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Abstract 

Hydrogen is a renewable, clean energy source considered to be promising for energy and 

environmental sustainability. Steam reforming of methanol (SRM) to produce H2 is ideal for fuel 

cell applications. One of the challenges of SRM at high temperature is the CO formation that 

poisons the Pt electrode in proton exchange membrane fuel cell (PEMFC). In order to address 

this issue, development of novel catalysts is necessary that can be used for PEMFC applications. 

In this study, a one-pot procedure containing TiO2 precursor, metal salt, and 

cetyltrimethylammonium bromide surfactant was used to synthesize monometallic (M: Cu, Co, 

Ni, Pd, Sn, and Zn) nanoparticles supported on mesoporous TiO2. The catalysts were 

characterized using TGA-DSC, N2 adsorption-desorption, XRD, ICP-OES, TEM, FTIR and TPR 

techniques. Catalysts possess high surface area in the range of 99-309 m2/g, depending on the 

type of metal and its loading. TEM images show highly mesoporous TiO2 with uniform 

dispersion of metal nanoparticles. The XRD studies confirmed the existence of catalytically 

active anatase phase and the nanoparticulate nature of TiO2 crystallites. Hydrogen production via 

SRM using these catalysts was studied to investigate their activity and CO selectivity in the 

reaction temperature range of 150-350 °C. Comparative SRM studies of different M-TiO2 

catalysts were carried out with 10 wt% of metal loading. Results from SRM studies at 250 °C 

suggest that the activity of the monometallic catalysts followed the order of 

Pd>Ni>Co>Zn>Cu>Sn, whereas for the lower CO selectivity it was Zn>Co>Sn>Cu>Pd>Ni. The 

10%Zn-TiO2 catalyst showed the best results with CO selectivity of 1.19%, H2 selectivity of 

99.66%, and conversion of 82.4% at 350 °C reaction temperature. In addition, the effect of Zn 

loading from 5-20% was fully investigated on the activity and selectivity of the catalyst.  
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CHAPTER 1 

Introduction 

The rising environmental concerns associated with the rigorous use of fossil fuels for the 

production of energy and chemicals have gained much attention over the past century due to 

atmospheric pollution by greenhouse gases like CO2, CO, and NOx. With the availability of the 

fossil fuels diminishing and increasing environmental issues related to greenhouse gas 

emissions, the search for technology using renewable energy resources to overcome non-

sustainable nature of current energy systems is essential to the economy [1]. Hydrogen has 

become promising as a fuel because it is clean, carbon-free, and can be readily converted to 

electrical energy to power fuel cell electric cars. [2]. 

  Fuel cells have attracted much attention over the years as a potential device for energy 

transformation. They have high efficiency and low emission of pollutants, which makes them 

promising as future means of energy source [3]. However, there are several problems associated 

with the use hydrogen for fuel cells that include safety concerns, cost of transportation, storage 

and handling. These issues have led to the search for suitable energetic liquid fuels that can be 

used for hydrogen production [4].  

 Steam reforming is the catalytic hydrothermal conversion of hydrocarbons and alcohols 

to hydrogen with other by-products (CO and CH4). A typical steam reforming reaction for 

alcohols can be generalized in equation 1.1. 

            R’OH + x H2O o y H2 + CO2             (1.1) 

The alcohols generally used in steam reforming reactions are ethanol, methanol, and glycerol. 

The advantage of using methanol over other alcohols is that hydrogen can be produced at lower 

temperature (150-350 °C) making it more energy efficient and lesser cost of production.  Other 
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advantages include high hydrogen-to-carbon ratio (4:1), a high yield of hydrogen on weight and 

volume, and the absence of the C-C bond leading to low tendency of soot formation. In contrast, 

steam reforming of ethanol and glycerol require higher temperatures (>500 °C) to produce 

hydrogen because of the presence of C-C bonds. Thus, methanol reforming has become more 

desirable and the development of highly active catalysts giving lower CO selectivity for steam 

reforming of methanol (SRM) has gained much interests in recent years [5].  

The support of active components in catalysts plays a crucial role in the activity and 

stability of catalysts due to their unique interactions. Although a great deal of research has been 

done over past 30 years, the interactions between the support and the metals are still not well 

understood. There are several different metal oxides namely, alumina, silica, zirconia, ceria, and 

titania, which are commonly used as inorganic hosts of catalytically active components. An 

important property of the support material is a large specific surface area, in which the 

incorporated catalytically active phase can be highly dispersed. Mesoporous materials meet the 

requirements for the selection of a support due to their very high surface area allowing high 

dispersion of active sites and large pores to facilitate mass transfer [6]. Another interesting 

feature of mesoporous materials is their ability to modify the surface functionality, incorporate 

catalytic functions, and change the textural properties for applications, such as catalysis [7].  

Non-silica based mesoporous materials have been synthesized over the past two decades. 

The preparation of the non-siliceous mesoporous materials began to gain much interest in the 

beginning of the 21st century [8]. With increased interests in non-siliceous supports, scientists 

began to prepare semi-crystalline, ordered, and ordered crystalline mesoporous materials using 

soft and hard templating methods [8]. The physical properties of these supports such as, their 

particle and pore sizes, specific surface area, and wall thickness can be altered by changing 
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hydrothermal conditions, surfactants, and calcination temperatures. Manipulations of the support 

are advantageous to mesoporous metal oxides because it allows controllable features in size and 

shape of the resulting particles. 

One of the non-silica based mesoporous supports such as TiO2 has been used extensively 

in photo-catalysis for photo-degradation of various pollutants. There have been many efforts to 

synthesize mesoporous titania with high surface area and apply them in many fields. Mesoporous 

titania is expected to play an important role in solving environmental and pollution issues [9]. It 

has also been used in steam reforming reactions for its unique interactions with metals. Other 

advantages of mesoporous titania include high surface area, uniform pore size, and accessible 

open framework when used as a catalyst support for steam reforming reactions.  

The main objective of this thesis is to study the individual effect of different M-TiO2 

(where as, M= Cu, Co, Ni, Pd, Sn, and Zn) catalysts in the steam reforming of methanol (SRM) 

reactions. The main problem with catalysts in methanol steam reforming reactions at high 

temperature is the formation of CO, which poisons the Pt electrode in the PEMFC [10]. To 

overcome this issue, the development of novel catalysts with lower emission of CO is extremely 

important. Thus, the present study investigates the comparative effect of different metals 

incorporated in high surface area mesoporous TiO2 support on SRM activity and CO selectivity 

due to their unique metal-support interactions. For the development and investigation of M-TiO2 

catalysts, this research will cover the following: 

1. Synthesis of different M-TiO2 catalysts with 10 wt% and Zn-TiO2 with 5-20 wt% metal 

loading using a one pot procedure. 

2. Detailed characterization using TGA-DSC, XRD, BET, ICP-OES, TEM, FTIR, and TPR 

techniques to study the physical and chemical properties of the catalysts. 
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3. Testing of the synthesized M-TiO2 catalysts in the steam reforming of methanol (SRM)  

for H2 production. 

This thesis is divided into five chapters. This introductory chapter, CHAPTER 1, gives a 

brief background and the motivation behind this work. A literature review is presented in 

CHAPTER 2, which gives an overview on hydrogen as a fuel, its applications, and production, 

the steam reforming of alcohols, mesoporous materials, mesoporous titania and its synthesis, 

metals in mesoporous materials, and metals in mesoporous supports for steam reforming of 

methanol. CHAPTER 3 includes the materials and experimental procedure used to synthesize 

and characterize mesoporous TiO2 and M-TiO2, catalysts for steam reforming of methanol. The 

results and discussion of this study are presented in CHAPTER 4. Finally, conclusions and plans 

for future work are presented in CHAPTER 5. 
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CHAPTER 2 

Literature Review 

2.1 H2 as a Fuel, Other Applications, and Its Production 

 Hydrogen has gained more interest in recent years since it has been forecasted to become 

the major source of energy in the future. Hydrogen is considered as a clean burning fuel that can 

be stored as a liquid and/or gas and can be used for transportation and stationary power 

generation when used as a fuel for the PEMFC. Hydrogen is used as a feedstock in the chemical, 

food, and refining industries and is required to meet the global needs of cleaner products. 

Refining industries are in high demand for hydrogen because of its use for desulfurization, 

hydrogen treating, and the production of chemicals [11]. Hydrogen is produced mostly from 

natural gas and oil, but contains high levels of carbon dioxide [12]. Hydrogen can also be 

produced from biomass conversion, electrolysis of water, and chemical hydrides [11].  

The most economical way to produce hydrogen is from reforming of hydrocarbons. 

Reforming processes can be from steam (steam reforming), oxygen (partial oxidation), or the 

mixture of air and steam (auto thermal reforming). Steam reforming is more favorable because it 

yields higher hydrogen concentration than that obtained from partial oxidation and auto thermal 

reforming [10]. The development of suitable hydrogen production systems from renewable 

sources, such as steam reforming can help conquer the problems associated with green house gas 

emissions [12].  

2.2 Steam Reforming of Alcohols   

Alcohols have become promising candidates for H2 production as several feedstocks are 

available and more significantly due to their ability to react with water (steam) to generate 

hydrogen at low temperature [13]. Steam reforming of alcohols that have been reported in 
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literature include methanol, ethanol, and glycerol. However, the latter alcohols require higher 

temperature for reforming because of their longer C-C chains. Thus, steam reforming of 

methanol has become more favorable due to its low cost, ability to reform at lower temperature, 

its high hydrogen to carbon ratio, and the absence of excessive by-products. Methanol is also 

considered a synthetic fuel that does not suffer from sulfur contamination, which is a big 

advantage to fuel reforming because the system does not need a front end desulfurization 

operation nor sulfur-tolerant catalyst to operate on methanol [5].  

Steam reforming of methanol into gaseous mixtures can be described in equations 2.1-

2.3. The reforming reaction shown in equation (2.1) is endothermic, as energy is required to run 

the reaction. Methanol reacts with water to produce carbon dioxide and 3 moles of hydrogen. 

CH3OH + H2O o CO2+ 3H2   'H= 49.5 kJ mol-1                              (2.1) 

CH3OH o CO + 2H2    'H= 90.6 kJ mol-1                   (2.2)  

CO + H2O l CO2 + H2   'H= - 41.2 kJ mol-1                              (2.3) 

However, this reaction is not clean and other products are formed that have to be taken into 

consideration [10]. SRM has two side reactions, methanol decomposition followed by the water-

gas shift (WGS) reaction shown in equations 2.2 and 2.3, respectively. In equation (2.2), the 

decomposition of methanol takes place to produce carbon monoxide and 2 moles of hydrogen. 

Some of the carbon monoxide reacts with water in the reversible WGS reaction shown in 

equation (2.3) to produce carbon dioxide and hydrogen. Carbon monoxide is considered a by-

product of SRM reactions and at higher concentration (>10 ppm) it can poison the Pt electrode of 

the PEMFCs [10]. Therefore, the WGS reaction is very important in converting the unwanted 

carbon monoxide into carbon dioxide. The development of novel active catalysts for steam 
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reforming reactions that can produce hydrogen with minimal CO is in high demand for the 

successful employment in PEMFCs. Mesoporous materials have been found advantageous as 

supports towards the development of novel active catalyst for steam reforming reactions. The 

advantages of using mesoporous materials in catalysis include, high surface area, which allows  

higher concentration of active sites per mass of the material and large pores that are available for 

mass transfer [6].  

2.3 Mesoporous Materials 

 According to IUPAC definitions, porous materials have been divided into three 

categories; mircroporous (pore size <2 nm), mesoporous (2-50 nm), and macroporous (>50 nm). 

Mobil Oil Corporation scientists were the first to discover the features of novel type silica and its 

family of ordered M41S material. MCM-41, which stands for Mobile Composition of Matter No. 

41, is the most studied mesoporous material that consists of hexagonal pores and a narrow pore 

size distribution [14]. Modification and optimization of the reaction conditions yielded highly 

ordered silicates and aluminosilicates, which sparked interest in synthesis and characterization of 

different related materials [6].   

There have been many mesoporous metal oxides other than SiO2 that includes ZrO2, 

Al2O3, WO3, CeO2, SnO2, and TiO2. These mesoporous materials have advantages due to their 

ability to stabilize metal or metal oxide particles and halt the growth no larger than the pore size. 

Of these metal oxides, mesoporous titania has been extensively investigated for its electronic and 

optical properties [15] and it is a commonly used catalyst support due to its unique interaction 

with metal particles, uniform pore size, and open frameworks for mass transfer.   

 2.3.1 Mesoporous titania. Titania (TiO2) is cheap, chemically stable, innocuous, 

environmental friendly and biocompatible, archaic material that is commonly used as a white 
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pigment in paints, cosmetics, and health care products for many years [15]. Recently, it has been 

found that titania is more useful for the sustainability of energy generation [15]. More 

specifically, mesoporous TiO2 has gained much interest in photo-catalysis because of its 

stability, low cost, capability of decomposing contaminants in water and air purification, and 

device flexibility [16]. It has advantages such as large surface area, uniform pore size, and open 

framework for applications such as, photo-catalysis, solar cells, lithium ion batteries, sensors, 

and catalysts supports [17]. The surface area of mesoporous titania can range from ~ 89-700 

m2/g depending on the experimental approach used for its synthesis [15]. 

2.3.2  Synthetic approaches of mesoporous titania. There are two main procedures to 

synthesize mesoporous titania: i) sol-gel method and ii) hydrothermal method. A description of 

each synthesis is presented in this section. 

In the 1960s, the sol-gel method was developed due to the need for new synthesis 

methods in nuclear industries [18]. Sol is considered a stable dispersion of colloidal particles or 

polymers in a solvent. The gel is a three dimensional continuous network, which encloses the 

liquid phase and the network is built from agglomeration of the colloidal particles. Inorganic 

precursors undergo hydrolysis and polycondensation reactions to form a colloid and a gel. A 

typical method consists of the mixture of metal alkoxides or salts in water or solvents, typically 

alcohols, at elevated temperatures [19]. The structure of solid phase is made from colloidal 

particles to a polymeric network gel. Drying and calcination of the sol-gel can lead to oxide 

particles with high surface area and controlled crystallinity [20].  

Antonelli and Ying [21] were the first to report the synthesis of mesoporous titania, by a 

sol-gel process with a titanium isopropoxide precursor and alkylphosphate surfactant as the 

template. The material had hexagonal mesostructure and high stability when calcined at 350 °C. 
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However, a significant amount of phosphate remained in the sample after calcination. Phosphate 

surfactants limit the use of mesoporous titania as a catalyst support due to poisoning of the active 

site of the support. Antonelli et al. [22] also reported the synthesis of titania with a non-

phosphated surfactant, using dodecylamine as the template, but the obtained material had poor 

thermal stability after calcination at 300 °C. The advantages of this method include enhancement 

of surface stability, improvement of homogeneity, surface area, and porosity of multi-component 

systems [23]. However, the disadvantages of the sol-gel method include high carbon content 

from the use of organic reagent during preparative step, long aging time (5-15 days), expensive 

metal alkoxides, and uncontrollable particle sizes [15].  

The hydrothermal method includes crystallization techniques to obtain homogenous or 

heterogeneous phase reactions at high temperature and pressure in aqueous solutions. Surfactants 

are added to control the particle size and limit the agglomeration unlike the sol-gel process. The 

powders obtained are either amphorous or crystalline depending upon reaction conditions. High 

calcination temperatures are not required for this process, which is a major advantage [24]. Other 

advantages include controllable particle size by altering starting materials and reaction 

conditions. However, hydrolysis and polymerization of Ti precursors in aqueous solution are not 

easily controlled resulting in a decrease in high mesostructure regularity over a large domain 

[15].  

In order to control the hydrolysis and polymerization of Ti precursors in aqueous 

solution, an evaporation-induced self-assembly (EISA) approach was developed by Brinker and 

co-workers. This approach begins with the homogenous solution of titania precursors and 

surfactant in ethanol/water solvent with c0 << CMC (critical micellar concentration). With the 

increase in surfactant concentration, the self-assembly of titania-surfactant micelles are able to 
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organize into ordered liquid-crystalline mesophases. The method provides the preparation of 

mesoporous materials in dilute non-aqueous medium, which controls the hydrolysis and 

polycondenstaion of the metal precursor [25]. The pore sizes of mesoporous titania depend upon 

the surfactant templates, in which catonic quaternary surfactants with long alkane chains can 

yield large pore sizes. Soler-Illia et al. [26] synthesized hexagonally ordered mesoporous TiO2  

using cetyltrimethylammonium bromide (CTAB), which is considered a catonic surfactant, 

through the EISA process. After that, the synthesis of mesoporous TiO2 with various precursors, 

surfactants, and ratio of precursor to surfactant were used to yield different mesostructures and 

pore-wall parameters [15]. Gajjela et al. [27] reported the synthesis of mesoporous titania with 

the use of several catonic surfactants including CTAB. Different molar ratios of surfactant to 

precursors were compared for the materials using the EISA process. 

Both sol-gel and hydrothermal methods are aimed to synthesize mesoporous titania. 

However, the hydrothermal method is more favorable due to its ability to control particle sizes, 

which is important in catalysis.  The particle sizes can also be controlled with the addition of 

metals into mesoporous materials. Since ordered mesoporous supports are not often used as 

catalysts, the incorporation of active sites into the walls of the support or deposition of active 

species on the inner surface of material is utilized to improve the performance of catalysts [6]. 

2.4 Metals in Mesoporous Materials 

Metal particles incorporated in different supports have been used in catalysis for many 

decades. The high dispersion of catalytically active particles in support materials is very 

important to catalysis. The use of ordered mesoporous materials with high surface areas and 

controllable pore sizes meet the requirements for high dispersion. There are several pathways for 

the deposition of the active metal compound onto the mesoporous support. Some of these 



 12 

methods include chemical vapor deposition (CVD), impregnation, ion exchange, and one-pot 

synthesis. 

2.4.1 Chemical vapor deposition (CVD). CVD is a process used to synthesize metal 

oxide nanoparticles with high purity and superior performance. This method consists of the 

deposition of solid material from a gaseous phase and is typically used in the semiconductor 

industry for micro-fabrication to produce thin-films. There are many CVD processes reported for 

the formation of nanoparticles, but the pore volume of the support limits the amount of metal 

loading. The substrate is first exposed to volatile precursors that react with substrate to produce 

the desired deposition. The nucleation and growth of the oxide nanoparticles follow solid-solid 

crystallization at higher temperature [24].  

2.4.2 Ion exchange method. This technique involves the deposition of metal ions to the 

support by ion exchange. The negative charge of the pore walls exchanges charges with the 

cationic metal ions in aqueous solution. During reduction, some of the active sites are liberated, 

which allows the performance of the next exchange. The disadvantage of this method is its 

restricted amount of metal loading due to the capacity of the support and poor uniform 

distribution of the metal on the support [28]. 

2.4.3 Impregnation method. Impregnation also  known  as  ‘wet  chemistry’  is commonly 

used for the synthesis of supported metal catalysts, where the solid support is treated with a 

solution of metal precursor dissolved in a solvent to fill the pores and form a thick paste. The 

solvent is removed and the resulting solid is dried and calcined before catalyst testing. The 

support then undergoes deposition that will convert the metal precursor to an active species. 

These supports are considered thermally stable and can withstand the process of activation of 

these metal precursors, in which the catalyst are normally activated under a stream of hydrogen 
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gas at high temperature [24]. The major disadvantage of this method is the lack of uniform 

distribution of metal particles on the support, as they remain mainly in the pores [29]. 

2.4.4 One-pot synthesis. The one-pot synthesis has been reported by many researchers 

for the preparation of the metal and support simultaneously [30, 31]. The one-pot synthesis 

consists of the addition of metal precursors to the reactant solution and incorporating the metal 

during templated synthesis of the support. The preparation of mesoporous silica (MCM-41) 

containing palladium (Pd) nanoparticles by one-pot synthesis using a mixture of HCl-PdCl2 in 

aqueous solution, cationic surfactant (CTAB), and silica source tetraethyl orthosilicate (TEOS) 

was reported by Wang et al. [32]. The PdO generated from the aqueous solution was capped by 

the CTA+ surfactant micelle and interacted with anionic silicate species to form PdO/SiO2 

mesophase through templating [32]. This one pot synthesis is represented in Figure 2.1. When 

compared to the impregnation method, the one-pot method has been observed to yield uniform 

distribution of active sites [33]. This procedure eliminates pre-synthesis of the hard-template and 

post-synthesis treatments of mesoporous materials [34]. In this present work, the metal 

precursors and titania precursor are used in  a one-pot procedure to obtain mesoporous titania 

supported catalyst.  

2.5 Metals in Mesoporous Supports for Steam Reforming 

 Metal particles incorporated into mesoporous supports have a large surface to volume 

ratio compared to bulk material, which makes them attractive candidates for catalytic 

applications [35]. There are many studies found in literature on steam reforming with various 

supports and metals. Some of the metals used in steam reforming reactions include copper-based 

catalysts, group 8-10 metals (Ru, Rh, Pt, Pd, Ni, Co), and Zn/Sn-based catalyst. 
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 2.5.1 Copper based catalysts. Copper-based (Cu) catalysts are extensively used in  SRM 

reactions. Most studies on copper catalyst focus on the effect of the preparation method. 

Researchers have investigated the effect of preparation method and found that each step could 

affect the properties of the catalyst [36]. Liu et al. [37] reported active catalyst with higher values 

of copper dispersion and surface area with small particles. It has been reported in literature that 

CeO2 has unique interactions as a support and that Cu/CeO2 showed high activity due to highly 

dispersed Cu metal particles and unique interactions between Cu and CeO2. However, copper 

catalyst are known for severe deactivation due to changes in oxidation state, sintering, or coke 

deposition [36]. Cu/ZnO systems have also been studied due to their ability to promote the low 

temperature water-gas shift reaction in the steam reforming of methanol. Cu-ZnO supported on 

Al2O3 were shown to deactivate at extended times on the stream and at higher temperatures, 

which made them not acceptable to fuel cell applications [13].  

 2.5.2 Group 8-10 metals. A researcher by the name of Iwasa sparked the study of group 

8-10 metal-based catalysts by investigating the catalytic performance of these metals in the 

steam reforming of methanol [36]. Palladium (Pd) supported in ZnO is the most commonly 

catalyst studied in this group for the steam reforming of methanol. New approaches of using 

different supports that had higher surface area than ZnO were studied [4], but led to the study of 

Zn addition as a bi-metallic catalyst. Pd/ZnO catalyst reaction activity was effected by the 

supports applied and were reported to have high reaction selectivity [38]. It was later found that 

Pd/ZnO formed a Pd/Zn alloy confirmed by x-ray diffraction (XRD) and x-ray photoelectron 

spectroscopy (XPS) [39].  

Nickel (Ni) catalysts are mainly reported in literature for the use of steam reforming of 

ethanol to produce hydrogen [13]. Transition metals, such as Ni are known to facilitate C-C bond 
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cleavage in reforming processes. Ni is also considered to be cheap and useful to industrial 

catalyst in hydrocarbon reaction, but they suffer from deactivation cause by the formation of 

coke [40]. Pérez-Hernández et al. [13] reported that Ni supported on mixed oxide CeO2-ZrO2 for 

the oxidative steam reforming of methanol were highly active and stable. High selectivity 

towards hydrogen was observed with Ni support on ZrO2. However, the WGS reaction does not 

occur with this catalyst. Monometallic and bimetallic catalysts with Ni and Cu metal precursors 

supported on ZrO2 were synthesized for the oxidative steam reforming of methanol. It was 

observed that Ni/ZrO2 had higher catalytic activity than Cu/ZrO2 [41].  

Cobalt (Co) catalysts are mainly reported in literature for the steam reforming of ethanol 

[42]. Co-based catalysts have been studied over several supports, such as TiO2, Al2O3, and ZrO2 

for the steam reforming of ethanol [43]. It was found that ethanol conversion could be correlated 

with metal dispersion of the Co metallic site when supported on TiO2, Al2O3, and ZrO2. The Co-

ZrO2 catalyst showed the highest metal dispersion and hydrogen yield compared to the other Co-

supported catalyst. In another study, Batista et al. [44] found that Co  supported on Al2O3 and 

SiO2 mainly contained the oxide phase of Co3O4 confirmed by temperature programmed 

reduction (TPR) experiments. Both catalysts promoted the WGS reaction, but the Co/Al2O3 

showed better removal of CO with complete conversion of ethanol and Co/SiO2 exhibited better 

selectivity towards hydrogen. 

 2.5.3 Zinc and tin-based catalysts. There are studies on the use of Zinc (Zn) supported 

catalyst in steam reforming reactions. ZnO is normally used in combination with Cu or Pd as a 

catalyst support [45, 46]. Pinzari et al. [47] reported the use of Zn support on titania for the steam 

reforming of methanol and the combined reforming of methanol (SRM and partial oxidation of 

methanol). It was observed that the physico-chemical properties such as surface area, 
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crystallinity, and catalytic performance depended on the composition of the catalyst. The 

Zn/TiO2 showed its highest catalytic activity at 400 °C in SRM reactions and that a proper 

amount of zinc was required to prevent coking and reduce the formation of by-products. 

The use of other metals, such as tin (Sn) has also been considered for SRM. In literature, 

the influence of Sn addition to Ni/MgO-Al2O3 catalyst for steam reforming processes was 

studied in SRM reactions [40]. Sn was added to Ni/MgO-Al2O3 catalysts to promote bimetallic 

systems that could prevent the formation of nickel carbide and assist in the reduction of coke 

formation. However, it was observed that the addition of Sn decreased catalytic activity of SRM 

reaction. There is not much in literature on the use of monometallic Sn catalyst for steam 

reforming processes. 

Commercially available and low surface area mesoporous titania is widely used in steam 

reforming studies. To the best our knowledge, there has not been any thorough investigation 

reported in the literature of different metals supported on high surface area mesoporous titania 

and their performance in SRM reactions. It is expected that high surface area mesoporous titania 

could decrease metal loading, increase the metal dispersion, and thereby eliminate deactivation 

of catalyst due to sintering. In this work, the properties of Ni, Cu, Co, Sn, Pd, and Zn supported 

on mesoporous titania, synthesized using a one-pot procedure, will be explored using different 

characterization techniques. The main goal is to investigate the performance of  these M-TiO2 

catalysts in SRM reactions to address their unique strong metal-support interactions.  
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CHAPTER 3 
Experimental Procedures 

3.1 Chemicals 

 Table 3.1 shows a complete list of chemicals used in the present work. All chemicals 

were used without further purification. The distilled water used for all experiments was purified 

using Mill-Q Advantage A10 Elix 5 system obtained from Millipore Corporation (Bedford, MA, 

USA).  

 Table 3.1  

List of Chemicals 

Formula Full Name Manufacturer Specification 

C16H33N(CH3)3Br Cetyltrimethylammonium 
bromide (CTAB) 

Sigma-Aldrich 99% 

C12H28O4Ti Titanium isopropoxide Acros Organics 98% 
Ni(NO3)2y6H2O Nickel Nitrate hexahydrate Fischer Scientific - 
Cu(NO3)2yH2O Copper nitrate hydrate Sigma-Aldrich 98% 

CoCl2y6H2O Cobalt chloride hexahydrate Sigma-Aldrich - 

Zn(NO3)2 y6H2O Zinc nitrate hexahydrate Sigma-Aldrich 98% 

SnCl2y2H2O Tin chloride dihydrate Sigma-Aldrich 98% 

Pd(NO3)2yH2O Palladium nitrate hydrate Sigma-Aldrich - 

NH4OH Ammonium hydroxide Acros Organics - 

C2H5OH Ethanol Fischer Scientific - 

HF Hydroflouric acid Fischer Scientific 51% 

HNO3 Nitric acid Fischer Scientific 68% 

 Sand (white quartz) Sigma-Aldrich - 
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Table 3.1 

Cont. 

 

3.2 Synthesis 

3.2.1 Mesoporous-TiO2. Mesoporous titania was synthesized using the molar ratio of 1 

TIPR: 0.52 CTAB: 282 H2O: 26.21 ethanol. Initially, a water-ethanol solution with 4/1 

(water/ethanol) volumetric ratio was prepared and to this solution a measured quantity of TIPR 

was added drop-wise very slowly with continuous vigorous stirring. The stirring was continued 

for another 30 min after TIPR addition. Then NH4OH was added drop-wise until the pH was 10. 

The resulting mixture was stirred for 24 h at room temperature. The precipitate was washed with 

water until the pH of the filtrate was 7 and then with ethanol followed by filtration. The filtered 

material was air dried for ~24 h and then dried in an oven at 110 °C for 24 h.  Finally, the dried 

material was calcined at 350 °C for 5 h with the heating and cooling rate of 2 °C/min to get the 

crystalline TiO2. 

3.2.2 One-pot synthesis of M/TiO2. Mesoporous titania containing metal particles was 

synthesized using the molar ratio of 1 TIPR: 0.52 CTAB: 282 H2O: 26.21 ethanol. The quantities 

of the metal precursors were used according to the metal loading requirement of the final 

catalyst. Initially, a water-ethanol solution with 4/1 (water/ethanol) volumetric ratios was 

prepared and to this solution measured quantity of CTAB was added and stirred for 30 min to get 

clear solution. In another beaker, a solution of metal salt in ethanol was prepared. After stirring 

for 30 min, this solution was mixed with CTAB solution and stirred again. To this solution 

measured quantity of TIPR was added very slowly and drop-wise with continuous vigorous 

 Quartz wool Fischer Scientific - 

KBr Potassium bromide Fischer Scientific - 
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stirring. The stirring was continued for another 30 min after TIPR addition. Then NH4OH is 

added drop-wise to adjust the pH ~ 10. The resulting mixture was stirred for 24 h at room 

temperature. The precipitate was washed with water to obtain the filtrate of pH 7 and then with 

ethanol and filtered. The filtered material was air dried for ~24 h and then dried in an oven at 110 

°C for 24 h.  Finally, the dried material was calcined at 350 °C for 5 h with the heating and 

cooling rate of 2 °C/min to get the crystalline TiO2.   

 

 

 

Figure 3.1. Scheme for the synthesis of M-TiO2 monometallic catalysts 
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3.3 Catalysts Characterization 

3.3.1 Thermo-gravimetric analysis-differential scanning calorimetry (TGA-DSC). 

Thermo-gravimetric analysis (TGA) and differential scanning calorimetry (DSC) was performed 

on samples using a SDT Q600 V20.3 Build 14 system (TA Instruments, New Castle, DE, USA). 

The airflow rate of the environment of the chamber was maintained at 100 mL/min and the 

sample was heated containing aluminum pan at the rate of 10 °C/min. 

3.3.2 N2 adsorption-desorption isotherm. The specific surface area, pore size, and pore 

volume of all catalysts were evaluated using a Quantachrome NOVA 2200e instrument. All 

samples were degassed under vacuum at 150 °C and dosing nitrogen onto the material in a liquid 

nitrogen bath at 77 K was used to generate the adsorption-desorption isotherms. The surface area 

of all catalysts were calculated on the basis of the Brunauer-Emmett-Teller (BET) equation from 

the adsorption branch of the isotherm in a relative pressure (P/P0) range of 0.07-0.3, where P is 

absolute pressure and P0 is saturated vapor pressure. The total pore volume was calculated based 

on the amount of N2 adsorbed at a relative pressure close to unity. A dry and clean empty sample 

cell is weighed and the weight is noted down. About 0.2 g of catalyst is added to the sample cell 

and placed in a pouch of heating mantle, with a set clamp in place and the cells are inserted and 

tightened into the fitting. The outgassing process takes ~ 5 h to complete depending on porosity 

of the sample. After outgassing, the sample cells in the outgassing station are placed in the 

analysis station. The Dewar flask is filled with liquid nitrogen and placed firmly in the analysis 

station and the analysis is started. 

3.3.3 Inductively coupled plasma optical emission spectroscopy (ICP-OES). The 

metal content of the catalysts samples was determined using ICP-OES Aglient 710-ES 

spectrometer. About 75 mg of catalyst sample was dissolved in a mixture of 2 mL of 
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concentrated hydrofluoric acid (51% HF) and 3 mL concentrated nitric acid (68% HNO3) 

followed by heating at about 80 °C for 30 min. The catalyst samples were diluted with de-

ionized water before ICP-OES analysis.   

3.3.4 X-ray diffraction (XRD) measurements. Powder X-ray powder diffraction (XRD) 

studies of the samples were carried out using a D8 DISCOVER X-ray diffractometer from 

Bruker (Bruker Optics, Inc., Billerica, MA) with a position sensitive detector (PSD) from 20°-

70° using a step width of 0.014° and scan speed of 1.5 s/step,  using  Cu  Kα  radiation  generated  at  

40 mA and 40 kV at the scanning rate of 0.01°/s. The crystal sizes of the CuO and PdO particles 

were determined using the Scherrer equation (3.1):  

 

� �

W  
0.9O

Exc o sT
                              (3.1) 

where  τ  is  the  crystal  size,  λ  is  the  wavelength  (O= 1.5418 mm) of  the  Cu  Kα  radiation,  β  is  the  

full width half maximum  of  the  respective  peak  and  θ  is  the  Braggs  angle  of  diffraction.   

3.3.5 H2-temperature programmed reduction (H2-TPR). The H2-TPR experiments of 

the catalysts samples were performed using AutoChem II 2920 Chemical Analyzer from Micro 

Instrument Corp. (Norcross, GA, USA). In a typical experiment, ~ 0.5 g of the catalyst was 

placed in a clean quartz sample cell, sandwiched between two wads of quartz wool. The quartz 

sample cell was fitted with a thermocouple for continuous temperature measurement of the 

catalyst bed. Before H2-TPR measurements, the sample was flushed with pure argon (Ar) flow of 

50 mL/min at 200 °C for 30 min and then cooled to room temperature. While the temperature 

was increased to 900 °C at 10 °C/min, a 10% H2/Ar (50 mL/min) was flown through the 

catalysts and held at a final temperature for 30 min. The consumption of the hydrogen during the 

reduction of the catalysts was recorded using a thermal conductivity detector. 
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3.3.6 Transmission electron microscopy (TEM). The morphology of the catalysts was 

analyzed using Zeiss Libra 120 transmission electron microscope operated at an accelerating 

voltage of 120 kV. For analysis, the catalyst sample was dispersed in ethanol and dropped onto a 

carbon-coated microgrid. 

 3.3.7 Fourier transform infrared spectroscopy (FTIR). The FTIR spectra were 

recorded using Shimadzu IR Prestige-21 Fourier transform infrared (FTIR) 8300 spectrometer 

equipped with mercury-cadmium-telluride (MCT) detector. A potassium bromide (KBr) pellet 

was used for the sample preparation. The KBr was heated in an oven at 60 °C overnight to 

eliminate any moisture in the sample. The powdered catalyst (~ 0.01 g) was diluted with a 

special grade of KBr (~ 0.2 g) in 1:200 ratio and ground into a homogenous powder using a 

mortar and pestle. The sample was loaded into a 13 mm manual die and pressed to form into a 

self-supporting pellet. The pellet was mounted on the sample holder and the spectrum was 

recorded in the range of 4000 to 400 cm-1 at 4 cm-1 resolutions at an ambient temperature. 

3.4 Catalyst Testing for SRM 

The operating parameters used in the steam reforming reactions are summarized in Table 

3.2. Catalysts were reduced using 4% hydrogen in argon environment at 350 °C temperature for 

2 h. The catalytic activity tests were performed under atmospheric pressure in a continuous up 

flow stainless steel fixed bed reactor (Tube ID: 6.22 mm). The freshly reduced catalyst (~ 1.5 g) 

was mixed with sand (white quartz, 50-70 mesh, supplier: Sigma-Aldrich) at a ratio of equal 

volume. The mixture was loaded to the reactor and quartz wool is used at both ends to pack the 

reactor. Prior to each SRM reaction, the catalyst was activated further in-situ at 350 °C for 1 h 

under 4% H2 in Ar environment. A feed with a constant methanol/water molar ratio of 1:3 was 

used in all experiments. The composition of the reaction products and collected condensate were 
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analyzed using an Agilent 7890B GC equipped with a thermal conductivity detector (TCD) and 

flame ionization detector (FID). The selectivity to hydrogen was calculated by analyzing the 

moles of H2, CO, and CO2 produced in the SRM reaction. A detailed process flow diagram of the 

experimental set-up used is shown in Figure 3.2. 

Table 3.2  

Operating parameters used in steam reforming of methanol 

Operation Parameters Conditions 

Temperature (°C) 150-350 

Feed Flow Rate (mL/min) 0.1 

Gas Hour Space Velocity (hr-1 at STP) 2838 

Water to Methanol Ratio 3:1 

Metal Loading (%) 5-20 
Amount of Catalyst (mL) 2 

Amount of Sand (mL) 1 
 

 

 

 

 

 

 

 

 

 
Figure 3.2. Schematic representation of the set-up for steam reforming of methanol to produce 

hydrogen  
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The methanol conversion and selectivity towards hydrogen and carbon monoxide were evaluated 

from equations 3.2-3.4. 
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CHAPTER 4 

Results and Discussion 

4.1 Catalysts Characterization  
 
 4.1.1 TGA-DSC. Figure 4.1 shows the typical TGA-DSC profile of mesoporous-TiO2 

recorded in air.  

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.1. TGA-DSC profile of mesoporous-TiO2 

The profile or thermogram shows weight loss at two stages. The first one is located below 180 

°C and is associated with a strong endothermic peak centered at ~ 85 °C. This weight loss is 

attributed to removal of adsorbed water on the surface of mesoporous-TiO2. The second weight 

loss can be attributed to the removal of CTAB used as the templating agent for mesoporous 

structure, which also corresponds to an exothermic peak between 220 - 300 °C in the DSC scan. 

A second exothermic peak is observed at ~ 450 °C, but with insignificant weight loss of the 
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material. Hence, this peak can be attributed to the transition from amorphous to the crystalline 

phase of TiO2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. TGA-DSC profile of 10%Co-TiO2 obtained by one-pot synthesis 

Figure 4.2 shows the typical TGA-DSC profile of 10%Co-TiO2 recorded in air. There are 

two significant weight loss stages in the TGA profile. The first one is between 20-100 °C, which 

can be attributed to the removal of adsorbed water on the surface of mesoporous-TiO2. The 

second weight loss in the range of ~ 200-400 °C can correspond to the removal of CTAB. This 

coincides with an exothermic peak ~ 250 °C due to the removal of CTAB. The second 

exothermic peak at ~ 300 °C could correspond to the decomposition or condensation of the 

hydroxyl groups as reported by Arsalanfar et al. [48]. A third exothermic peak is observed at 450 

°C with insignificant weight loss of the material. Hence, this peak may be attributed to the 

transition from amorphous to the crystalline phase of TiO2. Darzi et al. reported at peak at 470 
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°C in the DSC curve attributing to the crystallization of amorphous phase to anatase of 

mesoporous-TiO2 [49]. 

Figure 4.3 shows the TGA-DSC profiles of different Zn-TiO2 samples with Zn loading 

varied from 5-20%.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. TGA-DSC profiles of 5-20%Zn-TiO2 recorded in an atmosphere of air 
 

All profiles show one significant weight loss at ~ 250-450 °C, which can be attributed to 

removal of the template, CTAB. The first exothermic peak in DSC observed at ~ 275 °C for all 

catalyst corresponds to the removal of the template, also observed by Lee et al. [50]. They 

observed a peak ~ 290 °C corresponding to the removal of CTAB in DSC curves of mesoporous 

titania via sol-gel method.  A second exothermic peak is observed between ~500-560 °C for all 

catalyst with insignificant weight loss of the material. These peaks can be attributed to the 

crystallization of amorphous to the crystalline phase of TiO2 [49]. It can also be observed that 
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with the increase in Zn loading from 5 to 20 %, the crystallization temperature increased from 

~500 to 560 °C. There is no exothermic peak for decomposition of hydroxyl group, as observed 

in the 10%Co-TiO2 sample. The crystallization temperature was observed to increase from ~450  

°C to ~ 500 °C with the addition of metal on mesoporous titania with Co and Zn samples 

showing a delay in crystallization. 

4.1.2 Textural properties. The N2 adsorption-desorption isotherms for mesoporous-TiO2 

and different metal incorporated mesoporous-TiO2 with metal loading of 10 wt% are depicted in 

Figure 4.4. Based on IUPAC classification, all isotherms for monometallic catalysts resemble the 

Type IV isotherm, a typical characteristic for mesoporous materials [51].  

 

 

 

 

 

 

 

 

Figure 4.4. N2 adsorption-desorption isotherms for mesoporous-TiO2 and M-TiO2 catalysts 

 
From the isotherms, a linear increase of nitrogen uptake at a low relative pressure (P/P0= 0-0.23) 
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pressure (P/P0=0.43-0.97), multilayer adsorption occurs, and it is associated with hysteresis loop 

indicative of capillary condensation. Lastly, a sharp rise in N2 uptake at relative pressure above 

0.97 is observed due to the presence of interparticle pores. Mesoporous-TiO2 consists of a H2 

type hysteresis loop that corresponds to the inkbottle shaped pores. However, the Figure 4.4 also 

shows that the shape of the hysteresis loop changes from H2 to H4 upon addition of metal 

particles indicating a significant change in the textural properties. The H4 hysteresis loops are 

generally associated with the slit-like pores, which are usually eclipse shaped [52]. 

The BET surface areas, pore sizes, and pore volumes of the mesoporous-TiO2 and 

different M-TiO2 catalysts obtained from N2 adsorption-desorption studies are presented in Table 

4.1. The surface area, pore diameter, and pore volume of catalysts ranged from 99.86-309.79 

m2/g, 2.53-4.93 nm, and 0.08-2.03 cm3/g, respectively, depending on the type of metal 

incorporated into mesoporous-TiO2. Mesoporous-TiO2 support has a specific surface area of 

146.56 m2/g; however, addition of metal particles led to the significant increase in surface area 

except for Pd-TiO2. Thus, it is evident that the addition of metals into titania causes structural 

changes in the mesoporous-TiO2 support.  

Our results with addition of metals to TiO2 are similar to the increase in surface area upon 

addition of metal ions to ZrO2. Youn et al. [53] reported that the addition of small amount of 

metal cations into zirconia support led to increase in surface area due to enhancement of the 

structural stability of the cubic or tetragonal phase. The high surface area of the catalysts in the 

present study is mainly due to the highly mesoporous nature of the TiO2 support as evident in  

the N2 adsorption-desorption isotherm with hysteresis loops [54]. The crystallization of 

mesoporous-TiO2 upon calcination leads to the collapse of the mesoporous structure due to the 

increased crystallite size, thus decreasing the surface area. The degree of decreased surface area 
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depends upon the degree of crystallization. Clearly, the metal loading in the titania support 

enhance the structural stability of the anatase crystalline phase. However, this was not observed 

in the case of 10%Pd-TiO2, where the specific surface area diminishes after addition of Pd metal 

causing a decrease in total pore volume and pore size when compared to mesoporous-TiO2. The 

decrease in surface area of 10%Pd-TiO2 can be attributed to the large sizes of Pd metal particles. 

This will be discussed in more detail during the discussion of XRD results.  

The actual metal loading in mesoporous-TiO2 also plays a significant role in the actvities 

of the catalyst. The results from our analysis, determined using ICP-OES, are also shown in 

Table 4.1.  

Table 4.1  

Surface areas, pore sizes, pore volumes, and actual metal loadings of different M-TiO2 catalysts 

 
Catalyst 

Surface Area 
(m2/g) 

Pore Size 
(nm) 

Pore 
Volume 
(cm3/g) 

Actual Metal Loading (wt 
%) ICP-OES 

TiO2 146.56 4.70 0.17 0 

10Cu-TiO2 285.57 2.65 0.19 10.6 

10Ni-TiO2 309.79 2.63 0.20 13.9 

10Co-TiO2 215.14 2.65 0.14 13.3 

10Sn-TiO2 164.29 4.93 0.13 5.26 

10Pd-TiO2 99.68 3.23 0.08 5.32 

10Zn-TiO2 250.24 2.53 0.16 12.52 

 

The metal loadings of different 10 wt% monometallic catalysts varied in the range of 10.6 to 

13.9 %, except for samples of 10%Sn-TiO2 and 10%Pd-TiO2. For Sn and Pd based catalysts, the 
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loading was found to be considerably lower (5.26 and 5.32 %) than the intended loading of 10%. 

While, the higher loading of metal can be attributed to the more loss of titania particles or 

precursor, the lower metal loading in some cases could be due to the loss of metal particles or 

metal precursors during the catalysts preparation. 

Table 4.2 presents the surface areas, pore sizes, pore volume, and actual metal loadings of 

5-20 %Zn-TiO2 catalyst obtained by N2 adsorption-desorption studies. An interesting behavior 

was observed in surface area variation when the Zn loading was increased from 0 to 20 wt%. As 

the loading was increased from 0 to 15 %, the surface area increased from ~146 to ~257.5 m2/g. 

However, with further increase in Zn loading to 20%, a drastic reduction in surface area to 

140.11 m2/g was observed.  

Table 4.2  

Surface areas, pore sizes, pore volumes, and actual metal loading of different Zn-TiO2 catalysts 

Catalyst Surface Area 
(m2/g) 

Pore Size 
(nm) 

Pore Volume 
(cm3/g) 

Actual Metal Loading 
(wt %) ICP-OES 

5Zn-TiO2 178.77 2.9557 0.1321 5.2 

10Zn-TiO2 250.24 2.5274 0.1581 12.52 

15Zn-TiO2 257.50 2.7227 0.1753 12.14 

20Zn-TiO2 140.11 3.2291 0.1131 17.18 

 

The first trend in surface area variation can be explained as discussed before based on the 

delay in crystallization due to the presence of Zn atoms. This delay in crystallization of TiO2 was 

observed to increase with the increase in Zn loading, as presented before in our TGA-DSC 

results. Thus, up to 15% loading, Zn atoms hinder the crystallization of TiO2, which avoids the 

collapse of the mesoporous structure. However, the decreased surface area of catalysts at higher 
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Zn loading (i.e. above 15%), caused Zn atoms not only act as impurity hindering the 

crystallization, but they also interfere in the formation of mesoporous structure. The observed 

lower surface area of 20%Zn-TiO2 compared to mesoporous-TiO2 is attributed to this relatively 

less porous nature of the material. 

4.1.3 X-ray diffraction. X-ray Diffraction is an important technique used to investigate 

the ordered mesoporous  materials  and  also  to  characterize  the  materials’  crystallization  behavior. 

Figure 4.5 represents the x-ray diffraction pattern of mesoporous-TiO2 and different M-TiO2 

samples.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. XRD patterns of different M-TiO2 catalysts with 10 wt% metal loading 
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absence of both the rutile and brookite phase [27]. These peaks are indexed as (101), (004), 

(200), (105), and (211) planes, respectively [55]. Addition of metal led to a decrease in intensity 

of these peaks, indicating a lower degree of crystallization. However, this decrease in 

crystallization appears to be strongly dependent on the type of the metal. For example, while Cu 

showed an insignificant change in intensity, the presence of Ni did not show any clear peak in 

XRD. For 10%Co-TiO2, 10%Zn-TiO2, 10%Ni-TiO2, and 10%Sn-TiO2 samples no peaks 

attributed to the metal or metal oxides in the XRD spectra were observed. This could be due to 

the non-crystalline phase, highly uniform dispersion, and very small sizes, which are x-ray 

amorphous and not detected by XRD technique [56]. The XRD spectrum of 10%Cu-TiO2 

exhibits two peaks at 2-theta 35.5° and 38.7°, ascribed to the monoclinic CuO crystal phase, 

assigned to (002) and (111) planes, respectively [57]. The XRD spectra of 10%Pd-TiO2 also 

showed a peak at 2-theta values of 42.1° assigned to (111) crystalline plane of PdO [58]. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.6. XRD patterns of 5-20% Zn-TiO2 catalysts 
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Figure 4.6 shows the x-ray diffraction pattern of 5-20%Zn-TiO2 samples. XRD studies 

show that the addition of metal particles to TiO2 matrix result in decreased peak intensities. It 

indicates that the presence of metal atoms hinder or delays the TiO2 crystallization process, 

which was also confirmed by the TGA-DSC studies. The rate of crystallization during heat 

treatment depends on the rate of atomic diffusivity of titanium ions. However, the presence of 

metal atoms could be acting as an impurity or adatoms decreasing the mobility of Ti ions 

resulting in decreased diffusivity and subsequently decreased crystallization property [59]. Thus, 

the higher surface area of M-TiO2 compared to TiO2 can be attributed to relatively lower extent 

of crystallization upon metal addition. 

The particle sizes of catalyst and crystal sizes of the CuO and PdO calculated using 

Scherrer equation (3.1) are shown in Table 4.3. The TiO2 crystal size decreases upon metal 

loading, confirming low crystallinity by XRD. The metal crystal size of Pd is ~ 49.39 nm, which 

is large and explains the decrease in specific surface area. 

Table 4.3  

Particle sizes of TiO2 and metal crystals 

Catalyst TiO2 Crystal Size (nm) Metal Crystal Size (nm) 

TiO2 17.18 - 

10%Sn-TiO2 7.52 - 

10%Cu-TiO2 9.84 20.94 

10%Co-TiO2 4.03 - 

10%Pd-TiO2 8.78 49.39 

10%Zn-TiO2 6.79 - 

5%Zn-TiO2 7.29 - 
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4.1.4 TPR. Temperature programmed reduction (TPR) is a technique that gives 

information about the reduction behavior and reduction temperature of metal oxides interacting 

with the support. Mesoporous-TiO2 is known to have a strong metal-support interactions effect 

(SMSI) that can affect the properties of the catalyst [60]. Therefore, TPR study of M-TiO2 

catalysts will provide information on the interaction between the metal species and titania 

support, which can be correlated to its SRM activity. Figure 4.7 depicts the TPR of mesoporous-

TiO2 and different M-TiO2 catalysts. TPR was conducted on TiO2 support at the same TPR 

conditions used for the catalyst samples to detect any hydrogen consumption by the support. The 

TiO2 support showed a broad low intensity reduction peak at about 530 °C and another small 

peak initiated at about 900 °C, indicating that some of the TiO2 was also reduced [61].  Hwang et 

al. [62] also reported a broad band centered at 560°C corresponding to surface reduction of TiO2. 

The TPR profile of 10%Pd-TiO2 shows a sharp reduction peak centered at 91 °C, which is due to 

the reduction of PdO to metallic Pd (Pd2+ to Pd). A similar behavior was observed with Pd 

supported on TiO2 by Pérez-Hernández et al. [4]. It has been reported that a peak in the range of 

90-160 °C is associated with PdO particles [63, 64]. A negative peak is also observed around 250 

°C that could be attributed to the release of H2 from decomposition of the palladium hydride 

formed previously with H2 [4, 65]. For 10%Cu-TiO2, there are two peaks that can be ascribed to 

two step reduction of species that are more or less interacting with the support [66]. The first 

peak ~ 150 °C could be due to the reduction of CuO to Cu2O species that is highly dispersed and 

interacting with TiO2 support as confirmed by XRD studies. The second peak ~ 170 °C is mainly 

due to reduction of Cu2O to Cu. Smith et al. [67] also reported this two-step reduction process of 

CuO o Cu2O o Cu0 in Cu/SiO2 catalyst. The TPR of 10%Co-TiO2 showed a shoulder in the 

range of 350-600 °C before the broad reduction peak, which could be attributed to the reduction 
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of Co3O4 to CoO. The broad reduction peak at ~600-890 °C could be assigned to the reduction of 

CoO to metallic Co. There are no H2 consumption peaks that can be due to the reduction of the 

titania support. Bayram et al. [68] reported a doublet in the TPR profile of Co/CeO2 and found 

that the first peak was attributed to the reduction of Co3O4 to CoO and the second peak to 

reduction of CoO to metallic Co. The area under the curve was used to calculate the ratio of the 

second peak to the first peak, to help assign the peaks with the appropriate reduction steps. The 

observed ratio of 1: 3 was in agreement with the stoichiometry of the stepwise reduction of 

Co3O4 to CoO to metallic Co.  

In contrast to the TPR profile of Co-TiO2, 10%Ni-TiO2 shows different features. The 

main sharp peak at 400 °C that can be attributed to large NiO particles with no interaction with 

the titania support [69]. The observed small peak in the range of 450-600 °C can be attributed to 

NiO strongly reacting with the TiO2 support. Vita et al. [70] reported he studies of NiO 

supported on CeO2 where two reduction peaks were observed at 400 °C and 500 °C. They 

attributed these peaks to NiO reacting with the CeO2 support weakly and strongly, respectively. 

It was suggested that NiO reduction occurs to a great extent during the first step due to catalysts 

with low nickel content. The second peak of NiO interacting strongly with the support is related 

to the catalytic activity in the SRM.  

In the TPR profile of 10%Zn-TiO2, three reduction peaks are observed due to H2 

consumption at ~ 430 °C, 650 °C, and 750 °C. According to literature, these peaks can be 

attributed to the reduction of the spinel-like ZnTi2O4 species. Hull et al. [71] reported spinel-like 

species for ZnFe2O4 at three reduction temperatures due to the reduction of the spinel to Fe3O4, 

then Fe3O4 to FeO, and lastly FeO to Fe for the steam reforming of ethanol (SRE). The 

advantages of spinel-like species are low acidity, thermal stability, and resistance to coking, and 
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thus make them favorable for steam reforming reactions. In conclusion, mixed metal oxides that 

contain spinel-like structures with zinc were linked to the catalytic active sites in steam 

reforming processes.  It also can be observed that reduction is not complete even after 1000 °C 

due to reduction of the TiO2 support.  

Lastly, the TPR profile for 10%Sn-TiO2 shows three distinct reduction peaks contributed 

to an occurrence of a more complex reduction. The first reduction peak around 300 °C could be 

attributed to the reduction of Sn4+ to Sn2+ and the second reduction peak around 500 °C could 

represent the reduction of Sn2+ to metallic Sn. Our results are similar to that observed by Li et al. 

[72]. The last reduction peak ~ 700 °C could be attributed to the reduction of the support [73]. 

 

 

 

 

 

 

 

 

 

Figure 4.7. TPR profiles of different M-TiO2 catalysts with 10 wt % metal loading 
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and (d) displays the high mesoporous structure even after the addition of metal in each case. 

Figure 4.8(b) indicates the uniform distribution of Co metal supported on mesoporous-TiO2.  

 

Figure 4.8. TEM images of (a) mesoporous-TiO2 (b) 10%Co-TiO2 (c) 10%Sn-TiO2 (d) 10%Zn-

TiO2 catalysts 

 4.1.6 FTIR. The FTIR studies were done to understand further the interaction between 

the different metals and the support. The spectra of as-prepared and calcined samples of 
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mesoporous-TiO2 and different M-TiO2 catalyst are shown in Figure 4.9 (a-g). All as-prepared 

samples contain a doublet band centered at ~ 2925 cm-1 and 2854 cm-1, with a distinct band 

around ~ 1500 cm-1 contributed to the symmetric C-H and asymmetric CH2 vibrations of the 

organic template, CTAB, that disappears in the calcined samples confirming its complete 

removal. These results are in good agreement with previous studies [55]. Only the 10%Zn-TiO2 

sample had peaks in the calcined samples from the organic template, which was not completely 

removed after calcination due incomplete removal of surfactant. The strong band in the range of 

900 - 400 cm-1 is associated with vibration modes of TiO2 (Ti-O-Ti). The broad adsorption bands 

in the range of 3800 – 3000 cm-1 in all samples are assigned to the presence of –OH stretching 

and the intensity of the peaks decreases and shifts to the left due to condensation of the –OH 

groups. The presence of the adsorption band in all samples around ~ 1630 cm-1 could be assigned 

to the O-H bending vibration that can also arise from water absorbed on the surface from the 

atmosphere [74]. The adsorption bands ~ 2350 cm-1 corresponds atmospheric CO2, also observed 

by Khalid et al. [75]. 
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Figure 4.9. FTIR spectra of as-prepared and calcined samples of (a) mesoporous-TiO2 (b) 

10%Co-TiO2 (c) 10%Ni-TiO2 (d) 10%Pd-TiO2 (e) 10%Sn-TiO2 (f) 10%Zn-TiO2 (g) 10%Cu-

TiO2 catalysts 
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4.2 Catalysts Testing for SRM 

Table 4.4 summarizes the effect of temperature on the steam reforming of methanol 

activity and selectivity of different M-TiO2 catalysts. Methanol conversion was higher at higher 

reaction temperature for all M-TiO2 catalysts. This is consistent with the work of Pėrez-

Hernández et al. [13], who observed higher conversion at the maximum reaction temperature of 

375 °C with Ni/CeO2-ZrO2 catalyst. More significantly, our studies show that the catalyst can 

have a significant influence on the methanol conversion depending on the metal used. The 

catalytic activity of 10%Co-TiO2 increased to 71.83% with the increase in temperature to 350 °C. 

The selectivity of CO and CH4 decreases with the increase in temperature, while the selectivity 

of H2 and CO2 increases showing promotion of the WGS reaction in equation (2.3). The low 

activity of 10%Co-TiO2 could be due to the higher reduction temperature of the Co metal 

species. The catalytic activity of 10%Ni-TiO2 increased to 86.22% with the increase in 

temperature to 350 °C and showed high selectivity for H2 and CO suggesting that the main 

reaction was methanol decomposition as shown in equation (2.1). Further, this reaction showed 

SRM activity for temperature as low as 150 °C. The activity of 10%Ni-TiO2 does not favor the 

WGS reaction and promotes high levels of CO, but the catalyst is highly active due to the NiO 

particles  strongly  reacting  with  the  support.  Pėrez-Hernández et al. [13] also reported the same 

trend over Ni-based catalysts supported on CeO2-ZrO2 mixed oxides. For 10%Cu-TiO2, the 

catalytic activity is low and increases with the increase in temperature, but only up to 28.22% at 

350 °C. The selectivity towards H2 and CO increases with the increase in temperature, 

confirming the WGS reaction is not favorable with 10%Cu-TiO2 catalyst and as stated 

previously, the active site could be covered with Cu crystallites causing low performance. The 

10%Pd-TiO2 catalysts also showed activity at 150 °C, but with only 8.04% conversion. The 
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activity of the catalyst increased to 97.84% with an increase in temperature to 350 °C. The 

selectivity towards hydrogen decreased as the selectivity to CH4 increased. However, the 

selectivity toward CO decreased while that of CO2 increased.  

In contrast to the activity of the catalysts described above, 10%Sn-TiO2 catalyst is quite 

different. The lowest activity in steam reforming with a maximum conversion of 13.23% at 350 

°C is observed for 10%Sn-TiO2. This reaction had a low selectivity towards H2, CO and CO2. 

Methanation is highly favored with this catalyst with a maximum of 77.40% selectivity at 250 

°C. It was observed by Bobadilla et al. [40] that Sn-based catalyst avoids the WGS reaction and 

has low catalytic activity. The low catalytic activity of 10%Sn-TiO2 could be due to Sn metal 

particles in higher oxidation states and lower surface area. The SRM reaction of the catalyst was 

extremely slow and the run at 200 °C run could not be completed. Lastly, the 10%Zn-TiO2 

catalyst showed an increase in activity to 82.40% with an increase in temperature to 350 °C. The 

selectivity towards H2 is 99% at all reaction temperatures and with low selectivity of CO with 

1.19% at 350 °C. The Zn metal could have a unique interaction with the TiO2 support creating a 

spinel-like structure confirmed by TPR, which are known to be thermally stable and resistance to 

coking. If all the different M-TiO2 catalysts with 10 wt% were taken into account at 250 °C, the 

activity of the catalyst would go as follows: Sn< Cu< Zn< Co< Ni< Pd. Based on selectivity 

towards minimal CO, the Zn catalyst shows the lowest selectivity of 1.19%, with 97.84% 

conversion of methanol. Clearly, the Zn catalyst favors the WGS reaction and minimal methanol 

decomposition to produce CO. However, the concentration of CO is still quite high (> 10 ppm). 

As stated previously, the concentration of CO would have to be < 10 ppm to prevent poisoning 

of the Pt electrode in PEMFCs. 
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Table 4.4 

Activity and selectivity of different M-TiO2 catalysts for steam reforming of methanol 

Catalyst Temp 
(°C) 

Conversion 
(%) 

H2 (%) 
Selectivity 

 

CO (%) 
Selectivity 

 

CH4 (%) 
Selectivity 

 

CO2 (%) 
Selectivity 

 

10%Co-TiO2 

200 10.98 94.66 45.91 8.21 45.88 

250 24.01 97.36 16.07 4.61 79.32 

300 42.37 96.81 8.20 6.14 85.66 

350 71.83 86.13 6.47 18.36 75.18 

10%Ni-TiO2  

150 6.30 99.89 93.33 0.11 6.56 

200 12.61 99.57 94.08 0.43 5.49 
250 25.23 98.58 88.34 1.52 10.14 

300 44.94 97.56 83.36 2.52 14.12 

350 86.22 96.69 74.66 3.55 21.79 

10%Cu-TiO2 

200 5.80 88.48 43.79 16.77 39.44 
250 14.48 96.72 56.39 5.19 38.42 

300 20.80 96.30 57.06 4.85 38.09 

350 28.22 91.04 72.00 9.22 18.78 

10%Pd-TiO2 

150 8.04 99.55 76.01 0.50 23.48 
200 13.40 99.11 78.34 0.96 20.70 

250 43.83 98.10 78.60 2.03 19.37 

300 76.24 96.46 68.09 3.88 28.03 

350 97.84 93.71 33.51 7.66 58.83 

10%Sn-TiO2 

250 1.72 35.61 11.05 77.40 11.55 

300 9.59 33.65 21.54 63.22 15.24 

350 13.23 51.6 24.37 47.20 28.43 

10%Zn-TiO2 

200 5.42 99.71 7.93 1.84 90.24 

250 22.35 99.40 2.96 0.78 96.25 

300 65.66 99.77 1.53 0.34 98.13 

350 82.40 99.66 1.19 0.50 98.32 
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As Zn metal supported on titania exhibited lower selectivity towards CO, efforts were 

made to synthesize Zn-TiO2 catalyst with 5, 15, and 20 wt% to reduce the selectivity towards CO 

even further down. Table 4.5 summarizes the steam reforming of methanol activity and 

selectivity of 5-20%Zn-TiO2.  

 

Table 4.5  

Steam Reforming of Methanol activity and selectivity of 5-20%Zn-TiO2 catalysts 

Catalyst Temp 
(°C) 

Conversion 
(%) 

H2 
Selectivity 

(%) 

CO 
Selectivity 

(%) 

CH4 
Selectivity 

(%) 

CO2 
Selectivity 

(%) 

5%Zn-TiO2 

200 5.64 99.09 9.28 1.36 89.36 

250 19.02 99.44 6.70 0.91 92.38 

300 28.13 99.70 2.44 0.44 97.11 

350 42.285 99.54 2.35 0.65 97.00 

10%Zn-
TiO2 

200 5.42 99.71 7.93 1.84 90.24 

250 22.35 99.40 2.96 0.78 96.25 

300 65.66 99.77 1.53 0.34 98.13 

350 82.40 99.66 1.19 0.50 98.32 

15%Zn-
TiO2 

200 5.95 99.41 4.69 0.84 94.47 

250 21.46 99.52 4.11 0.78 95.12 

300 67.79 99.43 1.74 0.81 97.45 

350 88.68 99.77 1.36 0.32 98.32 

20%Zn-
TiO2 

200 8.58 99.30 6.41 1.07 92.52 

250 14.86 99.25 4.71 1.24 94.05 

300 18.55 97.76 3.97 3.54 92.50 

350 29.01 99.08 2.19 1.18 96.62 
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All the 5-20%Zn-TiO2 catalysts showed increasing activity with the increase in 

temperature. The catalytic activity improves as the metal loading increased from 5-15%. 

However, the catalytic activity drastically decreased when the loading was increased to 20%Zn-

TiO2. This is most likely due to the decrease in the specific surface area, in which the pores 

become larger. In all cases, the selectivity towards hydrogen is 99% and the selectivity of CO 

ranges from 1.19-9.28 %. The catalysts still promote the methanol decomposition and WGS 

reactions due to the by-products having higher selectivites towards H2 and CO2. The catalytic 

activity of Zn-TiO2 catalyst goes as follows: 15Zn< 10Zn< 5Zn< 20Zn. Therefore, the surface 

area could be correlated to the catalytic activity, as higher the surface area of the Zn-TiO2 the 

better is its catalytic activity. 
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CHAPTER 5 

Conclusions and Future Work 

5.1 Conclusions 

Mesoporous-TiO2 with high surface area was synthesized using a one-pot procedure in 

the presence of the surfactant, CTAB. The FTIR spectra showed the complete removal of the 

surfactant after calcination at 350 °C. The surface area of the catalysts was observed to increase 

with the addition of metals, except in the case of Pd metal. In the case of Pd, the surface area 

decreased due to the large PdO metal particles ~ 49.39 nm, causing a collapse in the mesoporous 

structure. N2 adsorption-desorption isotherms and TEM studies confirmed that the material had a 

highly mesoporous nature even after the addition of metals. The wide angle XRD studied 

showed the existence of the catalytically active anatase phase. The intensity of the diffraction 

peaks was observed to decrease with the addition of metals onto the mesoporous support 

suggesting a decrease in crystallization. The decrease in crystallization led to the increase in 

surface area, which is a unique characteristic of mesoporous TiO2. The TPR results showed the 

reduction behavior and temperature of the support and metal oxides. In some cases, two 

reduction steps could be observed for the catalyst. In the SRM reactions, the 10%Pd-TiO2 and 

10%Ni-TiO2 catalysts showed activity for methanol reforming at as low as 150 °C. The 10%Pd-

TiO2 and 10%Ni-TiO2 exhibited the highest catalytic activity in SRM reactions with methanol 

conversion of 97.84% and 86.22%, respectively at 350 °C. The 10%Cu-TiO2 and 10%Sn-TiO2 

showed the lowest catalytic activity in SRM reactions. In overall, the steam reforming results 

suggest that the activity of the monometallic catalysts at 250 °C is as follows 

Pd>Ni>Co>Zn>Cu>Sn. The selectivity towards CO is as follows Zn<Co<Sn<Cu<Pd<Ni. The 

10%Zn-TiO2 catalyst showed the activity at 82.4%, H2 selectivity at 99.66%, and the selectivity 
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towards CO with 1.19 % at a temperature of 350 °C. As for Zn-TiO2 catalysts with different 

wt%, the 10%Zn-TiO2 still showed the best results with low selectivity towards CO. 

5.2 Future Work 

Based on my research findings, I recommend the following for future work:  

1. Optimization of one-pot synthesis of mesoporous TiO2 catalysts: Different metals 

precipitate at different pH values. Therefore, in order to retain higher loading of each 

metal in mesoporous-TiO2 support, it is important to study the effect of pH on the 

synthesis. The critical micelle concentration of the surfactant is very important in 

controlling the pore size and geometry of the mesoporous structure. A thorough 

understanding of the type and amount of the surfactant used during synthesis can play a 

significant role in the development of stable and robust catalyst.  

2.  Multimetallic TiO2 Catalysts: According to SRM results, Pd exhibited the highest 

reactivity, whereas Zn and Co showed the lowest CO selectivity. The use of multi-

metallic systems such as Pd-Zn-TiO2, Pd-Co-TiO2, and Pd-Zn-Co-TiO2 are expected to 

promote a synergistic effect in reducing and/or eliminating the CO during SRM. 
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Appendix A 

Thermo gravimetric analysis-differential calorimetry of (1) 10%Cu-TiO2 (2) 10%Sn-TiO2 
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For peak descriptions, see section 4.1.1. 
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Appendix B 

Experimental Calculations 

Synthesis of 5 g 10%Ni-TiO2 

Composition of the catalyst: 10% Ni 
             90% TiO2 

Amount of metal in the catalyst (g):  

��

Amount of catalyst tobe prepared (g) X Composition of metal in catalyst (%)
100  

 
(5 g) X (10%) / 100 = 0.5 g of Ni(NO3)2. 6H2O 

Amount of TiO2 in the catalyst (g): 

��

Amount of catalyst tobe prepared (g) X Composition of TiO2 in catalysts (%)
100  

 
(5g) X (90%) /100 = 4.5 g of TiO2 

 
MOLE RATIO: 1 TIPR: 0.52 CTAB: 282 H2O: 26.21 ethanol 
 

1 mole of TiO2 = 1 mole of TIPR, therefore 79.86 g of TiO2 = 284.22 g of TIPR 
 
Amount of TIPR to be used to get required 4.5 g of TiO2 (g):  
 

��

Amountof TiO2 in thecatalyst(g) X MW of TIPR (g /mol)
MW of TiO2 (g /mol)  

 
(4.5 g) x (284.22 g/mol) / (79.86 g/mol) = 16.02 g of TIPR 

Volume of TIPR used (mL): 

��

Amountof TIPR to be used to get requiredTIPR (g)
Densityof TIPR (g /mL)

 

 
(16.02 g) / (0.95 g/mL) = 16.86 mL of TIPR 

 

Actual quantities of TIPR used in moles: 

��

Amount of TIPR used (g)
MW of TIPR (g /mol)

 

 
(16.02 g) / (284.22 g/mol) = 0.056 mol of TIPR 
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1 mole of metal = 1 mole of metal precursor, therefore 58.69 g of metal = 290.79 g metal 
precursor 

Amount of metal to be used:  
 

��

Amountof metalin thecatalyst(g)
MW of metal(g /mol)

X MW of precursors(g /mol)  

 
((0.5g) / (58.69 g/mol) X 290.60 g/mol) = 2.477 g of Ni(NO3)2. 6H2O 

Actual quantities of metal used in moles: 

��

Actual quantitiesused g� �
MW of metal precursors(g /mol)

 

(2.477 g) / (290.79 g/mol) = 0.0085 mol of Ni(NO3)2. 6H2O 

Actual quantities of H2O used in moles:  

��

Actualquantitiesof TIPR used mol� �X Composition of H2Oused  
 

(0.056 mol) X (282) = 15.89 mol of H2O 
 

Actual quantities of H2O used in g: 

��

Actual quantities used (mol ) X MW of H2O (g /mol ) 
 

(15.89 mol) X (18 g/mol) = 286.03 g of H2O 
 

Actual quantities of H2O used (mL): 

��

Actual quantities used (g)
Density of H2O (g /mL)

 

 

(286.03 g) / (1 g/mL) = 286.03 mL of H2O 
 
Actual quantities of CTAB used in moles:  
 

��

Actual quantitiesof TIPR used (mol ) X Composition used (molar ratio) 
 

(0.056 mol) X (0.52) = 0.029 mol of CTAB 
 
Actual quantities of CTAB used in g:  
 

��

Actual quantitiesof CTAB used (mol) X MW of CTAB (g /mol ) 
 

(0.029 mol) X (364.44 g/mol) = 10. 68 g of CTAB 
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Actual quantities of ethanol: 

��

Actualquantitiesof H2O used (mL)
4

 

 
(286.03 mL / 4) = 71.5 mL of ethanol 

 
Actual quantities of ethanol used (g):  
 

��

Actual quanties used (mL ) X Density of TIPR (g /mL) 
 

(71.5 mL) X (0.95 g/mL) = 67.93 g of ethanol 
 

Actual quantities of ethanol used in moles: 

��

Actual quantitiesof ethanolused (g)
MW of ethanol(g /mol)

 

 
(67.93 g) / (46 g/mol) = 1.48 mol of ethanol 

 
Composition of ethanol used in mole ratio:   
 

��

Actualquantitiesof ethanolused (mol)
Actualquantitiesof TIPR used (mol)  

 
(1.48 mol) / (0.056 mol) = 26.21  
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Typical Weights for 5 g of catalysts 

Catalysts CTAB 
(g) 

H2O 
(mL) 

EtOH 
(mL) 

TIPR 
(mL) 

Pd(NO3)2 
(g) 

Zn(NO3)2 
(g) 

Cu(NO3)2 
(g) 

Ni(NO3)2 
(g) 

SnCl2 
(g) 

CoCl2 
(g) 

TiO2 11.87 317 79.45 18.73 
 

- - - - - - 

10%Co-TiO2 
 

10.68 
 

286 71.5 16.86 - - - - - 2.09 

10%Cu-TiO2 10.68 
 

286 71.5 16.86 - - 1.83 - - - 

10%Sn-TiO2 10.68 
 

286 71.5 16.86 - - - - 0.95 - 

10%Pd-TiO2 10.68 
 

286 71.5 16.86 1.17 - - - - - 

10%Ni-TiO2 10.68 
 

286 71.5 16.86 - - - 2.58 - - 

5%Zn-TiO2 11.27 
 

302 75.48 17.79 - 1.14 - - - - 

10%Zn-TiO2 10.68 
 

286 71.50 16.86 - 2.27 - - - - 

15%Zn-TiO2 10.09 
 

270 67.53 15.13 - 3.41 - - - - 

20%Zn-TiO2 9.49 
 

254 63.56 14.98 - 4.55 - - - - 
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Appendix C 
 

Gas Chromatography Calculations 
 

Methanol/Water (1/3) Feed Calculations 
 
Molecular weight of Methanol = 32 g/mol 

      

Molecular weight of water = 18 g/mol 

      

Density of Methanol = 0.792 g/mL 

      

Density of water = 1 g/mL 

      

Amt of methanol used in mL = 40 mL 

      

Amt of methonl used in g  = 31.68 g 

      

Amt of methanol in moles  = 0.99 moles 

      

Methanol:Water molar ratio to be used = 1 : 3   

      

Amt of water to be used in moles  = 2.97 moles 

      

Amt of water to be used in g = 53.46 g 

      

Amt of water to be used in mL = 53.46 mL 

      

Total volume of the solution = 93.46 mL 

      

Concentration of the methanol = 0.338968543 g/mL 

Concentration of water in solution = 0.572009416 g/mL 
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Gas hour space velocity calculations

 
 
 

 

 

 

 

 

Methanol concentration= 0.3389 g/mL 
Water concentration = 0.572 g/mL 
     
Total Flow 0.137 mL/min 
(for 0.2 mL flow setting on pump)    
Methanol = 0.0464293 g/min 
  2.785758 g/hr 
water = 0.078364 g/min 
  4.70184 g/hr 
     
Moles of methanol = 0.087054938 mol/hr 
     
Moles of water = 0.261213333 mol/hr 
     
P= 101325 Pa 
T = 298 K 

R= 8.314 
Pa. m3/(K. 
mol) 

PV=nRT    
V  methanol= 0.002128644 m3/hr 
  2.12864422 lit/hr 
     
V water = 0.006387119 m3/hr 
  6.387119079 lit/hr 
     
Total feed flow = 8515.763299 mL/hr 
     
Volume of the reactor = 3 mL 
     
GHSV = 2838.587766 /hr 
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Typical GC Chromatogram  

 

 
 

 
For GC operating parameters, see Table 3.2. 
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Appendix D 

Standard Operating Procedure for the NOVA 2200e BET Instrument 
 

Sample Cell Calibration Procedure 
The individual sample cell must be calibrated before the analysis. This needs to be conducted for 

each (Sample Cell + Filler rod + Station) combination. Each combination will be given a unique 

cell number. This will be done only once for each combination and it will be automatically saved 

in the floppy disk of the instrument so no need to do it again until the floppy disk in the 

instrument has been formatted or changed. This calibration is essentially a 25-point blank 

analysis (i.e. without sample). Up to 99 cell calibrations can be saved per user disc. During a 

sample analysis, the NOVA program refers to this file. It is very important to use the correct cell 

calibrations with the cells that are actually used; otherwise, differences in volumes will result in 

erroneous data. 

1. To perform a cell calibration using NOVAWin2 select Operation and click Calibrate 
Cell from the drop-down submenu which will open the following window (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1 
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2. Select the station for the calibration. The distinction should be made as to which cell is in 
each station in that cells of different sizes may be calibrated together during a cell 
calibration. 

3. Choose a P0 option. The recommended value for P0 is “Calculate  at  Run  Time” 
4. Enter a unique Cell Number to identify the particular sample cell. This number is 

associated with a certain combination of (sample cell+ filler rod + Station). Once the 

calibration is performed on a cell, the operator has to invoke the appropriate cell number 

at analysis time. 

5. Select the Cell Size of the sample cell to be calibrated. 
6. Choose the Adsorbate for the cell, Nitrogen is the defaulted selection. 
7. Click the start button to begin the calibration. 
8. Follow the same procedure to calibrate all the cells with unique rod and station 

combination. 

Outgassing Procedure: 

The Outgassing of the sample is done to remove all the adsorbed moisture or other gases before 

doing the BET analysis. Outgassing of the sample on NOVA 2200e can be done only using the 

instrument from control panel and not using the Novawin software. 

1. Weight the dry and clean empty sample cell and note down the weight. Put the amount of 

catalyst sample (which will have roughly 10-15 m2) of surface area, place the sample cell 

in the pouch of the heating mantle, set clamp in place, insert cell into fitting and tighten 

the fitting. 

2. To start the Outgassing, go to the Home Screen Î Control Panel Î Degas Stations Î 

Press appropriate number to load the sample. 

3.  To test the sample for complete outgassing, go to Home Screen Î Control Panel Î 

Manual Mode Î press appropriate numbers to open Valve 4 and valve 2 (Valve 3 and 

Valve 6 will already be open during outgassing), so now four valves i.e. 6, 3, 4, 2 will be 

open that is called evacuation of the sample line. Monitor the pressure reading on the 

screen and wait to get it constant. Once it is constant close valve 4 & 3 and open valve 2. 

Again monitor the pressure on the screen (pressure will increase slightly with time). If the 

change in pressure is less than 0.03 mmHg/min your outgassing is complete. If it is above 
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0.03 mmHg you need to keep the sample outgassing for some more time and do the 

outgassing test again to check. 

4. Once the Outgassing is done, go to the Home Screen Î Control Panel Î Degas 
Stations Î Press appropriate number to unload the sample 

5. Measure the weight of the sample cell with the outgassed sample and subtract the weight 

of the empty sample cell to get exact weigh of the dried catalyst sample which will be 

using in next stage of analysis. 

Analysis Procedure 

1. Fill the dewar flask with the liquid nitrogen and place and place it firmly in the analysis 

chamber and place the outgassed sample cell to the analysis station. 

2. To begin the analysis, select operation Î Start Analysis as shown in Figure 2.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2 
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The Analysis Setup window consists of two parts: the Common Tab and the Stations 
Tab. The Common tab is where the parameters are set for the measurements that are 

common to all of the sample cells for the analysis (adsorbate selection, P0 determination, 

thermal delay, and sample volume determination, if desired). The Stations tab in the 

Analysis Setup window is where parameters such as specific sample information (sample 

identification and sample weight), data point selection, and equilibrium criteria can be set 

for each of the individual stations. 

3. In the Common tab (Figure 2), enter your name as Operator ID, Select Nitrogen as an 

Adsorbate Gas, and enter 180 sec for Thermal delay (30+) option 

4. For the P0 Option choose Calculate where at the beginning of an analysis, the manifold 

is pressurized and atmosphere is measured in the manifold. The value measured is 

ambient pressure and 10 mm Hg is added to that value. 

5. Check the Measure option box in the Sample Volume so that NOVA will measure the 

volume of the sample in case the density of the sample is not known (which is the case most 

of the time for our analysis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3 
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6. In the Station tab Î Sample tab (Figure 3); enter File Name (for your reference), ID, 

description and Weight of the sample. The Density option will be inactive as we chose 

Measure option for the sample volume in Common tab due to unknown density. 

7. Select the Sample cell number which was calibrated for each cell + rod + station 

combination from the dropdown list. 

8. Check the box for the active station either A or B or both A & B.   

9. In the Station tab Î Points tab, (here the data points for the measurements are selected 

for each of the stations in the Analysis Setup parameters), load the 11 point, 26 or 48 

point analysis file from Load Point option which is developed in house according to the 

need of surface area measurement (11 pts is enough) and detail measurements (like 

surface area, pore size and pore volume, 26 or 48 pt analysis will be good)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10. In the Station tab Î Equilibrium tab, leave keep the default values for pressure 

tolerance, equilibrium time and equilibrium timeout. 

11. In the Station tab Î Reporting tab, choose demo.isotherm for autoreport option from 

the dropdown menu. 

12. Once done with all these steps, click the Start button to begin the analysis. 

Figure 4 
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