 -4241.46 

J23-n 1,5,8 -4245.6 

J23-previous 2,3,7 -4246.56 

 

AVERAGE = -4246.75 

 

STD DEV = 3.363506 
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J-(32.7%Mg) -- 64 unit cell structure 

Variant Name Ca replaced Average TE (Kcal/Mol) E(GPa) 

J32-i 1,2,8,6 -4284.06 40.43001 

J32-j 3,5,7,9 -4274.06 45.98485 

J32-k 1,2,4,9 -4278.11 46.72645 

J32-l 3,5,4,8 -4274.56 38.22898 

J32-m 6,7,1,5 -4280.47 41.11704 

 AVERAGE = -4278.25 42.49747 

 STD DEV = 3.737928 3.299879 

 

 

 

J-(43.21%Mg) -- 64 unit cell structure 

Variant Name Ca replaced Average TE (Kcal/Mol) E(GPa) 

J43-i 1,2,3,4,5 -4304.306205   

J43-j 1,3,6,8,9 -4292.287899   

J43-k 2,6,7,8,9 -4301.330568   

J43-l 1,4,5,6,7 -4300.503784   

J43-m 2,3,5,6,8 -4303.081435   

J43-n 1,3,4,7,9 -4302.097487 19.60885334 

J43-Previous 2,4,5,6,8 -4304.86911 34.53704037 

 AVERAGE = -4301.210927 27.07294686 

 STD DEV = 3.916679392 7.464093511 
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J-(54.8%Mg) -- 64 unit cell structure 

Variant Name Ca replaced Average TE(Kcal/Mol) E(GPa) 

J55-i 1,2,4,7,8,9 -4328.670814 18.21657314 

J55-j 1,2,4,6,8,9 -4327.079064 19.86393489 

J55-k 2,3,5,6,7,9 -4318.831345 19.43865362 

J55-l 1,2,6,7,8,9 -4329.254849 13.69626296 

J55-m 1,3,4,5,7,8 -4327.839037 17.24501927 

J55-n 1,2,4,6,7,9 -4328.162613 24.59421684 

 AVERAGE = -4326.63962 18.84244345 

 STD DEV = 3.556345346 3.263649791 

 

 

 

 

J-(67.97%Mg) -- 64 unit cell structure 

Variant Name Ca replaced Average TE (Kcal/Mol) E(GPa) 

J68-i 2,3,4,6,7,8,9 -4348.358954 15.55705204 

J68-j 1,3,4,5,7,8,9 -4343.537117 15.24017854 

J68-k 1,2,3,4,5,6,8 -4348.308332 12.6434633 

J68-l 1,2,4,5,7,8,9 -4347.734238 15.36978749 

J68-m 1,2,3,5,6,7,9 -4347.420075 12.65037346 

J68-Previous 1,2,4,6,7,8,9 -4345.533912 18.05476625 

 

AVERAGE = -4346.815438 14.91927018 

 

STD DEV = 1.742156381 1.865084387 
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J-(82.9%Mg) -- 64 unit cell structure 

Variant Name Ca replaced Average TE (Kcal/Mol) E 

J83-i 2,3,4,5,6,7,8,9 -4361.005939 10.2259845 

J83-j 1,3,4,5,6,7,8,9 -4361.090475 14.53332378 

J83-k 1,2,3,5,6,7,8,9 -4359.934655 14.75545451 

J83-l 1,2,3,4,6,7,8,9 -4360.238779 15.53425973 

J83-m 1,2,3,4,5,6,8,9 -4359.450767 14.1900116 

J83-previous  1,2,4,5,6,7,8,9 -4361.676025 14.3991761 

 AVERAGE = -4360.47814 13.9397017 

 STD DEV = 0.802252931 1.713958498 
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Appendix B1 

Figures showing the atomic centroid displacement-strain curves for layers 3-10 along for 33% 

Magnesium Modified Jennite when sheared along cb-plane.  

 

Atomic Centroid Displacement-Strain Curves for Layers 3-6 for 33% Mg modified when sheared 

along cb-plane. 
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Atomic Centroid Displacement-Strain Curves for Layers 7-10 for 33% Mg modified when 

sheared along cb-plane. 
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Appendix B2 

Figures showing the atomic centroid displacement-strain curves for layers 3-10 along for 83% 

Magnesium modified Jennite when sheared along ac-plane.  

 

Atomic Centroid Displacement-Strain Curves for Layers 3-6 for 83% Mg modified when sheared 

along ac-plane. 
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Atomic Centroid Displacement-Strain Curves for Layers 7-10 for 83% Mg modified when 

sheared along ac-plane. 
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Appendix C1 

Shear deformation code 

#BIOSYM btcl 3 

# 

# Input File For Discover Generated By Materials Studio  

# Input Client Model Document:  

# Job: Disco Dynamics # 

autoEcho on 

# 

# Begin Forcefield Section 

begin forcefield = compass 

    # Nonbond section:  

forcefield nonbond +separate_coulomb \ 

vdw \ 

        summation_method = ewald \ 

        ewald_accuracy = 1.e-003 \ 

        update_width = 3.00 \ 

coulomb \ 

        summation_method = ewald \ 

        ewald_accuracy = 1.e-003 \ 

        update_width = 3.00 \ 

        dielectric_value = 1.0000 

# End Forcefield Section 

 

#Stage Name: minimize 
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minimize \ 

        iteration_limit = 1000 \ 

execute frequency = 10 \ 

command = (print output +energy_summary) 

 

# Dynamics Section: NPT equilibration 

minimize 

dynamics \ 

time = 100000.00 \ 

timestep = 1.00 \ 

ensemble = NPT \ 

temperature = 298.00 \ 

        press_choice = stress \ 

sxx = -0.00003 \ 

syy = -0.00003 \ 

szz = -0.00003 \ 

deviation = 5000.00 \ 

execute frequency = 100.00 \ 

command = (print table file = uc64-SbaNPT.tbl +average  +batch_average  batch_size = 100 +cell 

+energy +state +stress +strain) \ 

execute frequency = 1000.00 \ 

command = (print archive filename = uc64-SbaNPT.arc +coordinates) \ 

execute frequency = 1000.00 \ 

command = (writeFile dynamics_restart filename = uc64-SbaNPT.xdyn) 

writeFile coordinate filename = uc64-SbaNPT.car 
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# Cell parameters 

set cP_list [cellParameter] 

set cP_a [lindex $cP_list 0] 

set cP_b [lindex $cP_list 1] 

set cP_c [lindex $cP_list 2] 

set cP_alpha [lindex $cP_list 3] 

set cP_beta [lindex $cP_list 4] 

set cP_gamma [lindex $cP_list 5] 

    $a = $cP_a 

    $b = $cP_b 

    $c = $cP_c 

    $alpha = $cP_alpha 

    $beta = $cP_beta 

    $gamma = $cP_gamma 

 

    $pi = 16.0*atan(1.0/5.0) - 4*atan(1.0/239.0) 

    $Calp = cos($alpha*$pi/180) 

    $Cbet = cos($beta*$pi/180) 

    $Cgam = cos($gamma*$pi/180) 

    $vol0 =  $a*$b*$c*sqrt(1-$Calp*$Calp-$Cbet*$Cbet-$Cgam*$Cgam+2*$Calp*$Cbet*$Cgam) 

 

# Deformation of the system 

for (set i 1) ($i <= 75) (incr i 1) ( 

        $gamma = $gamma+0.2 

        $Cgam = cos($gamma*$pi/180) 

        $b = $vol0/($a*$c*sqrt(1-$Calp*$Calp-$Cbet*$Cbet-$Cgam*$Cgam+2*$Calp*$Cbet*$Cgam)) 
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cellParameter $a $b $c $alpha $beta $gamma 

writeFile coordinate filename = uc64-SbaNVT_def_$i.car 

 

        # Dynamics Section: NVT equilibration 

minimize 

dynamics \ 

time = 10000.00 \ 

timestep = 1.00 \ 

            initial_temperature = 298.00 \ 

ensemble = NVT \ 

temperature = 298.00 \ 

deviation = 50000.00 \ 

execute frequency = 10.00 \ 

command = (print table file = uc64-SbaNVT_$i.tbl +average  +batch_average  batch_size = 10 +cell 

+energy +state +stress +strain) \ 

execute frequency = 100.00 \ 

command = (print archive filename = uc64-SbaNVT_$i.arc +coordinates) \ 

execute frequency = 100.00 \ 

command = (writeFile dynamics_restart filename = uc64-SbaNVT_$i.xdyn) 

writeFile coordinate filename = uc64-SbaNVT_dyn_$i.car 

    ) 
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Appendix C2 

%% COMPILE ALL THE DATA CORRESPONDING TO THE INDIVIDUAL TRAJ.AC 

clc; clear; close all; 

set(0,'DefaultFigureWindowStyle','docked'); 

natoms = 68*64;            % THIS VALUE MUST BE AJUSTED FOR EACH SYSTEM 

endoftext = 6537; 

nmbofrows = 1000; 

nmbofcolms = 51; 

avedata = zeros(70,27); 

for ii=1:75 

filename = sprintf('../Sh64J8Sac/uc64-SacNVT_%d.tbl',ii); 

fid = fopen(filename); 

    tmp1 = fscanf(fid,'%c',endoftext); 

tmpdata = zeros(nmbofrows,nmbofcolms); 

data = zeros(nmbofrows,26); 

%FROM MATERIALS STUDIO [1.timestep (even).RunningAve (odd).BatchAve] 

%[1.timestep 2/3.TotalEnr 4/5.KinEnr 6/7.PotEnr 8/9.Temp 10/11.Press  

%12/13.Dens 14/15.Vol 16/17.a 18/19.b 20/21.c 22/23.alpha 24/25.beta  

%26/27.gamma 28/29.Sxx 30/31.Syy 32/33.Szz 34/35.Syz 36/37.Sxz  

%38/39.Sxy 40/41.exx 42/43.eyy 44/45.ezz 46/47.eyz 48/49.exz 50/51.exy] 

for i=1:nmbofrows 

tmpdata(i,:) = fscanf(fid,'%g',[1 nmbofcolms]); 

end 

fid = fclose(fid); 

%Selecting only the BATCH data (Odd columns) 

%[1.timestep 2.TotalEnr 3.KinEnr 4.PotEnr 5.Temp 6.Press 7.Dens 8.Vol  

%9.a 10.b 11.c 12.alpha 13.beta 14.gamma 15.Sxx 16.Syy 17.Szz 18.Syz  

%19.Sxz 20.Sxy 21.exx 22.eyy 23.ezz 24.eyz 25.exz 26.exy 27.stn] 
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data(:,1) = tmpdata(:,1); 

for i=2:26 

data(:,i) = tmpdata(:,2*i-1); 

end 

%Changing the sign of the stress values. Accordint to AM 

data(:,15:20) = (-1.0)*data(:,15:20); 

%Normalization of extensive quantities (Energies) 

data(:,2) = data(:,2)/natoms; 

data(:,3) = data(:,3)/natoms; 

data(:,4) = data(:,4)/natoms; 

 

%Plots for the energy of current trajectory 

    figure(ii); plot(data(:,1),data(:,2),'ko','MarkerSize',3); 

tmp = mean(data(:,2)); axis([0 10e3 (tmp+0.025*tmp) (tmp-0.025*tmp)]); 

xlabel('time [fs]'); ylabel(sprintf('Energy traj. %d',ii)); 

 

%AVERAGES FOR EACH DEFORMATION STEP 

    n = size(data,1); 

if (ii==1) 

avedata(ii,1) = data(n,1)/1000; %Divide by 1000 to plot in [ps] 

else 

avedata(ii,1) = data(n,1)/1000 + avedata(ii-1,1); 

end 

avedata(ii,2:26) = mean(data(101:1000,2:26)); 

end 

closeall; 

for i=2:26 

    figure(i); hold on; plot(avedata(:,1),avedata(:,i),'ko','MarkerSize',3); 
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xlabel('time [ps]'); ylabel(sprintf('avedata(%d)',i)); 

switch i 

case 2;  ylabel('E [GPa]'); 

case 8 

tmp = mean(data(:,8)); axis([0 800 (tmp-0.025*tmp) (tmp+0.025*tmp)]); 

ylabel('Volume'); 

case 15 

ylabel('Sxx [GPa]');  

saveas(gcf,'Sxx-t','eps'); saveas(gcf,'Sxx-t','png'); 

case 16 

ylabel('Syy [GPa]'); 

saveas(gcf,'Sy-t','eps'); saveas(gcf,'Syy-t','png'); 

case 17 

ylabel('Szz [GPa]'); 

saveas(gcf,'Szz-t','eps'); saveas(gcf,'Szz-t','png'); 

case 18 

ylabel('Syz [GPa]'); 

saveas(gcf,'Syz-t','eps'); saveas(gcf,'Syz-t','png'); 

case 19 

ylabel('Sxz [GPa]'); 

saveas(gcf,'Sxz-t','eps'); saveas(gcf,'Sxz-t','png'); 

case 20 

ylabel('Sxy [GPa]'); 

saveas(gcf,'Sxy-t','eps'); saveas(gcf,'Sxy-t','png'); 

end 

end 

 

% SHEAR STRAIN (ac) 
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avedata(:,27) = (avedata(:,13)-avedata(1,13))*pi/180; 

 

%% PLOT THE DATA OF INTEREST 

% FOR THE (beta,a) SHEARING SYSTEM: tau(ac) vs. gamma(ac) 

figure (27); hold on; set(gca,'LineWidth',2.0); set(gca,'FontSize',18); 

plot(avedata(:,27),avedata(:,2),'ko','MarkerSize',4,'MarkerFaceColor','k');  

axis ([0 0.3 -69.6 -69.3]); 

%title('Total energy vs. Shear strain, \gamma_(ac)','FontSize',22); 

xlabel('\gamma_(ac)','FontSize',22,'LineWidth',2.5); 

ylabel('E [kcal*mol^(-1)]','FontSize',22,'LineWidth',2.5); 

saveas(gcf,'uc64-Eac-stn','eps'); saveas(gcf,'uc64-Eac-stn','png'); 

 

% TRACTION ON a PLANE 

alp = avedata(1,12); bet = avedata(1,13); gam = avedata(1,14); 

nor = [1 0 0]; 

drt = [cosd(bet) cosd(alp)*sind(gam) sqrt(1 - (cosd(bet))^2 - 

(cosd(alp)*sind(gam))^2)]; 

n = size(avedata(:,1),1); 

tra = zeros(n,3); %(x y z) 

% from avedata: [15.Sxx 16.Syy 17.Szz 18.Syz 19.Sxz 20.Sxy] 

for i=1:n 

    tra(i,1) = avedata(i,15)*nor(1) + avedata(i,20)*nor(2) + 

avedata(i,19)*nor(3); 

    tra(i,2) = avedata(i,20)*nor(1) + avedata(i,16)*nor(2) + 

avedata(i,18)*nor(3); 

    tra(i,3) = avedata(i,19)*nor(1) + avedata(i,18)*nor(2) + 

avedata(i,17)*nor(3); 

end 
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% shear (ac): component of the traction on plane a along c-dir: (tra*c) 

shr = zeros(n,1); 

for i=1:n 

shr(i) = tra(i,1)*drt(1) + tra(i,2)*drt(2) + tra(i,3)*drt(3); 

end 

figure (28); hold on; set(gca,'LineWidth',2.0); set(gca,'FontSize',18); 

plot(avedata(:,27),shr,'ko','MarkerSize',4,'MarkerFaceColor','k'); 

axis ([0 .3 min(shr)-0.25 max(shr)+0.25]); 

%title('Shear stress (ac) vs. Shear strain (ac)','FontSize',22); 

xlabel('\gamma_(ac)','FontSize',22,'LineWidth',2.5); 

ylabel('\tau_(ac) [GPa]','FontSize',22,'LineWidth',2.5); 

saveas(gcf,'uc64-Sac-stn','eps'); saveas(gcf,'uc64-Sac-stn','png'); 

figure (29); hold on; set(gca,'LineWidth',2.0); set(gca,'FontSize',18); 

plot(avedata(:,27),shr,'ko','MarkerSize',4,'MarkerFaceColor','k');  

plot(avedata(:,27),avedata(:,19),'ko','MarkerSize',4,'MarkerFaceColor','y'); 

axis ([0 .3 min(shr)-0.25 max(shr)+0.25]); 

%title('Shear stress (ac) vs. Shear strain (ac)','FontSize',22); 

xlabel('\gamma_(ac)','FontSize',22,'LineWidth',2.5); 

ylabel('\tau [GPa] ','FontSize',22,'LineWidth',2.5); 

legend(gca,'\tau_(ac)','\tau_(xz)','Location','NorthWest'); 

saveas(gcf,'uc64-SacSxz-stn','eps'); saveas(gcf,'uc64-SacSxz-stn','png'); 


	Effect Of Material Ion Exchanges On The Mechanical Stiffness Properties And Shear Deformation Of Hydrated Cement Material Chemistry Structure C-S-H Jennite Â€“ A Computational Modeling Study
	Recommended Citation

	tmp.1590516723.pdf.GLLSl

