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Abstract 

Haemophilus ducreyi is the causative agent of the genital ulcerative disease chancroid. 

Chancroid is an important facilitator for increased transmission of HIV amongst heterosexuals. 

Chancroid is endemic to Asia, Africa, and Latin America, but there have been several outbreaks 

within the United States. Chancroidal ulcers are categorized as soft, painful, bloody ulcers that 

may remain chronic if untreated. H. ducreyi produces and secretes a cytolethal distending toxin 

(CDT) that causes various cell types to undergo cell cycle arrest or apoptosis. The CDT 

holotoxin consists of three genes: cdtA, cdtB, and cdtC. In 2006, the first report of nonsexual 

transmission of H. ducreyi was discovered in Samoa. Studies indicate the three children visiting 

the island had chronic lower extremity ulceration from the gram negative bacteria (Ussher, 

Wilson, Campanella, Taylor, & Roberts, 2007). The objective of this study therefore was to 

determine the presence, genetic variability, and functionality of cytolethal distending toxin in 

Samoa strains of H. ducreyi. To examine the presence of CDT, strains SB 5755, SB 5756, SB 

57575, BE 3145, and 35000HP were subjected to Polymerase Chain Reaction (PCR). This 

technique concluded that 100% of the strains produced cdtA, cdtB, and cdtC. Gel electrophoresis 

determined approximate sizes of DNA fragments to be 750, 950, and 700 bp respectively. Each 

gene was cloned independently and transformed into pCR2.1-TOPO plasmid vectors. These 

genes were successfully amplified into chemically competent Mach1-T1 Escherichia coli cells. 

Sequence analysis was performed to verify the presence of cdtA, cdtB, and cdtC and to examine 

genetic differences amongst the strains. The Samoa strains were tested on horse blood agar plates 

(HBAP) to determine its ability to cause DNAse damage and lyses horse red blood cells. 

H. ducryei strain 35000HP demonstrated large zones of lysis. The Samoa strains all exhibited 

clear zones of lysis, but were not as prominent as the wild- type. Increasing knowledge of CDT 
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activity solidifies it as a virulence factor and as a possible target for a novel toxoid vaccine 

against CDT producing bacteria. 
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 CHAPTER 1 

Introduction 

The genital ulcerative disease chancroid, caused by the bacterium Haemophilus ducreyi, 

is one of the most prevalent sexually transmitted diseases and major causes of morbidity in the 

resource-poor countries of Asia, Africa, and Latin America (Steen). Chancroid is a co-factor that 

facilitates the transmission of human immunodeficiency virus (HIV) in areas that are endemic to 

chancroid. Chancroidal ulcers are accompanied by painful, tender, bloody lesions that aid in the 

spread of HIV (Telzak et al., 1993). Periodic outbreaks of chancroid in the United States make 

the disease a public health concern (Mutua, M'Imunya J, & Wiysonge, 2012) 

The complete genomic sequence of H. ducreyi strain 35000HP has greatly expanded the 

scientific knowledge of the pathogenesis and biology of H. ducreyi.  H. ducreyi exhibits several 

virulence factors responsible for the development of chancroid. The independent investigation of 

these virulence factors may help researchers combat this disease. Therefore, studies of toxin 

production by H. ducreyi may provide vital information concerning its survival in the human 

host (Mutua et al., 2012).  Natural infection has not been detected in environmental or animal 

reservoirs (Mount, Townsend, & Bauer, 2007). 

Haemophilus ducreyi, Campylobacter jejuni, Actinobacillus actinomycetemcomitans, and 

Escherichia coli are amongst several gram-negative species capable of expressing and secreting 

soluble cytolethal distending toxin (CDT) (Blazkova et al., 2010).  CDT has been associated with 

G2 cell cycle arrest, progressive cell distention, and apoptosis in various cell types. H. ducreyi 

CDT (HdCDT) is encoded by three genes cdtA, cdtB, and cdtC which make up the CDT 

holotoxin. Previous studies have proven that the functional subunit, cdtB, is capable of 
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cytotoxicity alone. Further studies are needed to determine if all three subunits must be present 

for maximum toxic activity to occur. 

1.1 Statement of the Problem 

In 2007, the first nonsexual chancroid transmission was reported on the lower extremities 

of three young, New Zealand children visiting Samoa (Ussher et al., 2007). Further examination 

of the ulceration amongst the children indicated the infection was not acquired by sexual 

transmission. Gram stain, culture, and isolation were performed on each of the swab specimens 

collected from the children. Sequence data from the samples concluded the specimens were 

100% identical to H. ducreyi  (Ussher et al., 2007). Traditional chancroid is known to be a 

sexually transmitted infection, but further studies are necessary to conclude variations amongst 

the wild type strain 35000HP and Samoa strains BE3145, SB5755, SB5756, and SB5757. The 

long term goal of this research is to identify virulence factors in these strains that will contribute 

to diagnostic and vaccine development. It is vital to understand the pathogenesis of H. ducreyi in 

order to differentiate chancroidal infections from other genital ulcerative diseases. Currently, 

there is a limited understanding of the pathogenicity and genetic composition of these H. ducreyi 

Samoa strains. 

1.2 Statement of Purpose and Hypothesis Tested 

Many studies have focused on the diagnosis and treatment of traditional strains such as 

35000HP. This research is innovative because Samoa strains of H. ducreyi will be examined to 

determine if they are capable of fully expressing cytolethal distending toxins that are found in 

strain 35000HP. Further investigation is needed to determine the variability amongst these two 

classes of H. ducreyi. We expect to determine DNA sequence variations between the parent 

strain and the Samoa strains of H. ducreyi. 
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The objectives of this study were as follows: 

1. To demonstrate the presence of cdtA, cdtB, and cdtC in Samoa strains of H. ducreyi

2. To determine DNA sequence variation amongst Samoa strains of H. ducreyi

3. To investigate the function of cytolethal distending toxin in Samoa strains of H.

ducreyi
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CHAPTER 2 

Literature Review 

2.1 The History of Haemophilus ducreyi 

Chancroid is one of the five classical venereal diseases along with gonorrhea, granuloma 

inguinale, lymphogranuloma venereum, and syphilis. All of these sexually transmitted diseases, 

with the exception of gonorrhea and lymphogranuloma venereum, are categorized by genital 

ulcers (Leduc et al., 2008). In 1852, French scientist Bassereau and his colleagues, first 

distinguished a soft chancre and a hard chancre resulting from syphilis (Mao & DiRienzo, 2002). 

The first publication of the discovery of this soft chancre was made by Auguste Ducrey at the 

University of Naples in 1889. Ducrey’s reports demonstrated that the inoculation of pus from 

ulcers could be used to re-infect patients at other skin sites (Trees & Morse, 1995). 

Figure 2.1 The Culture of H. ducreyi Strain BE3145. 

Previous trials of cutaneous inoculations determined a single microorganism was found 

in each sample of the purulent material secreted from ulcers. The causative agent of these soft 

chancres was identified as a bacterium and not a virus as initially thought. The microorganism 

was observed in both the inside and outside of the neutrophils. Microscopic observations of the 

bacteria revealed the bacteria appeared as single cells in secretions and appeared as parallel 

chains within tissues that resemble a school of fish. Intracellular adhesion is responsible for 
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colonies to glide on solid media and remain intact. Ducrey’s inability to culture the organism in 

vitro lead to serial inoculations to determine the infectious agent’s specificity. 

2.2 Characteristics of Haemophilus ducreyi 

 Organisms within the genus Haemophilus are fastidious, gram-negative coccobacillicus 

that require an X (hemin) or V (nicotinamide adenine dinucleotide) factor for optimal growth 

(Albritton W.L., 2000). H. ducreyi is located within the Pastuerellales family. The presence of 

quinines types demethylmenaquinone and menaquinone attribute to chemotaxonomic and 

physiological differences in H. ducreyi and other Haemophilus species (Magro et al., 1996). This 

characteristic of H. ducreyi does not support its inclusion in the genus Haemophilus. Unlike 

other Haemophilus species, H. ducreyi requires larger concentrations of heme to initiate growth. 

Lee et al. determined that H. ducreyi could only grow in the presence of heme or heme 

containing proteins such as human hemoglobin, bovine hemoglobin, and bovine catalase, which 

serve as the primary source of iron (Telzak et al., 1993). The specific mechanisms which H. 

ducreyi acquires iron from hemoglobin and catalase are unknown. It has been speculated that H. 

ducreyi uses cell infiltration in cohorts with hemolysin to utilize intracellular sources of heme. 

Albumin is also essential for the growth of the bacterium but further studies are needed to 

determine if it is the source for acquired trace elements, serves as a nutritional supplement, or for 

the absorption of lethal metabolic byproducts (Albritton W.L, 1989). 

H. ducreyi colonies can differ in appearance based on the media in which it is grown and 

the duration of incubation. Colonies are generally raised, compact, granular, grayish- yellow 

colonies. Colonies have been categorized as pinpoint size after 24 h and increase to up to 2 mm 

between 48 to 72 h of incubation (Piot et al., 1983). Intracellular adhesion is thought to be 

responsible for the H. ducreyi colonies ability to glide across media and remain intact. H. ducreyi 
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is only grown at 35ºC in the presence of 5% CO2 on chocolate agar plates for 24 h. The clumping 

of H. ducreyi colonies during its culture on media makes it extremely difficult for quantification. 

Clinical specimens isolated on GC agar base containing 1 to 2% hemoglobin, 5% fetal bovine 

serum, and 3 µg of vancomycin per ml appears to have the highest sensitivity for the isolation of 

H. ducreyi (Blazkova et al., 2010) . 

2.3 Clinical Features and Treatment of H. ducreyi 

 Chancroid is often misdiagnosed  therefore, it is difficult to thoroughly account for the 

number of cases reported each year (Trees & Morse, 1995). Clinical diagnosis of chancroid is 

difficult for several reasons. Accurate diagnosis of chancroid is dependent upon whether the 

clinical presentation is typical or atypical or if the lesions are primarily caused by H. ducreyi or a 

combination of several bacteria that can cause genital ulceration.  Populations that are endemic 

to chancroid such as, New York, Florida, and Texas are more likely to accurately identify and 

treat the disease (Trees & Morse, 1995). 

H. ducreyi enters the skin through breaks in the epithelium during sexual intercourse. H. 

ducreyi infects lymph nodes, mucosal surfaces, both genital and non-genital skin. Initial 

infection begins with papule formation, which resembles a pimple. Papule formation triggers the 

host to respond to H. ducreyi infection with increased amounts of leukocytes and macrophages. 

The papule then develops into a pustule after approximately 2-3 days. A pustule is pus filled 

raised abrasion that eventually ruptures to form an ulcer after several weeks. The ulcers are 

generally painfully and can be excruciating depending on the site of infection. Little is known 

about the initial phases of infection because most patients do not seek medical treatment until the 

ulcer becomes too painful to bear any longer. If left untreated, ulcers can persist for several 

months and lead to secondary infections. The diagnosis of chancroid can be difficult since ulcers 
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often resemble those of syphilis or herpes. The distal prepuce is the most common site of 

infection for men (H.J. Ahmed, 2001). Lesions maybe found on the labia, forchutte, and clitoris 

of women (Lewis, 2014). Internal lesions are do not occur as often and tend to painless. The 

isolation of H. ducreyi from ulcers is frequently unsuccessful. Prior to the rapid utilization of 

antibiotics, chancroidal ulcers were documented to heal at significantly slower rates. 

Single dose antibiotic regimens after the presentation of pustule formation is shown to 

decrease the risk of sexually transmitted infections (Schmid, 1986). Despite the effectiveness of 

single dose treatment it is extremely too costly for populations that are endemic to the disease. 

The Centers of Disease Control and Prevention (CDC) recommends the following regimens for 

the treatment of chancroid: azithromycin, 1 g orally in a single dose; ceftriaxone, 250 mg 

intramuscular in a single dose; trimethoprim-sulamethoxazole, two tablets for seven days, or 

erythromycin base, 500 mg,clavulanic acid, 125 mg, p.o. three times a day for three days, and 

ciprofloxacin, 500 mg p.o. two times a day for three days, are alternative regimens 

(http://www.cdc.gov/std/treatment/2010/genital-ulcers.htm). Expecting women should only be 

treated with erythromycin or ceftriaxone. 

Studies have also determined that individuals diagnosed with HIV and chancroid are 

more likely to fail single dose antibiotic treatments (Mutua et al., 2012). However, increasing the 

duration of fleroxacin, 400 mg p.o. proves to be an effective form of treatment for concurrent 

HIV infection (Fast, W.L Albritton et al.;1983). Studies also demonstrate that uncircumcised 

men are more likely to fail single dose treatments of intramuscular ceftriaxone or flexrone orally 

The increased use of antibiotics over years is also causing a concern for antibiotic resistance 

(Mount et al., 2007). Studies of antimicrobial resistance are extensive in H. ducreyi because it 

will affect the choice treatment. The diverse and broad list of antimicrobial resistance in H. 
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ducreyi requires caution during the treatment of chancroid, unless clinical isolates are frequently 

monitored for resistance. Areas in which chancroid is prevalent have made minimal effort to 

monitor and document resistance. Observation of geographical and temporal differences in 

antimicrobial resistance of H. ducreyi has been attributed to the presence or the absence of 

resistance plasmids (Dencer H.G., W.L.Albritton,1982). Thus far, plasmid mediated 

antimicrobial resistance has been reported to include penicillins, tetracycline, chloramphenicol, 

sulfonamides, and amino glycosides (Lewis D.A., 2000) The emergence of a resistant strain of 

H. ducreyi in Rwanda has prompted the World Health Organization to forbid the use 

trimethoprim/sulfamethoxzole for the treatment of chancroid (Thelestam & Frisan, 2004). 

2.4 Known H. ducreyi Virulence Factors 

The regulation of the expression of virulence factors in H. ducreyi during infection is a 

major area of investigation. These virulence factors assist in the successful invasion of the host’s 

immune system. Prior studies have shown that the infiltration of outer membrane proteins, 

lipoproteins, and toxins may attribute to the survival of the bacteria and its ability to cause 

infection. An in vivo study by Bauer et al. (Bauer, Fortney et al. 2008) indicated that 531 H. 

ducreyi genes were expressed in human infection in comparison to broth-grown bacteria. 

Specifically, the upregulation of LspA and LspB genes re cytotoxic lipoproteins that shield H. 

ducreyi from phagocytosis during secretion. LspA proteins have been shown to inhibit 

phagocytosis by interfering with two kinase pathways, which allow H.ducreyi to coexist with 

phagocytic cells in ulcers (Deng, 2008) 

Like many other gram negative bacteria, H. ducryei relies upon resistance to bactericidal 

activity in normal human serum (NHS). Various studies have described the H. ducreyi serum 

resistance protein A (DsrA) as a possible virulence factor. This H. ducreyi outer membrane 
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protein is necessary for resistance to killing by NHS and anti-ducreyi antibodies within the serum 

(Leduc et al., 2008). H. ducreyi is resistant to high levels of NHS up to approximately 50%. H. 

ducreyi is strictly dependent on the availability of both heme and iron from its host, since it is 

unable to synthesize it. (Pickett & Whitehouse, 1999). H. ducreyi can obtain heme from 

hemoglobin at the bacterial cell surface following adhesion of hemoglobin to the H. ducreyi 

hemoglobin receptor (Hgb). Hemoglobin receptor (hgbA) is present in the genome of wild type 

strain 35000HP and its expression is absolutely necessary to establish infection in human 

experimental models of chancroid. 

In addition to acquiring hemoglobin, DrsA is also responsible for the attachment of 

extracellular matrix components fibronectin and vitronectin (Elkins, 2000). Cloned, sequenced, 

and mutagenized drsA from various H. ducreyi strains suggest the importance of outer membrane 

proteins in serum resistance. A second outer membrane protein, ducreyi lectin A (DltA), is a 

virulence factor that is required for the expression of full serum resistance in H. ducryei (Leduc, 

2004). Thus far, isogenic mutants of the fimbria-like protein (flp) operon, the hemoglobin 

receptor (hgbA), the peptidoglycan-associated lipoprotein (pal), the ducreyi serum resistance 

protein (dsrA), large supernatant proteins (lspA1 and lspA2), a collagen binding protein (ncaA), 

or a lectin (dltA) have each demonstrated  naturally occurring chancroid infection in the human 

model. 

H. ducryei produces two toxins, which include hemolysin and CDT. Hemolysin acts as a 

contact hemolysin for fibroblasts and other cell types. CDT has the ability to induce cell death on 

various types including keratinocytes and immune cells. Studies are currently underway to 

determine how these two toxins fully illicit cytolethal effects. 
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2.5 Cytolethal Distending Toxin 

2.5.1 Structure and function. The H. ducreyi CDT was first described phenotypic ally 

by Purven and Lagergard as being chromosomally encoded by three adjacent genes, cdtA, cdtB, 

and cdtC (Purvén, Falsen, & Lagergård, 1995). The individual molecular masses of the proteins 

are 24 kDA, 31 kDA, and 20 kDA, respectively (Cope LD, Lumbley, 1997). These three genes 

are encoded by an operon that seems to be transcriptionally linked. Similar CDTs are also 

expressed by enteric organisms such as Escherichia coli (Ec-CDT), Shigella species, 

Campylobacter species (Cj-CDT), Helicobacter species, and Actinobacillus 

actinomycetemcomitans (Aa-CDT) (Haghloo and Galan, 2004; Thelestam and Frisan, 2004). 

HdCDT and A. actinomyecetemcomitans CdtABC share the highest sequence homology of 95% 

in comparison to the other enteric bacteria. In 1997, the first high resolution crystallographic 

analysis of HdCDT holotoxin was published as well as the individual subunits (Nesic D, 2005). 

A study conducted in 1987, by Johnson and Lior, using E. coli strain 0128 obtained from 

diarrhea, is attributed the study of cytolethal distending toxins in Chinese hamster ovary (CHO) 

activity. Sequence analysis from this study identified three open reading frames (ORF’s). The 

designated open ORF’s were identified as cdtA, cdtB, and cdtC (Scott and Kaper, 2004). ORF 

sequence analysis determined that there are 4 bp overlaps between cdtA, cdtB, and cdtC. CDT 

was first demonstrated as a genotoxin from Elwell et al. studies, who identified position specific 

homology between CdtB from EcCDT and CjCDT, mammalian DNAse I. HdCDT is classified 

as a AB 2  toxin, which CdtB functions as the A-subunit and elicits DNAse I like activity 

damaging DNA within the nuclei of various cell types (Stevens, Hassett, Radolf, & Hansen, 

1996). The cdtB gene product of H. ducreyi is considered the active component of the CDT 

holotoxin and contains the most cytotoxic activity in comparison to cdtA or cdtC. 
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Figure 2.2 Crystal structure of the H. ducreyi CDT. The figure is shown as a ribbon cartoon 

tracing the three polypeptide chains. The active site and possible DNA contacting residues of 

CdtB are shown in yellow (Nesic, Hsu, & Stebbins, 2004). 

 H. ducreyi CdtB has the ability to bind to the plasma membrane, enter the Golgi 

apparatus in a retrograde manner via endocytosis, and translocate across the endoplasmic 

reticulum to gain access to the nucleus of mammalian cells (Eshraghi A et al., 2014). Further 

studies of ER associated degradation (ERAD) pathways are needed to elucidate the translocation 

mechanism of CDT. CdtA and CdtC are the B-subunits which assist the toxin with cellular 

attachment and internalization. Researchers have suggested that post-translational solidifications 

of CdtA may play a vital role in the effective secretion of the holotoxin into culture supernatant 

(Deng. K, 2001). The CdtA and CdtC subunits are soluble lectin-type molecules that share 

structural homology with the B-chain repeats of the plant toxin ricin (Mao & DiRienzo, 2002). 

The CdtB subunit adopts the four-layered fold of the DNAse I family: a central 12-stranded β-

sandwich packed between outer α-helices and loops on each side of the sandwich. Very little is 

known about the biology of CDT holotoxin. Studies indicate that all three subunits are essential 

for HdCDT to possess full cytotoxic activity on whole cells (Frisk A, Lebens, et al., 2001). 

Further CDT toxin studies are necessary to elucidate the survival mechanisms of H. ducreyi that 

cause these chronic ulcerative diseases. CDT is considered to be a virulence factor but its 

cytolethal activity depends primarily on the cell type rather than the origin of the actual toxin. 
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2.5.2 Role of CDT in disease. Wound healing is a critical process involving blood 

clotting, inflammation, new tissue formation, and tissue remodeling. Neutrophils normally arrive 

at the wound site within minutes of injury, to control bacterial infection and produce pro-

inflammatory cytokines, which serve as some one of the earliest signals to activate immunocells 

such as fibroblasts and keratinocytes (H.J. Ahmed, 2001). Neutrophils are followed by the 

infiltration of macrophages, which are necessary for effective wound healing, since healing is 

severely impaired if macrophage infiltration is prevented. The regeneration of epithelial cells of 

the skin requires both migration and quick generation of keratinocytes, fibroblasts and epithelial 

cells (Smith & Bayles). 

Extensive studies of CDT toxicity are mainly performed in vitro on eukaryotic cells such 

as, HEp-2, epithelial HeLa, human fibroblasts, keratinocytes, and human umbilical vein 

endothelial cells. Wiseing et al. demonstrated that myeloid cells and lymphocytes are more prone 

to CDT toxicity and quickly undergo apoptosis immediately after exposure to the toxin. About 

90% of Jurkat T-cells or THO-1 monocytic cells underwent cellular death following 100 ng/mL 

HdCDT within 24-48 hours of intoxication. The same study demonstrated that only 30% of 

HaCaT epithelial cells or HeLa cells progressed to apoptosis following intoxication (Wising et 

al., 2005). Involvement of CDT in ulcer formation was shown in a rabbit model of chancroid, 

where intradermal inoculation of H. ducreyi administered with purified HdCDT resulted in 

significant accumulation of the bacteria-induced inflammatory lesions and in ulcer development 

(Svensson, Henning, & Lagergard, 2002). CDT can contribute to the delayed wound healing 

observed in chancroid. CDT activity was originally characterized as causing relatively slow 

morphological changes in cultured epithelial cells, including progressive cellular distention and 

apoptosis within 96 to 120 hours (Cortes-Bratti, Karlsson, Lagergard, Thelestam, & Frisan, 
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2001). It has been shown that HdCDT affects cell proliferation and survival of many cell types 

involved in wound healing. (Frisan, Cortes-Bratti, & Thelestam, 2001). HdCDT may interfere 

with angiogenesis, since it inhibits proliferation of normal human micro vascular endothelial 

cells from adult dermal tissue and human umbilical vein endothelial cells preventing new blood 

vessel formation in an in vitro angiogenesis model (Ando-Suguimoto et al., 2014). HdCDT 

affects effector cells of the innate and adaptive immune system: intoxication inhibits 

proliferation and IFN-γ secretion of T lymphocytes and induces apoptosis of B lymphocytes, and 

monocyte-derived DCs, the key activators of the adaptive immune responses (Guerra, Guidi, & 

Frisan, 2011). 

2.5.2.1 Animal studies. There is minimal information about the pathogenesis of 

H. ducreyi. There have been no studies indicating the isolation of H. ducreyi from nonhuman 

reservoirs. For many years New Zealand white rabbits were used as the first animal models for 

studying H. ducryei. Rabbit models were injected with large doses of the bacteria and housed at 

room temperature. Rabbit models are not ideal models because the lesions that are formed from 

the bacteria do not fully resemble those of humans. Research indicated that H.ducreyi could not 

properly replicate at temperatures higher than 35ºC. H. ducreyi was successfully able to replicate 

with temperature dependent animal models housed at 15 to 17ºC (Wising, Molne, Jonsson, 

Ahlman, & Lagergard, 2005) . The decrease in temperature cooled the rabbit’s skin and resulted 

in severe inflammatory response. The rabbit model has also served as a means to study toxicity 

and immunogenicity of purified CDT produced by H. ducreyi. Wising et al. determined that each 

individual gene product of the holotoxin is required for cytoxicity of cultured mammalian cells. 

Both control and immunized rabbit models experienced increased inflammatory response which 
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resulted in necrotic ulcers. There was significantly less pronounced ulceration in rabbit models 

inoculated with H. influenza than H. ducreyi . 

H. ducryei cdtA, cdtB, and cdtC mutants have also been studied to determine virulence 

using the rabbit model as well. Lewis and colleagues confirmed that three isogenic mutants grew 

at similar rates to wild type 35000HP in both broth and the temperature dependent rabbit model 

(Bauer et al., 2008). In regard to lesion formation, all three cdt mutants were as virulent as the 

wild type parent strain. Viable H. ducreyi isolates were recovered from each of the lesions, 

which each contained similar amounts of colony forming units. This data suggests, cdtABC 

genes must be transcribed in the wild type parent cells growing in vivo in order to possess 

virulence cdt mutants. 

A chambered mouse model was also developed to study the pathogenesis of chancroid. 

The mice were implanted with subcutaneous polyethylene tubes that contained various strains of 

H. ducreyi (Ricotta, Wang, Cutler, Lawrence, & Humphreys, 2011) . The bacteria were 

successfully able to grow in the tubes. Reports indicated there was variation among H. ducreyi 

proteins, which may have resulted in some of the mice being infected for periods up to 4 months. 

Primate models have been implemented to research the pathogenesis of chancroid (Totten 

et al., 1994). In a study by Totten et al. adult macaques were inoculated with 10
7 

to 10
8 

CFU of

H. ducreyi. The foreskin of male macaques and the labia of female macaques were chosen as 

inoculation sites. Chancroidal ulcers began to develop between 6 to 12 days following infection 

in male macaques. No visible ulcers developed on any of the female macaques that were 

inoculated with H. ducreyi. Researchers attributed the lack of ulceration among female macaques 

to the differences in the epithelium. Further serological tests would be needed to determine if 
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asymptomatic infection maybe occurring in female macaques. The primate model is now deemed 

beneficial for studying pathogenesis of chancroid in males. 

The swine, rabbit, and mouse model have all demonstrated the ability to develop serum 

antibodies to H. ducreyi antigens within one to two weeks of exposure. On the other hand, there 

has been no documentation of serum antibody response to occur in the human infection model 

after two weeks. This also included those individuals who were inoculated twice. In patients who 

were infected naturally with chancroid, they were able to develop antibody response following 

three weeks of ulceration. Therefore, the serum antibody response in the animal model seems to 

be premature in relation to the delayed response in humans. 

2.5.2.2 Human studies. Animal studies are a good indicator of infection of H. ducreyi, 

but there are many limitations to these models since it is naturally only found in human host. 

Under strict, carefully regulated conditions human infection of H. ducreyi is rather safe. The 

primary benefit of the human model is the use of human skin, which is the target of infection. 

Papule and pustule formation in the human model is highly similar to naturally occurring 

infection. The experimental lesions have been confirmed to be almost identical to natural lesions. 

However, the human model limited because the study can only be conducted for two weeks. 

Whereas in nature most patients do not treatment until after the infection has been present for 

three to six weeks. Other limitations of the human model include the artificially simulated route 

of infection, genital non-genital infection of the arm using an allergy device. 

Between February 25, 1993 to December 31, 2007, 267 human volunteers with varying 

ethnicities and ages were infected at least once with H. ducreyi. This 15 year clinical trial is 

monumental because initial infections could be monitored prior to making observations after 

pustule formation. Adult volunteers were inoculated on the upper deltoid at various sites of 
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infection. After between two and five days following infection the volunteers saw papules begin 

to form. Subjects that were seropositive for HIV were excluded from this study. This 15 year 

clinical trial is monumental because initial infections could be monitored prior to making 

observations after pustule formation (Leduc et al., 2008; Palmer & Munson, 1995). In natural 

chancroid infection patients do not generally seek treatment until painful ulceration persists for 1 

to 3 weeks.  Adult volunteers were inoculated on the upper deltoid at various sites of infection. 

The site of infection did not seem to be limiting factor since H. ducreyi is capable of infecting 

non-genital skin. Volunteers began to see papules form 2 to 5 days after infection. Papule 

formation was equal among male and female volunteers, but male were two times more likely to 

have pustule formation. This data is consistent with natural chancroid infection because males 

show disease progression at a 3:1 ratio in comparison to their female counterparts. An increase in 

body temperature associated with menstruation maybe responsible for the lower rates of pustule 

formation in females since H. ducreyi is only viable at 35ºC. Some volunteers were able to 

develop protective immunity and clear infection without the disease progressing to its ulcerative 

state. On the other hand, those that developed ulcers were more susceptible to the reoccurrence 

of ulcers. The duration of infection for each volunteer was 14 days or less before being treated 

with a single dose of ciprofloxacin. The length of duration does not fully assess natural infection 

of the disease because progression following pustule formation was not observed. Untreated 

ulcers can persist for 1-3 months. 

This study determined that the papule formation in males in females is almost identical, 

but the rate of pustule formation is dependent upon estimated delivered doses (EDDs) and 

gender. The typical EDDs used on the human model are 10
1 

and 10
2 

colony forming units (CFU).
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Disease progression associated with gender differences may be responsible for the increased 

male to female ratios observed in naturally occurring chancroid. 

There is limited knowledge of H.ducreyi infection disease progression in human models 

due to the termination of the study prior to the development of painful chancres. A study 

conducted by Spinola determined that H. ducreyi human infection of healthy individuals 

inoculated with the bacteria at multiple sites in the upper arm developed papule formation after 

24 hours. The study determined that HdCDT may not be responsible for the initial papule 

formation in the acute stage, but the secretion of CDT on various cell types may be responsible 

for the enlargement of the chancroid lesions and progression of the disease. Slow wound healing 

of the chancroid ulcers and necrosis of endothelial cells as a result CDT secretion contribute to 

the prolonged infection. Apoptosis of T and B lymphocytes induced by CDT results in 

immunosuppression which delays or decreases immune function allowing H. ducreyi growth, 

and increasing tissue damage to the genitalia (Spinola, Wild, Apicella, Gaspari, & Campagnari, 

1994). Decreased fibroblast activity and the limited infection to deeper tissues by CDT create 

shallow lesions which become a suitable environment for other sexually transmitted infections 

(STI), including HIV. 

Chancroid has been identified as a co-factor for heterosexual acquisition and transmission 

of HIV. A study conducted by Magro et al. investigated the role of chancroid in relation to HIV 

transmission. This study demonstrated that men seropositive for HIV developed a greater 

number of ulcers than those who were HIV negative therefore, increasing shedding of the virus 

through chancroidal ulcers (Magro et al., 1996). Dermal abrasions are a route of entry and 

increase risk of HIV exposure. Studies have demonstrated that HIV can alter the clinical course 

and appearance of chancroid. Commercial sex workers have been implicated in chancroid 
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outbreaks occurring in the United States and Canada (Blackmore, Limpakarnjanarat, Rigau-

Perez, Albritton, & Greenwood, 1985; Hammond et al., 1980). 
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CHAPTER 3 

Methodology 

3.1 Bacterial Strains and Culture Conditions 

The H. ducreyi type strain 35000HP was obtained from Stanley Spinola at Indiana 

University. The Samoa strains BE3145, SB5755, SB5756, and SB5757 were provided by Dr. 

Isabella Leduc at the University of North Carolina at Chapel Hill. For optimal growth, all strains 

were maintained on chocolate agar plates (CAP) consisting of gonococcal media base (GCB; 

Difco), 1% IsoVitaleX (Becton Dickinson, Cockeysville, MD), and 5% fetal bovine serum (FBS) 

(Sigma, St. Louis, MO) and grown at 35°C in 5% CO2 atmosphere in 92% humidity. Each strain 

was cultured for 24 h to form single colony isolates. A single isolate was selected and used to 

grow a full lawn of bacteria. Finally, the bacteria from each plate was swabbed into 100 µl of 

skim milk containing 10% glycerol and stored frozen at -80°C in a 1.5 µl cryogen tube. All H. 

ducreyi strains were recovered from frozen stocks on CAP 24 h before each experiment. 

Table 3.1 

Haemophilus ducreyi Strains Used in This Study 

Strain Name Location/ Year of Isolation Source

(Reference)

35000HP Winnipeg (1975) S. Spinola 

BE3145 Samoa Island, 
 South Pacific (2007)

Ussher (Ussher, 2007)

SB5755 Samoa Island,  
South Pacific (2007)

Ussher (Ussher, 2007)

SB5756 Samoa Island,  
South Pacific (2007)

Ussher (Ussher, 2007)

SB5757 Samoa Island,  
South Pacific (2007)

Ussher (Ussher, 2007)
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The Mach1-T1 E. coli strain was grown on Luria Bertani (LB) media and frozen stocks stored at 

-80°C in LB containing 10% glycerol. When required, Mach1-T1 E. coli hosting pCR
TM

-

4TOPO® vectors were grown on LB media supplemented with 50 µg/ml ampicillin or 

kanamycin.  

3.2 Amplification of cdtA, cdtB and cdtC in H. ducreyi Strains. 

 Polymerase Chain Reaction (PCR) was used to amplify cdtA, cdtB and cdtC in each 

strain of H. ducreyi. Primers used in this study are listed in Table 3.2. Primers NcdtA forward 

and NctA reverse, NcdtB forward and NctB reverse, and NcdtC forward and NcdtC reverse were 

designed using the cdtA, cdtB and cdtC sequences in strain 35000HP, respectively. 

Table 3.2  

Primers used to amplify cdtA, cdtB, and cdtC in this study 

Primers Sequence 

NcdtA forward TGCGAAGAACTTGTCCT 

NcdtA reverse CACAGAAAACCACATTAACTGC 

NcdtB forward GAAGCAACAGCGGTTAAT 

NcdtB reverse TGACTCGCCAAAGCCAATATAC 

NcdtC forward CGTGATCGCTAAGGAGGATATT 

NcdtC reverse TCTTCGCCCCACTAAGGATCTTG 

M13 forward GTAAAACGACGGCCAG 

M13 reverse CAGGAAACAGCTATGAC 

            Four nucleotides were added to the end of each primer to provide restriction sites for EcoRI 

digestion. PCR was performed using the following reaction mixtures with each primer pair: 

cdtA, cdtB or cdtC-specific primers at 100 pmol each, Promega Green Go-Taq Master Mix (1X 



22 

Go-Taq DNA polymerase, dNTPs [200 µM each]) according to manufacturer’s instruction 

(Promega, Madison, WI), and H. ducreyi whole cells as DNA template. The PCR was performed 

under the following conditions: a single denaturation at 95°C for 5 min and 40 cycles, each 

consisting of 1 min denaturation at 95°C, annealing at 50°C for 1 min, extension at 72°C for 2 

min and a final extension of 10 min. Equal volumes of each sample was loaded onto a 0.8% 

agarose gel and subjected to electrophoresis at 100V for 30 minutes. An approximate 750 bp 

fragment of DNA was expected for all H. ducreyi strains.3.3. Cloning of H. ducreyi cdtA, cdtB, 

and cdtC into the pCR
TM

4-TOPO® vector

Following amplification of cdtA, cdtB, and cdtC from H. ducreyi strains SB5755, 

SB5756, SB5757, 35000HP, and BE3145, each gene was cloned into the multiple cloning site of 

the pCR
TM

-4TOPO® cloning vector (Figure 3.1) using the TOPO® TA Cloning® Kit

(Invitrogen; Cat #K4530-20). The cdtA, cdtB, and cdtC amplicons obtained from PCR reactions 

were used as the DNA template in the cloning procedure. Each cloning reaction contained the 

following: 1 µL PCR product, 3 µL H2O, 1 µL salt solution, and 1 µL pCR
TM

-4TOPO® vector.

The reagents were incubated at room temperature for 5 minutes then placed on ice in preparation 

for transformation into One Shot Mach1-T1 E. coli  . A positive control (750 bp amplicon) was 

included to verify success of the cloning reaction.  

Figure 3.1 pCR4-TOPO-TA cloning vector map (Invitrogen). 
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3.3 Transformation of E. coli  One Shot Mach1-T1 Competent Cells 

Transformation of One Shot Mach1-T1 chemically competent E.coli was performed 

according to the manufacturer’s instructions (Invitrogen; Cat #K4530-20). The Mach1-T1 E. coli 

strain was chosen to allow selection of positive transformants using blue/white selection 8 h after 

plating transformants on selective LB media containing 50 µg/ml ampicillin or kanamycin.  Prior 

to performing the transformation One Shot Mach1-T1 E. coli cells were thawed on ice and LB 

ampicillin or kanamycin agar plates were warmed at 37°C until ready for use. Next 2 µL of each 

TOPO Cloning Reaction was placed into pre-labeled vials of Mach1-T1 cells, mixed gently and 

incubated on ice for 30 min. Heat shock was performed for 30 seconds at 42°C using a water 

bath. The vials were immediately transferred to ice. Next 250 µL of room temperature S.O.C 

medium was added to each vial of cells. The vials were then capped tightly and shaken 

horizontally (200 rpm) at 37°C for 1 hr. Finally, 50 µL of each transformation mixture was 

spread onto pre-warmed LB plates containing 50 µg/mL kanamycin or ampicillin and 40 µL of 

40 µg/mL X-Gal. LB agar supplemented with ampicillin were prepared the day prior to cloning 

and used for all experimental H. ducreyi strains. The E. coli positive control, containing a pUC19 

plasmid, was also grown on LB agar supplemented with ampicillin. To ensure even colony 

distribution, 20 µL of S.O.C. medium was added to each plate before it was incubated overnight 

at 37°C. 

3.4 Analysis and Verification of E. coli Transformants 

Following transformation, several hundred blue and white colonies were obtained from 

each transformation reaction. To identify colonies that contained the pCR
TM

-4TOPO® vector

with the cdtA, cdtB or cdtC insert, approximately 10 white colonies from each transformation 

were suspended in 1 mL of deionized water. A PCR reaction was performed under the following 
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conditions: 7.5 µl of DNA template, 1µl M13 (1 µg/µl) Forward primer (0.1 µg/µl), 1 µl M13 

Reverse primer (0.1 µg/µl), 3 µl deionized water, and 12.5 µL Promega Master Mix to equal a 25 

µl reaction. The following conditions were employed: a single denaturation at 95°C for 5 min 

and 40 cycles, each consisting of 1 min denaturation at 95°C, annealing at 50°C for 1 min, 

extension at 72°C for 2 min, and a final extension at 72°C for 10 min.  Finally, 5 µl of each 

sample was then loaded onto an 0.8% agarose gel and subjected to electrophoresis at 100V for 

30 minutes. 

3.5 Gel Extraction and Purification of cdtA, cdtB and cdtC Amplicons 

The cdtA, cdtB and cdtC DNA fragments, amplified by PCR as described above, were 

isolated from a 0.8% agarose gel using the QIAquick Gel Extraction Spin Kit (QIAgen; Quick 

Spin Handbook: Nov 2006). Each DNA fragment was excised from the agarose gel with a clean 

blade. The gels were then weighed in colorless tubes. Three volumes of Buffer QG were added 

to 1 volume of gel (100mg = 100 µl).  Each sample was incubated at 50°C for 10 min and 

vortexes for 2 min to easily dissolve the gel. After the gel was dissolved completely, 1 volume of 

isopropanol was added to the sample and mixed. A QIAquick spin column was placed into its 

corresponding collection tube. Each sample was then applied to its QIAquick column and 

centrifuged for 1 min (13,000 rpm) to allow DNA binding. The flow-through for each collection 

tube was discarded and the columns were placed back into the corresponding collection tube. In 

order to remove all traces of the agarose 0.5 ml of Buffer QG was added to each QIAquick 

column and centrifuged (13,000 rpm) for 1 min. 

Finally, 0.75 ml of Buffer PE was added to each spin column. The columns were allowed 

to stand for 5 min before centrifuging for 1 min. The flow-through was discarded and the column 
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was centrifuged for an additional 1 min (13,000 rpm) to remove any residual ethanol. The 

QIAquick column was then placed into a clean1.5 ml microcentrifuge tube. 

To elute the DNA, 50 µl of warm Buffer EB was added to the center of the QIAquick 

membrane and centrifuged for 1 min. In some cases, to increase the DNA concentration 30 µl of 

elution buffer was added to the center of the QIAquick membrane, incubated for 1 min, and 

centrifuged for 1 min at 13,000 rpm. 

3.6 QIAprep Spin Miniprep of pCRTM-4TOPO® Vector Containing cdt Inserts 

The QIAprep Spin Miniprep Kit was used to purify high-copy plasmid DNA from 5ml 

overnight E. coli cultures grown in LB media with ampicillin (50ug/ml). Bacterial cells were re-

suspended in 250 µl Buffer P1and transferred to a microcentrifuge tube. To each tube 250µl 

Buffer P2 were added and mixed by inverting the tube 6 times. The addition of 350 µl Buffer N3 

and mixing resulted in the solution turning colorless. Each tube was then centrifuged for 10 

minutes at 13,000 rpm in a tabletop centrifuge. The supernatant from each tube was then applied 

to the QIAprep spin column by pipetting. Each sample was centrifuged foe 60 seconds and the 

flow through was discarded. The samples in the QIAprep spin columns were washed by adding 

0.5 ml Buffer PB and centrifuged for 60 seconds. The flow through from each column was 

discarded. The final wash was performed by adding 0.75 ml Buffer PE and centrifuging each 

sample for 60 seconds. The flow through was discarded and each sample was centrifuged again 

for 1 minute to remove any of the additional residual wash buffer. The QIAprep column was 

placed into a new 1.5 ml tube and the DNA was eluted with 30 µl of Buffer EB. 



26 

3.7 Sequence Analysis and Multiple Sequence Alignment of cdtA, cdtB and cdtC in H. 

ducreyi Samoa Strains 

DNA concentrations were determined for each sample of purified DNA using a 

nanodrop. Samples were prepared for sequencing using two methods: (i) purified amplicons 

were prepared according to Simple Seq guidelines provided by Eurofins MWG Operon 

(http://www.operon.com/). DNA sequences were obtained electronically from Eurofins MWG 

Operon in an ABI format.  (ii) Eton Bioscience. Purified amplicons were submitted in a 96 well 

plate in 5 µl quantities. To view, edit and perform Basic Local Alignment Search (BLAST) with 

all nucleotide sequences, FinchTV (www.geospiza.com/Products/finchtv/), a free web-based 

DNA sequencing chromatogram trace viewer was used in this study. Multiple DNA sequence 

alignments were performed using ClustalW1 or 2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) 

and sequence comparison tables were produced using BoxShade 

(http://ch.embnet.org/software/BOX_form.html ). 

3.8 Hemolytic Activity of H. ducreyi 

To examine the function of the CDT toxin in each H. ducreyi strain, horse blood agar 

plates (HBAPs) were used to perform hemolytic assays. Bilayer plates consisting of GC agar 

base (Difco), 1% XV factor supplement, and 5% horse blood were obtained from Fisher 

Scientific (cat # 50176862). H. ducreyi strains were streaked for isolation on CAPs, directly from 

frozen stocks, and grown overnight at 35°C. Single colonies were streaked onto HBAP in 

triplicate and grown for 72 h at 35°C. CDT activity was determined by observing the zone of 

lysis. 

http://www.geospiza.com/Products/finchtv/
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CHAPTER 4 

Results 

4.1 Amplification of cdtA, cdtB, and cdtC in Samoa Strains of H. ducreyi 

Previous studies by Totten and Morse (2000) demonstrated that PCR was a more efficient 

and reliable method to diagnosis H. ducreyi than Gram stain and culturing the fastidious bacteria. 

In comparison to prior methods, PCR tests have demonstrated 95% or higher accuracy for the 

detection of the bacterium performed on the same samples. Previous studies also indicate that 

cdtA in H. ducreyi strain 35000HP could be amplified using PCR primers designed to cdtA. 

Therefore, to amplify cdtA, cdtB, and cdtC from Samoa strains BE3145, SB5755, SB5756, and 

SB5757, whole cells were subjected to PCR and agarose gel electrophoresis on 0.8% agarose gel. 

As predicted, an approximately 750bp DNA product containing cdtA was successfully amplified 

using the NcdtA PCR primers (Figure 4.1a). Additionally, an approximate 950 bp cdtB fragment 

and 700bp cdtC DNA product were obtained using NcdtB and NcdtC, respectively (Figures 4.1b 

and 4.1c). Therefore, these data indicate that cdtA, cdtB, and cdtC are all present in Samoa 

strains BE3145, SB5755, SB5756, and SB5757. 

(A) 
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(B) 

(C) 

Figure 4.1 Amplification of cdtA, cdtB, and cdtC in H. ducreyi strains 35000HP, BE3145, 

SB5755, SB5756, and SB5757. All PCR samples were subjected to gel electrophoresis using a 

0.8% agarose gel. Strain names are listed above. Molecular weight standards are indicated to the 

left of the gels.  
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4.2 Transformation of pSB56 cdtA, pSB57 cdtA, and pBE3145 cdtA into E. coli Mach1-T1 

Cells 

The blue-white screening technique demonstrated the successful transformation of 

pSB5756cdtA, pSB5757cdtA, and pBE3145cdtA into Mach1-T1 chemically competent E.coli 

cells using the TOPO TA Cloning Kit. Several hundred white bacterial colonies containing cdtC 

were produced 24 hrs after exposure to X-gal. There were significantly fewer blue colonies 

formed, indicating the absence of cdtA in the vector. To analyze the positive clones, 10 white 

colonies were picked from each LB media plate, subjected to PCR with NcdtAF/NcdtAR 

primers, and agarose gel electrophoresis. 

Figure 4.2 Blue and white colony assay to identify E. coli transformants containing 

(A) pSB5756cdtA, (B) pSB5757cdtA, and (C) pBE3145cdtA. E. coli transformants containing 

pSB5757cdtA is indicated by the white arrow, while a transformant containing a pCR
TM

-

4TOPO® vector lacking the SB5756 cdtA insert is indicated by the blue arrow. 

4.3 Amplification of p35000 cdtA, pBE3145 cdtA, pSB5755 cdtA, pSB5756 cdtA, and 

pSB5757 cdtA into Mach1-T1 E. coli Transformants 

To further verify the presence of cdtA in E. coli obtained from blue-white selection, white 

colonies grown on LB agar containing 50 µg/ml Ampicillin were subjected to PCR using the 

M13 forward and M13 reverse primers, specific to the multiple cloning site of the TOPO-TA 

vector (355-370 nt and 205-221 nt). The DNA products were visualized using a 0.8% agarose. 

SB

57

57 

cdt

C 
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The cdtA from all strains transformed in this study were successfully cloned into the Topo-TA 

vector (Figure 4.3). A DNA fragment of approximately 250 bp was amplified instead of the 

expected 1kp amplicon, but was later successfully amplified. 

Figure 4.3 Amplification of p35000 cdtA, pBE3145 cdtA, pSB5755 cdtA, pSB5756 cdtA, and 

pSB5757 cdtA into Mach1-T1 E. coli transformants. Lanes 2-6 are E. coli transformants 

containing p35000cdtA, pBE3145cdtA, pSB5755cdtA, pSB5756cdtA, and pSB5757cdtA. M13 

forward and M13 reverse primers were used to amplify the specific region of interest.  

4.4 Amplification of p35000 cdtB, pBE3145 cdtB, pSB5755 cdtB, pSB5756 cdtB, and 

pSB5757 cdtB into Mach1-T1 E. coli Transformants. 

Previous studies demonstrated that cdtB could be cloned and transformed into E. coli to 

express a gene of interest using specific M13 primers. The H. ducreyi genomic DNA could be 

amplified using PCR primers, designed to cdtB. Therefore, to amplify cdtB from E.coli whole 

cells were subjected to PCR and agarose gel electrophoresis. As predicted, an approximately 1 

kb DNA product containing cdtB was successfully amplified in Mach1-T1 chemically competent 

cells Figure 4.4. Double bands produced by BE3145 cdtB may indicate non-specific binding of 

the M13 forward and M13 reverse PCR primers to the DNA template. 
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Figure 4.4 Amplification of p35000 cdtB, pBE3145 cdtB, pSB5755 cdtB, pSB5756 cdtB, and 

pSB5757 cdtB into Mach1-T1 E. coli transformants. Lanes 2-6 are E. coli transformants 

containing p35000 cdtB, pSB5756 cdtB, pSB5757 cdtB, and pBE3145 cdtB. All transformants 

were successful in the amplification of cdtB. Each cdtB demonstrated the expected fragment size 

of 1 kb. M13 forward and M13 reverse primers were used to amplify the specific region of 

interest. Lane 1 is the 1kb DNA molecular marker.  

4.5 Amplification of p35000 cdtC, pBE3145 cdtC, pSB5755 cdtC, pSB5756 cdtC, and 

pSB5757 cdtC into Mach1-T1 E. coli Transformants 

Previous studies by Bauer et al. demonstrated that the H. ducreyi genomic DNA could be 

amplified using PCR M13 primers, designed to cdtC (Bauer et al., 2008). Therefore, to amplify 

cdtC from E. coli genomic DNA, colonies produced from blue- white screening were subjected 

to PCR and agarose gel electrophoresis. As predicted, an approximately 1 kb DNA product 

containing cdtC was successfully amplified (Figure 4.5) 
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Figure 4.5 Amplification of p35000 cdtC, pBE3145 cdtC, pSB5755 cdtC, pSB5756 cdtC, and 

pSB5757 cdtC into Mach1-T1 E. coli transformants. Lane 1 is the 1kb DNA molecular 

marker. The expected size DNA fragments, 1000 bp, were amplified from the Mach1-T1 

genomic DNA. Lanes 2-6 are E. coli transformants containing p35000 cdtC, pBE3145 cdtC, 

pSB5755 cdtC, pSB5756 cdtC, and pSB5757 cdtC. Lane 7 is the 1kb DNA molecular marker. 

4.6 Sequencing of pSB5755 cdtA and pSB5757 cdtA from Mach1-T1 E. coli Transformants 

Despite, obtaining partial nucleotide reads for transformants we were still able to proceed 

with DNA sequencing. DNA sequence analysis was performed on pSB5755 cdtA and pSB5757 

cdtA from Mach1-T1 E. coli transformants to verify plasmids inserts were indeed cdtA from H. 

ducryei strains. Sequencing results were obtained from Eurofins MWG operon and ETON 

Bioscience. Examination of the deduced nucleotide sequences of the pSB5755 cdtA and 

pSB5757 cdtA with FinchTV revealed that the cdtA was isolated from H. ducreyi (Figure 4.6 and 

4.7).  
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4.6.1 Nucleotide sequence comparison of 35000HP and pSB5755 cdtA. Purified 

nucleotide sequences of SB5755 cdtA and 35000HP cdtA were translated into amino acid 

sequences and subjected to amino acid sequence comparison using Finchtv. The cdtA from 

35000HP and SB5755 were determined to be 99% identical to the 35000HP amino acid sequence 

obtained from the STDGEN Database (http://stdgen.northwestern.edu/), as shown in Figure 4.6a. 

Phylogenetic analysis of wild-type 35000HP and Samoa strain SB5755 cdtA was performed in 

NCBI (using the neighbor-joining method. The value of each branch is the estimated confidence 

level (expressed as a percent) for the position of the branch as determined by boot-strap analysis. 

The comparison determined that there is not a high degree of variability between 35000HP and 

SB5755 cdtA. Taken together, these results indicate that cdtA is present in strain SB5755 and it is 

closely related to the cdtA of strain 35000HP. 

(A) 

http://stdgen.northwestern.edu/
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(B) 

(C) 

Description % Identity Accession Number 

Haemophilus ducreyi 35000HP genome 99% AE017143.1 

Haemophilus ducreyi cytolethal distending 

protein (cdtA, cdtB, and cdtC) 

99% U53215.1 

Aggregatibacter actinomycetemcomitans cdtA, 

cdtB, and  cdtC 

93% AB017807.1 

Figure 4.6 Sequencing results of pSB5755 cdtA. (A) pSB5755 and 35000HP cdtA nucleotide 

sequence comparison table produced using BoxShade. Strain names are listed to the left. Black, 

shaded regions indicate identity. Gray boxes demonstrate similar residues that were classified as 

either purines or pyrimidines. Numbers to the left of the figure indicate the nucleotide position 

within the sequence. (B) Phylogenetic tree analysis of pSB5755 cdtA and 35000HP cdtA. The 

scale bar represents differences in the nucleotide sequences. (C) Sequences producing significant 

alignments  

4.6.2 Sequence analysis of 35000HP and pSB5757 cdtA. Nucleotide sequence results 

were gathered from FinchTV of SB5755 cdtA. A BLAST (Basic Local Alignment Search Tool) 

of the amino acid sequence determined that SB5757 cdtA was 98% identical to the 35000HP 
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amino acid sequence obtained from STDGEN Database (http://stdgen.northwestern.edu/), as 

shown in Figure 4.6.2c. In this study, several attempts to determine the sequence of cdtA, cdtB, 

and cdtC from Samoa strains BE3145, SB5755, SB5756, and SB5757 were unsuccessful. Due to 

the poor quality of the sequence data, characterization of those strains could not fully be 

determined. 

(A) 

http://stdgen.northwestern.edu/
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(B) 

(C) 

Description % Identity Accession Number 

Haemophilus ducreyi 35000HP genome 98% AE017143.1 

Haemophilus ducreyi cytolethal distending 

protein (cdtA, cdtB, and cdtC) 

98% U53215.1 

Aggregatibacter actinomycetemcomitans 

complete genome 

90% CP007502.1 

Figure 4.7 Sequencing results of pSB5757 cdtA. (A) Nucleotide sequence comparison of the  

H. ducreyi amplicon pSB5757 cdtA and wild type 35000HP. Shaded regions indicate similarities 

between the strains. Numbers to the left of the figure indicate amino acid number within the 

strains. (B) Phylogenetic tree of pSB5757 cdtA. (C) Production of significant sequence 

alignments  
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4.7 Hemolytic Assay 

(A) 

(B) 

Figure 4.8 Hemolytic phenotypes of H.ducreyi 35000HP and Samoa strains on HBAPs. 

(A) Hemolysis of strain 35000HP on HBAP after three days of incubation produced large 

colonies showing clear zones of hemolysis. H. influenza was non-hemolytic and served as a 

negative control. (B) After three days of incubation Samoa strains BE3145, SB5755, SB5756, 

and SB5757 produce smaller clear zones of lysis in varying amount.  
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As expected, clear zones of lysis were seen with strain 35000HP on bilayer plates containing 

7.5% horse red blood (HBAPs). Wild-type 35000HP developed larger single colonies in 

comparison to the Samoa strains as observed in Figure 4.7. Samoa strains SB5755, SB5756, 

SB5757, and BE3145 were also incubated for three days at 35°C in the presence of 5% CO2, but 

less hemolytic activity was observed. While each strain produced varying amount of hemolysis 

Haemophilus influenza, serving as a negative control, did not exhibit any lysis. Despite 

prominent growth of H. influenza, the absence of lysis zones verified that only the secretion of 

CDT caused the lysis of the horse red blood cells in 35000HP and the Samoa strains of 

H. ducryei. 
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CHAPTER 5 

Discussion and Future Research 

Haemophilus ducreyi is a fastidious, gram negative coccobacillus that is the etiological 

agent of the sexually transmitted infection (STI) known as chancroid. Chancroid facilitates the 

heterosexual transmission of HIV and is commonly detected in Africa, Asia, and Latin America. 

Successful management of chancroid should greatly impact the dynamics of the HIV epidemic 

and furthermore, contribute to alleviation of the occurrence of chronic skin ulceration in these 

countries. The complete genomic sequence of H. ducreyi strain 35000HP has greatly expanded 

the scientific knowledge of the pathogenesis and biology of H. ducreyi. The independent 

investigation cytolethal distending toxin as a virulence factor may assist researchers combating 

this disease. 

 H. ducreyi is amongst several enteric species capable of expressing and secreting soluble 

cytolethal distending toxin (CDT) (Blazkova et al., 2010). CDT has been associated with G2 cell 

cycle arrest, progressive cell distention, and apoptosis in various cell types. H. ducreyi CDT 

(HdCDT) is encoded by three genes cdtA, cdtB, and cdtC which make up the CDT holotoxin. 

 The first description of nonsexual chancroid transmission was reported in 2007, after 

three young children visiting the island of Samoa developed lower limb ulceration from 

nonsexual H. ducreyi infection. The study of cdt in these Samoan strains may provide insight 

into the chronic infection of the disease and its survival within its human host. We hypothesized 

that the Samoa strains of H. ducreyi would express cdt and function in a similar manner to wild- 

type 35000HP. The objective of this study was to determine the presence, variability, and 

function of cytolethal distending toxin in Samoa strains of H. Ducreyi. 
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In this report, we used PCR and gel electrophoresis to demonstrate that H. ducreyi strains 

SB 5755, SB 5756, SB 57575, BE 3145, and parent strain 35000HP all produced cdtA, cdtB, and 

cdtC genes. PCR DNA fragments were successfully amplified and had approximate sizes of 750, 

950, and 700 bp respectively. Each gene was cloned independently and transformed into 

pCR2.1-TOPO plasmid vectors. These genes were successfully amplified into chemically 

competent Mach1-T1 E. coli cells. 

Examination of genetic differences amongst the Samoa strains using sequence analysis 

proved to be extremely challenging. Thus far, 35000HP cdtA and SB5755 cdtA are the only 

strains to be successfully sequenced and analyzed. The other strains all produced extremely short 

reads with an ample amount of human contamination. Sequence analysis of  the remaining 

Samoa strains are ongoing. The identification of variation or homology among the strains may 

play a vital role understanding the pathogenesis and the treatment of chancroid. Strains that have 

been isolated in various geographical regions have shown differentiation among antibiotic 

resistance, which affects therapeutic regimens. Amino acid sequence analysis of SB5755 and 

SB5757 cdtA have between 98-99% similar identities therefore, we can hypothesize that they 

function similarly to wild-type 35000HP. Further analysis obtaining full genomic reads will be 

beneficial in differentiation of the Samoa strains.  Phylogenetic analysis of 35000HP and 

SB5755 cdtA, as shown in Figure indicates the two strains are closely related. The culture of H. 

ducreyi and isolation of CDT is vital in determining the hemolytic activity of the Samoa strains. 

The Samoa strains of H. ducreyi were tested on horse blood agar plates (HBAP) to determine its 

ability to cause DNAse damage and lyse red blood cells. As expected, the wild-type 35000HP 

was able to cause lysis of the HRBCs after three days of incubation in the presence of CO2. Each 

of the Samoa strains was able to lyse cells, but their zone of lysis was not as prominent as the 
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wild-type. Increasing width of lysis zones indicate that CDT was continually secreted over a 

three day period, significantly in 35000HP. The small degree of genomic variation in each cdt 

may attribute to the various levels of lysis produced by each Samoa strain. 

Ussher et al. (2007) reported the first case of nonsexual transmission of chancroid by 

novel strains of H. ducreyi. This study demonstrates that Samoa strains BE3145, SB5755, 

SB5756, and SB5757 each contain cdtA, cdtB, and cdtC. DNA sequence analysis verified the 

successful amplification of cdt. Evolutionary analysis determined that these nonsexual strains are 

common ancestors of wild-type 35000HP. CDT is functional in 35000HP, BE3145, SB5755, 

SB5756, and SB5757. Inserting cdtA, cdtB, and cdtC plasmids into an expression vector maybe 

the next step to differentiate the Samoa strains of H. ducreyi. 
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