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Abstract

It has been shown that the conventional 5th-order Weighted Essentially Non-Oscillatory (WENO)

scheme of Jiang and Shu degenerates to third order at points where the first and higher order

derivatives of the solution become equal to zero. Recently, Yamaleev and Carpenter proposed

new weight functions which drastically improve the accuracy of high-order WENO-type schemes

and provide the design order of accuracy for smooth solutions with any number of vanishing

derivatives, if their tuning parameters satisfy consistency constraints. The truncation error analysis

reveals that the accuracy of the flux reconstruction provided by the new weight functions can

be increased near strong discontinuities, thus improving the shock-capturing capabilities of the

corresponding WENO scheme. Six different modifications of the weight functions of Yamaleev

and Carpenter are proposed and analyzed for both smooth and discontinuous solutions. Our

grid refinement studies for the linear advection equation show that the modified weight functions

improve the non-oscillatory properties of the scheme, while retaining the intended design order of

accuracy.
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CHAPTER 1

Introduction

Weighted Essentially Non-Oscillatory(WENO) schemes have been widely used to simulate

physical phenomena involving turbulent flows and shock-turbulence interactions. The conservation

laws that govern these physical interactions permit the existence of discontinuous solutions.

Approximating such solutions using high-order numerical schemes for problems containing

discontinuities or unresolved features leads to oscillatory behavior, known as the Gibbs

phenomenon. These spurious oscillations result in the accumulation of error, and in some cases

may lead to local or even global instabilities.

WENO methods are derived from the ENO schemes(Essentially non-oscillatory) proposed

by Harten et al. [1]. The idea of ENO schemes is to divide a collection of nodes, referred to

as a stencil, into smaller candidate stencils. A single candidate stencil is then selected based on

a measure of smoothness relative to all candidate stencils. Using this adaptive stencil scheme

allows one to avoid passing a polynomial interpolant across a discontinuity, and thereby avoiding

spurious oscillations. One of the main drawbacks of the ENO scheme becomes apparent when we

consider a problem in which no discontinuities are present. Since each candidate stencil has nearly

the same relative measure of smoothness, any small perturbation in the solution triggers the stencil

biasing mechanism. In addition, using a single candidate stencil limits the potential accuracy of the

approximation because only r points out of 2r available points are used for the discretization. The

central idea of the WENO scheme, originally developed by Lui and Osher [5] , is to use a linear

combination of all low-order fluxes constructed from each candidate stencil to obtain a higher order

approximation to the solution. A weight is assigned to each low-order flux, which determines its

contribution to the overall approximation. This approach allows for more information to be used in

obtaining a higher order approximation, while emulating the adaptive stencil concept of the ENO

scheme.
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The success of the WENO scheme depends on the measure of smoothness, and the design

of the nonlinear weight functions. The weights must be constructed to guarantee convergence

to the optimal upwind scheme in smooth regions, while providing non-oscillatory behavior in

regions containing discontinuities. The value of each weight is primarily determined by the relative

smoothness of the corresponding candidate stencil. For an ENO scheme based on r candidate

stencils the highest order that can be achieved is (r+1). A new measure of smoothness presented

by Jiang and Shu makes it possible to obtain an (2r−1)th order WENO scheme by using a convex

combination of local approximations obtained from r candidate stencils.

It was recently shown by Henrick et al. [2] that the classical 5th-order WENO scheme of

Jiang and Shu degenerates in accuracy at critical points for smooth solutions. More specifically,

the classical 5th-order WENO scheme of Jiang and Shu locally degenerates to 3rd order accuracy.

To recover the intended design order of accuracy at critical points while minimizing oscillatory

behavior, Henrick et al. developed a mapping for the nonlinear weights. It should be noted that

this mapping provides the design order of accuracy only for solutions with a single vanishing

derivative. Another approach was proposed by Borges et al. [6]. The main idea of this approach is

to solve the problem by developing new weight functions that include a new smoothness indicator

of higher order than that of the traditional smoothness indicator of Jiang and Shu. Note however,

that these weight functions provide the design order of accuracy only for solutions containing at

most two vanishing derivatives. Thus, the retention of design order of accuracy at critical points

needed to be generalized to any number of vanishing derivatives.

Recently, a new class of Energy Stable WENO schemes that overcome this degeneration

in accuracy has been presented in [8]. ESWENO schemes add and additional artificial dissipation

term to prevent local instabilities, in addition to using the WENO reconstruction step with newly

defined weight functions. The new weight functions developed in [8] provide reduction of spurious

oscillations near discontinuities as well as retain the intended design order of accuracy for any

number of vanishing derivatives. This was in part due to the redefining of the second smoothness

indicator developed by Borges. The smoothness indicator of Borges, defined as the absolute value
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of the difference of smoothness indicators, can not be generalized to the order higher than 5. The

second smoothness indicator developed by Yamaleev and Carpenter is based on the highest order

Newton’s undivided differences involving nodes of the entire stencil.

Examination of the ESWENO scheme shows there is potential to reduce spurious

oscillations that occur near strong discontinuities. The main goals of the present work is to optimize

the non-oscillatory properties of the ESWENO scheme while retaining the intended design order

of accuracy.

The thesis is organized as follows. In Section 2, we give a description of the continuous

equation and its discrete counterpart. In Section 3, we describe the conventional WENO scheme

of Jiang and Shu. We also present the necessary and sufficient conditions for the nonlinear weight

functions, and the new WENO scheme developed by Yamaleev and Carpenter along with its

analysis. In Section 4, we present the general analysis and development for the optimized WENO

scheme. Numerical results and discussion of the newly optimized WENO scheme are presented in

Section 5. Finally in section 6 we summarize our main findings of this work.

1.1 Problem Setting; Linear Advection Equation

In this work, we consider the linear advection equation which is given by

∂u
∂t

+
∂ f
∂x

= 0, f = au, t ≥ 0, 0≤ x≤ 1,

u(x,0) = u0(x) (1.1)

It is assumed that the solution is periodic on the domain 0≤ x≤ 1 for simplicity. To approximate

the solution u(x, t) for a given time t, we generate a computational grid by dividing the domain

into N intervals with uniform grid spacing ∆x = 1
N . The solution u(x, t) for a given time time t,

is found at each x jth node by approximating the spatial derivative of the flux. To show this, we

rewrite (1.1) in the form

∂u j

∂t
=− ∂ f

∂x

∣∣∣∣
x=x j

(1.2)
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Ideally, we want the finite difference of some function to exactly approximate the spatial derivative

of the flux at each node of the computational grid. It is possible to construct such a function

implicitly. We define the numerical flux function as follows:

f (x) =
1

∆x

∫ x+∆x
2

x−∆x
2

h(ξ)dξ. (1.3)

Substituting (1.3) into (1.2) gives us

∂u j

∂t
=−

(
h j+ 1

2
−h j− 1

2

∆x

)
. (1.4)

Note the numerical function is evaluated at x j± 1
2
= x j± ∆x

2 , which will be referred to as the cell

boundaries with x j being the center of each cell. As follows from (1.4), the numerical flux

function satisfies the spatial derivative exactly at each node. It is important to remember that

our numerical flux function satisfies the spatial derivative exactly only at the grid nodes, and not

for each point within the domain. Therefore, our definition of the numerical flux function is itself

an approximation to the actual flux function. Since the numerical flux function is not directly

obtainable, we must construct flux values f̂ j± 1
2

which approximate the values h j± 1
2
. By replacing

the spatial derivative at each node with a finite difference composed of the approximate values of

the numerical flux at the cell boundaries, we now have

∂u j

∂t
≈−

(
f̂ j+ 1

2
− f̂ j− 1

2

∆x

)
. (1.5)

This gives us a system of linear equations that can be solved to obtain an approximation of the

entire solution. To construct higher-order approximations of the flux at the cell boundaries, we

use a linear combination of low-order flux interpolants constructed from flux values available in a

given stencil. So, the spatial derivative is approximated at each node to the pth-order of accuracy.

1.1.1 Continuous analysis. Let us show that the continuous governing equation (1.1)

is conservative and stable in the energy sense. To show the equation is conservative, we integrate
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(1.1) across the entire domain [a,b]

∫ b

a

(
∂u
∂t

+
∂ f
∂x

)
dx = 0

∂

∂t

∫ b

a
udx+

∫ b

a

∂ f
∂x

dx = 0

∂

∂t

∫ b

a
udx+ f (b)− f (a) = 0

∂

∂t

∫ b

a
udx = f (a)− f (b). (1.6)

Therefore, change in the integral of the solution over the entire domain may occur only due to the

flux values at the boundaries. Suppose we have the singular perturbed wave equation, subject to

the periodic boundary conditions:

∂u
∂t

+
∂ f
∂x

=
∂

∂x

(
B

∂u
∂x

)
, (1.7)

with B defined as a nonlinear positive semidefinite differential operator that depends only on u and

its derivatives. The term on the right hand side of (1.7) mimics the dissipation operator of the

finite difference scheme. It is assumed that (1.7) is subject to the same initial condition as in (1.1).

Multiplying by u and integrating across the entire domain gives us

1
2

d
dt
‖u‖2

2 +
1
2

au2
∣∣∣∣1
0
= uBux|10−

∫ 1

0
uxBuxdx (1.8)

Note that the right hand side of the equation is obtained using integration by parts. Knowing that

we have periodic boundary conditions and the B is a positive semidefinite operator, we have that

d
dt
‖u‖2 =−2

∫ 1

0
uxBuxdx≤ 0 (1.9)

Equation (1.9) shows that the L2 norm of the solution does not increase in time, thus indicating the

continuous problem is stable in the energy sense. Note that if B = 0, then the solution is neutrally

stable.

1.1.2 Discrete analysis. According to [3], if the discrete operator satisfies the summation

by parts property, then it follows that the corresponding numerical scheme is stable in the L2-energy
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norm. This means the energy expression of the numerical scheme will be negative, or dissipative.

We will now show that these properties are retained in the discrete equation. To show conservation,

we sum the above discrete equation across the entire computational grid of J nodes. Letting ∆x= 1
J ,

we have

J

∑
j=0

[
∂u j

∂t
+

f j+ 1
2
− f j− 1

2

∆x

]
∆x = 0

∂

∂t

J

∑
j=0

u j∆x+
J

∑
j=0

[
f j+ 1

2
− f j− 1

2

∆x

]
∆x = 0

∂

∂t

J

∑
j=0

u j∆x+
(

fJ+ 1
2
− f− 1

2

)
= 0

∂

∂t

J

∑
j=0

u j∆x = f− 1
2
− fJ+ 1

2
(1.10)

Equation (1.1.2) shows that the integral of the solution over the computational domain changes due

to the difference of fluxes at the boundaries. Hence the conservative properties of the continuous

equation are preserved by the numerical scheme. We now derive a discrete form of the numerical

scheme that satisfies the summation by parts property, and show that it is stable in the energy sense.

Our discrete approximation of the flux derivative used in (1.1.2) can also be recast in the following

form:

∂f
∂x

= (Dc +Da)+O(∆xp), (1.11)

with Dc being a nonlinear central difference operator defined as

Dc = P−1Q; f̄x−P−1Qf̄ = O(∆xp),

P = ∆xI;Q+QT = 0

(1.12)
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Note that Dc constructed this way satisfies the summation by parts property. Da is a nonlinear

artificial dissipation term on the right hand side of (1.7). Da is given as

Da = P−1DT
1 SD1; P−1DT

1 SD1u = O(∆xp); vT (S+ST)v≥ 0 (1.13)

where D1 is the first-order backward operator, and P is the same positive definite diagonal matrix

used in (1.1.2). Using the Dc and Da operators, (1.7) is discretized as follows:

∂u
∂t

+P−1Q f =−P−1DT
1 SD1f, (1.14)

where f = au. Multiplying through by uT P gives

d
dt
‖u‖2

P +auT Qu =−a(D1u)T SD1u (1.15)

adding this equation to its transpose yields

d
dt
‖u‖2

P +auT (Q+QT)u =−a(D1u)T (S+ST)D1u (1.16)

Because Q is skew-symmetric and S is positive semi-definite, we have that

d
dt
‖u‖2

P =−a(D1u)T (S+ST)D1u≤ 0 (1.17)

As follows from (1.17), the numerical scheme is stable in the energy norm.
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CHAPTER 2

Literature Review

Linear schemes have been widely used to solve partial differential equations such as

(1.1). A linear scheme is one in which each term in the approximation has a fixed coefficient,

or contribution, for all nodes on the computational grid. However, using a linear scheme to

approximate discontinuous solutions results in the Gibbs phenomenon, which is characterized

by the occurrence of oscillations. Weighted Essentially Non-Oscillatory (WENO) schemes are

preferred in such cases because they are nonlinear schemes, that is, each contribution in the

approximation is weighted based on the solution smoothness which detects the presence of

discontinuities near the contributing stencil. This mimics the stencil biasing property of the ENO

scheme [1] to avoid oscillatory behavior, and uses the smoothest information available to achieve

good shock-capturing capabilities.

2.1 Conventional 5th-order WENO Schemes

We now look to approximate the solution of the linear advection equation at each node

using the conventional 5th-order WENO scheme of Jiang and Shu. The approximation at each node

is a finite difference scheme constructed from higher-order fluxes evaluated at the cell boundaries.

These fluxes are defined as

f̂ j± 1
2
= ∑

r
ω
(r)
j± 1

2
f (r)

j± 1
2
, (2.1)
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where each f (r)
j± 1

2
is a third-order reconstruction of the flux from the candidate stencil, along with

its corresponding weight ω
(r)
j± 1

2
. Our third-order fluxes are defined as



f LL
(

u j+ 1
2

)
f L(u j+ 1

2
)

f R(u j+ 1
2
)

f RR(u j+ 1
2
)


=



2 −7 11 0 0 0

0 −1 5 2 0 0

0 0 2 5 −1 0

0 0 0 0 11 −7





f
(
u j−2

)
f
(
u j−1

)
f
(
u j
)

f
(
u j+1

)
f
(
u j+2

)
f
(
u j+3

)


, (2.2)

The addition of the stencil SRR makes the entire WENO reconstruction stencil symmetric with

respect to the x j± 1
2
th point. As has been shown in [8], this additional candidate stencil allows us to

increase the design order of the conventional 5th-order WENO scheme of Jiang and Shu by one,

thus making it 6th-order accurate. Work concerning the stability development of this 6th-order

scheme is presented in [8]. The weight functions of the conventional 5th-order WENO scheme are

given as follows:

ω
(r)
j± 1

2
=

αr

∑r αr
, αr =

d(r)(
ε+β(r)

)2 , (2.3)

where αr is an unnormalized weight, and d(r) is an ideal weight. Using each d(r) as a weight results

in the linear upwind scheme. Each candidate stencil has a smoothness indicator defined as:

β
(r) =

s−1

∑
l=1

∆x2l−1
∫ x

j+ 1
2

x
j− 1

2

(
dlqr(x)

dxl

)2

dx (2.4)
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•x j+1
•x j−1

•x j

x j+ 1
2

x j− 1
2

f̂ j+ 1
2

f̂ j− 1
2

•x j+2
•x j+3

•x j−2

SLL
• • •

SL
• • •

SR
• • •

SRR
• • •

Figure 1. Stencil of WENO Flux Reconstruction; the stencil SRR is used to obtain a 6th order
scheme. Each Sr has a measure of smoothness, β(r).

We can express the smoothness indicators with respect to nodal flux values as follows:

βLL = 13
12

(
f j−2−2 f j−1 + f j

)2
+ 1

4

(
f j−2−4 f j−1 +3 f j

)2

βL = 13
12

(
f j−1−2 f j + f j+1

)2
+ 1

4

(
f j−1− f j+1

)2

βR = 13
12

(
f j−2 f j+1 + f j+2

)2
+ 1

4

(
3 f j−4 f j+1 + f j+2

)2

βRR = 13
12

(
f j+1−2 f j+2 + f j+3

)2
+ 1

4

(
−5 f j+1 +8 f j+2−3 f j+3

)2

(2.5)

From examination of the conventional weights we see that in smooth flow regions, the weight

functions w(r) approach their target values d(r). Note however, that near a strong discontinuity,

the weight function associated with the stencil containing the shock is effectively nullified, thus

biasing the stencil away from the strong discontinuity.

2.1.1 Consistency of the WENO scheme. It is well known that the conventional WENO

scheme is overly dissipative. In [2], it has been shown that at points where the first derivative

vanishes, the conventional 5th-order WENO scheme of Jiang and Shu degenerates to 3rd-order

accuracy. As shown in [4], a sufficient condition on the nonlinear weights to provide 5th-order

accuracy is

ω
(r)
j± 1

2
= d(r)+O(∆x2) (2.6)
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We now demonstrate that a stricter condition should be imposed on the nonlinear weights of

the 5th-order WENO scheme to retain design order of accuracy for any number of vanishing

derivatives. Here we derive the necessary and sufficient conditions for the nonlinear weights of

any WENO-type scheme to provide pth-order accuracy. The approach is to compare the pth-order

accurate nonlinear and linear scheme, and establish a relationship between the set of nonlinear

weights {ω(r)
j± 1

2
} and the set of linear ideal weights {d(r)}. A WENO-type scheme can be written

in the following form

[
DWENO f

]
j
=

f̂ j+ 1
2
− f̂ j− 1

2

∆x
=

∂ f
∂x
|x=x j +O(∆xp). (2.7)

For sufficiently smooth solutions, we use the ideal weights which correspond to the upwind scheme

to approximate the flux. This differential operator is given as

[
DIDEAL f

]
j
=

f̂ ∗
j+ 1

2
− f̂ ∗

j− 1
2

∆x
=

∂ f
∂x
|x=x j +O(∆xp). (2.8)

Subtracting the linear scheme from the nonlinear scheme gives us

[
DWENO f

]
j
−
[
DIDEAL f

]
j
=

∑r

[(
ω
(r)
j+ 1

2
−d(r)

)
f (r)

j+ 1
2
−
(

ω
(r)
j− 1

2
−d(r)

)
f (r)

j− 1
2

]
∆x

=
1

∆x ∑
r

[(
ω
(r)
j+ 1

2
−d(r)

)
h
(

x j+ 1
2

)
−
(

ω
(r)
j− 1

2
−d(r)

)
h
(

x j− 1
2

)]
+

p

∑
l=s

∑
r

∆xl−1c(r)l

[(
ω
(r)
j+ 1

2
−d(r)

)
−
(

ω
(r)
j− 1

2
−d(r)

)]
+O(∆xp).

(2.9)

Examining each term in this expression, we obtain the following necessary conditions:

∑
r

[
w(r)

j± 1
2
−d(r)

]
= O(∆xp+1)

∑
r

[(
w(r)

j+ 1
2
−d(r)

)
−
(

w(r)
j− 1

2
−d(r)

)]
= O(∆x)

∑
r

[(
w(r)

j+ 1
2
−d(r)

)
−
(

w(r)
j− 1

2
−d(r)

)]
= O(∆xp−s+1) (2.10)
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The first condition in (2.1.1) is always satisfied because of the normalization of the weight

functions and target values. The remaining conditions are met if the following sufficient condition

is imposed on the weights:

ω
(r)
j± 1

2
−d(r) = O(∆xp−s+1), (2.11)

For the conventional 5th-order WENO scheme, p and s are set equal to 5 and 3, respectively, thus

leading to

ω
(r)
j± 1

2
−d(r) = O(∆x3). (2.12)

As follows from (2.12), stricter constraints than (2.6) should be imposed on the weight functions

of the conventional 5th-order WENO schemes.

2.2 Energy Stable WENO Scheme.

Based on numerical simulations of turbulent flows, it has been observed that the

conventional WENO scheme of Jiang and Shu may become unstable. This observation was

proven formally in [8] after Yamaleev and Carpenter examined the symmetric component of the

conventional WENO operator, and found that it contains eigenvalues that has a positive real part.

From this analysis it follows that the conventional WENO scheme could become locally unstable

when approximating the problems with discontinuities or unresolved features. To remedy this,

Yamaleev and Carpenter developed the energy stable WENO (ESWENO) scheme by adding an

additional artificial dissipative term to the conventional WENO discrete operator. As a result, an

energy estimate can be obtained for the modified WENO operator, thus ensuring the stability of

the numerical scheme. In addition, Yamaleev and Carpenter derived new formulas for the weight

functions which satisfies (2.11) for any number of vanishing derivatives. As a whole, the ESWENO

scheme provides satisfactory non-oscillatory behavior near discontinuities while satisfying (2.11)

for any number of of vanishing derivatives, hence retaining the design order of accuracy at critical

points. The ESWENO scheme retains the same definition of smoothness indicators given in (2.4).
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The redefined weight functions are defined as

ω
(r) =

αr

∑l αl
, αr = d(r)

(
1+

τp

ε+β(r)

)
, (2.13)

where τp is the global smoothness indicator. For p = 5, τ5 is given by

τ5 =
(
− f j−2 +5 f j−1−10 f j +10 f j+1−5 f j+2 + f j+3

)2
. (2.14)

The weight functions given by (2.13) are similar to those developed by Borges et al. in [6]. Note,

however, that the parameter τp in [6] differs from the global smoothness indicator given by (2.14)

and cannot be directly generalized to p = 6 or higher.

2.2.1 Analysis of ESWENO scheme for discontinuous flows. Let us show that the flux

reconstruction based on the weight functions given by (1.14-15) degenerates from 3rd to 2nd order

near strong discontinuities. We now demonstrate this loss in accuracy through truncation error

analysis. Suppose that we have a discontinuity such that it is contained in the candidate stencils

SLL and SL. Expanding the smoothness indicators in Taylor series, we have

τp = O(1)

β
LL = O(1)

β
L = O(1)

β
R = f ′2∆x2 +

(
13
12

f ′′2− 2
3

f ′ f ′′′
)

∆x4 +

(
13
6

f ′′ f ′′′− 1
2

f ′ f ′′′′
)

∆x5 +O(∆x6)

β
RR = f ′2∆x2 +

(
13
12

f ′′2− 11
3

f ′ f ′′′
)

∆x4 +

(
13
3

f ′′ f ′′′−5 f ′ f ′′′′
)

∆x5 +O(∆x6). (2.15)

As previously stated, the newly designed weights of the ESWENO scheme are just 2nd-order

accurate near the strong discontinuity. We now demonstrate this fact. The nonlinear weight
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functions take the following form:

ω
r=L,LL
j± 1

2
=

dLL
(

1+ O(1)
ε+O(1)

)
1+ O(1)

ε+O(1) +∑r 6=L,LL
O(1)

ε+O(∆x2)

=
O(1)

O(1)+ O(1)
ε+O(∆x2)

= O(1)
(
ε+O

(
∆x2)) ,

ω
r=R,RR
j± 1

2
=

d(r)
[
1+ O(1)

ε+O(∆x2)

]
O(1)+ (d(r)+dRR)O(1)

ε+O(∆x2)

≈
d(r) (ε+O(∆x2)+O(1)

)
(dR +dRR)O(1)

≈ d(r)

dR +dRR . (2.16)

We now attempt to construct the high-order approximation using the weights and the low-order

flux functions.

f̂ j+ 1
2
− f̂ j− 1

2

∆x
=

O(∆x2)∑r=L,LL

[
f (r)

j+ 1
2
− f (r)

j− 1
2

]
+∑r=R,RR

d(r)

dR+dRR

[
f (r)

j+ 1
2
− f (r)

j− 1
2

]
∆x

≈ f ′+O(∆x2)

∆x
≈ f ′+O(∆x). (2.17)

Here we see that the spatial derivative approximation locally degenerates to only 1st order. We

want to improve the local reconstruction order, thus providing improved non-oscillatory behavior

and retaining 3rd-order accuracy for the flux reconstruction.
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CHAPTER 3

Methodology

We want to modify the weight functions of the ESWENO scheme to improve the design

order of flux reconstruction for discontinuous solutions. The modification is aimed at improving

the non-oscillatory behavior of the ESWENO scheme, while providing design order of accuracy

in smooth regions of the solution. Recall that the nonlinear weights are designed to nullify

the contribution of fluxes based on stencils containing discontinuities, and converge to the ideal

weights of the upwind scheme in smooth regions.

3.1 Weight functions of the 5th-order ESWENO scheme

We first examine the existing weights of the ESWENO scheme for accuracy. As shown in

[7], the current weights satisfy the necessary and sufficient condition (2.11) for any number of

vanishing derivatives. Expanding the weight function in a Taylor series yields

ω
(r)
j± 1

2
=

d(r)
(

1+ τp

ε+β(r)

)
1+∑k

τpd(r)

ε+β(k)

≈ d(r)
(

1+
τp

ε+β(r)

)(
1−∑

k

τpd(r)

ε+β(k)

)

= d(r)+
d(r)τp

ε+β(r)
−∑

k

τpd(k)

ε+β(k)
= d(r)−∑

k 6=r

τpd(k)

ε+β(k)
+O

( τpd(r)

ε+β(k)

)2
 (3.1)

Using the sufficient condition for consistency (2.11), we have

τp

ε+β(r)
≤ O(∆xp−s+1). (3.2)

Equation (3.2) shows that satisfaction of (2.11) will depend on the smoothness indcator terms

τp and β(r) of the weight functions. The Yamaleev and Carpenter(Y-C) weights of the ESWENO

scheme provide non-oscillatory behavior near strong discontinuities, and retention of design order

of accuracy for smooth solutions. By making a modification to the Y-C weights we can develop
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new set of weights to examine. The new weight functions are defined as follows:

αr = d(r)

(
1+

τk
p(

ε+β(r)
)m

)
. (3.3)

Using (3.3), we can make our new weights satisfy (3.2) by writing

τk
p(

ε+β(r)
)m ≤ O(∆xp−s+1). (3.4)

With the new form of the weight functions, our goal is to find optimum values of k and m such that

the numerical solution is free of spurious oscillations on refined grids, while retaining the design

order of accuracy in regions where the solution is sufficiently smooth. To derive constraints on the

parameters k and m, we will use truncation analysis for continuous and discontinuous solutions.

3.1.1 Constraint of the parameter ε. First, we derive bounds on ε to ensure the

parameter provides the necessary consistency for the nonlinear weights to converge to the ideal

weights. Expanding the new weight functions in a Taylor series yields

αr = d(r)
(

1+
O(∆x2pk)

(ε+O(∆x2))
m

)
(3.5)

Due to the necessary and sufficient condition, we must have that

τk
p(

ε+β(r)
)m ≤ O(∆xp−s+1) (3.6)

or equivalently

O(∆x2pk)

(ε+O(∆x2))
m ≤ O(∆xp−s+1) (3.7)

Assuming that the solution has several vanishing derivatives so that βr ≈ 0, we obtain a lower

bound on ε

O(∆x2pk)

εm ≤ O(∆xp−s+1), (3.8)
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Which leads to

O
(

∆x
2pk−p+s−1

m

)
≤ ε. (3.9)

Since the parameter ε determines the amplitude of the smallest oscillations detected by the

ESWENO scheme, we set ε to be equal to its lower bound given by (3.9).

3.2 Analysis of Improved Weight Functions

3.2.1 Continuous solutions. We perform truncation error analysis for the case when the

solution is sufficiently smooth, to infer information about the new parameters. Assume that the

solution is 2pk times continuously differentiable and continuous, where we also assume that f ′ 6= 0

and ε≤O(∆x2). Let Cr be the coefficient in front of the O(∆x4) term of the Taylor series expansion

of β(r). Then the weight function wLL can be expanded as follows:

ωLL =

dLL

[
1+ ( f (p))

2k
∆x2pk

(ε+( f ′)2∆x2+CLL∆x4)
m

]
1+∑r

dr( f (p))
2k

∆x2pk

(ε+( f ′)2
∆x2+Cr∆x4)

m

=

d(r)

1+ ( f (p))
2k

∆x2pk

(ε+( f ′)2
∆x2)

m
[

1+ CLL∆x4

ε+( f ′)2
∆x2

]m


1+∑r

d(r)( f (p))
2
∆x2pk

(ε+( f ′)2
∆x2)

m
[

1+ Cr∆x4

ε+( f ′)2
∆x2

]m

. (3.10)

Performing further manipulation of this expression, we obtain

ωLL = dLL +∆x2pk−2m+2

(
f (p)
)2k

( f ′)2m+1

[
CLL−∑

r
Crdr

]
(3.11)

Substituting these weights in the convex combination of f̂ j± 1
2

leads us to

f̂ j± 1
2
= h j± 1

2
+O

(
∆x2pk−2m+2

)
. (3.12)

From (3.12), we can conclude that in order to retain pth-order of accuracy, the parameters k and

m should satisfy the following inequality

2pk−2m+2≥ p− s+1. (3.13)
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3.2.2 Discontinuous solutions. To obtain a complete set of constraints on the parameters

k and m, we must consider not only smooth solutions, but also discontinuous solutions. Without

loss of generality, let us assume a shock or discontinuity, is contained in the candidate stencil SLL.

The unnormalized weight for this candidate stencil can be written in the following form

αLL = dLL

[
1+

O(1)
(ε+O(1))m

]
. (3.14)

For all other candidate stencils, we have

αr 6=LL = dr

1+
O(1)(

ε+( f ′)2
∆x2
)
 . (3.15)

Combining these expressions, we obtain

ωLL =
dLL

[
1+ O(1)

(ε+O(1))m

]
O(1)+ (dL+dR)O(1)

(ε+( f ′)2
∆x2)

m

= O(1)
(

ε+
(

f ′
)2

∆x2
)m

. (3.16)

To retain the design order of the reconstruction near a strong discontinuity, the following constraint

should be imposed:

O(∆x2m)≤ O(∆xp−s+1). (3.17)

For the 5th-order case, this gives us

m≥ 3
2
. (3.18)

Because each examined relationship between m and k is linear, we are unable to bound the

parameter k without imposing additional constraints on the parameters. This implies that

parameters k and m can assume infinitely many values. Using (3.18) and (3.7), we can represent

the possible values of the parameters; as shown below in Figure 2.
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Figure 2. Graph of inequalities obtained from truncation error analysis showing the possible
values of parameters k and m.

We note that as we increase the value of k, the rate of convergence increases. However, by

increasing the rate of convergence, we also increase the stiffness of the discrete ESWENO operator.

To obtain reasonable choices for the parameters we look to compare non-oscillatory behavior and

convergence rate of error of numerical solutions, using both the conventional ESWENO weights

and the new weights.
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CHAPTER 4

Results

In the previous section, we developed a new form of the weight functions for the ESWENO

scheme to further reduce oscillatory behavior near strong discontinuities. We derived restrictions

on the parameters k and m of the new weights, ensuring these functions will provide pth-order

accuracy for regions where the solution is smooth. We have shown that without any additional

assumptions, k and m can assume an infinite number of values, which presents a problem for the

discretization of nonlinear solutions. More specifically, as we increase the values of k and m,

we also increase the stiffness of the numerical scheme. This forces us to select much smaller

time steps, which increases the computational cost to obtain a stable numerical solution. For this

reason, we choose the values of k and m, so that they are close to the lower bound values. The idea

is to obtain the desired properties in the new nonlinear weights, without having unnecessarily large

values of k and m which increase the stiffness of the numerical scheme. We now conduct numerical

experiments with several values of k and m. The two values of m that were chosen were m=1.5

and m=2; the former value being the lower bound of m, and the latter being a value which is close

to the lower bound of m. Another reason m = 2 was chosen is because in the present literature of

WENO schemes this value of m is used to create a difference in scales amongst regions that contain

discontinuities, and those where the solution is smooth, Borges et al. [6]. The selected values of k

that we will consider are k = 1.5,1.75,2. Two of these values being the same as m, and one being

the average of the chosen values of m. Each value of k is paired with each value of m, and used

as the exponents in the improved weight functions. The results obtained using each paired value

of k and m will be compared with the results obtained using the weight functions of the ESWENO

scheme developed in [8]. We examine reduced non-oscillatory behavior for the discontinuous

solution, as well as the convergence rate of error for continuous solutions. For the continuous case,

we are looking for convergence with design order of accuracy, and for the discontinuous solution,
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we are looking to completely eliminated, or significantly reduce overshoots and undershoots near

points of discontinuity.

4.1 Error Convergence for Continuous Solution

We know that for a continuous solution, the ideal weights d(r) create a linear scheme whose

solution converges with pth-order accuracy. Here, we will look to see which values of k and m

provide the convergence rate of the linear scheme. We would also like to identify those values of k

and m that cause a degradation in the design order of accuracy. If there is a degradation of accuracy,

then the value of the parameters which produced this loss in accuracy cannot be considered in the

final form of the improved weights of the ESWENO scheme. The functions used in the numerical

simulations are those which satisfy (1.1), where we let a = 1. For the continuous solution, the

function used is y = e−300x2
. For the discontinuous solution, we choose the equation which models

the propagation of a square pulse. For both the continuous and discontinuous solution we retain

periodic boundary conditions on the domain [0,1], that is u(0) = u(1).
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10−4
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10−2

logN

lo
g
‖E
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y = e−300x2

k=2
k=1.5

k=1.75
Y-C

Figure 3. Error Convergence of 5th order ESWENO schemes with m=1.5 and selected values of
k; k=1 for Y-C.
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For the case that m = 1.5, the error converges monotonically at the 5th-order rate for all

values of k, as one can see in Figure 3. These results will be compared with the convergence rate

of error when m = 2, for all values of k.
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k=1.5

k=1.75
Y-C

Figure 4. Error convergence of 5th order ESWENO schemes with m=2 and selected values of k;
k=1 for Y-C.

When m is set equal to 2, we see that the error converges at the 5th-order rate for all values

of k. However, when k = 1.5, the numerical scheme loses accuracy on coarse computational grids.

After refining the computational grid, monotonic converge of the error at the 5th-order rate is

obtained for all values of k. To make conclusive statements concerning values of the parameters m

and k, we will need to analyze the results for problems with strong discontinuities.

4.2 Discontinuous Solutions

For problems with discontinuous solutions, we look to improve local non-oscillatory

behavior and retain good shock-capturing capabilities of the original ESWENO scheme. The

results of each pair of parameter values will be compared with the exact solution of the propagation

of a square pulse, as well as the results obtained using the ESWENO scheme with the new weight
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functions. Here, we are looking for significant reductions in oscillatory behavior near points of

discontinuity.
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Figure 5. The exact and numerical solutions obtained using he ESWENO scheme with
k = m = 1.5.

As one can see in Figure 5, the new weight functions with k = m = 1.5 improve

non-oscillatory behavior near discontinuities when compared to the results obtained using the

Y-C weight functions of the ESWENO scheme. Despite that the amplitude of overshoots and

undershoots near the discontinuities has been reduced by about a factor of two, the numerical

solution still exhibits oscillatory behavior.



25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

5th−order ESWENO Scheme; Comparing Weight Functions using 301 nodes, k=1.75, m=1.5

 

 

Modification

Original

Exact

0.3 0.35

0.99

1

1.01

1.02

 

 
Top Left Corner

0.7 0.75
−0.03

−0.02

−0.01

0

0.01

 

 
Bottom Right Corner

Figure 6. The exact and numerical solutions obtained using the ESWENO scheme with k = 1.75
and m = 1.5.

Though the new weight functions with k = 1.75 and m = 1.5 provide the 5th order of

accuracy for smooth solutions, we see that for these parameter values, oscillatory behavior is

magnified near the discontinuities, as seen in Figure 6. Note that k > m in this instance. To

make a conclusive statement concerning the increase in the amplitude of oscillations if k > m, we

have further increased k, while keeping m unchanged.
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Figure 7. The exact and numerical solutions obtained using the ESWENO scheme with k = 2 and
m = 1.5.
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Figure 7 shows that oscillatory behavior is amplified, thus underperforming the results of

the original weight functions. Regardless of the fact that m = 1.5 and k = 2 provides 5th-order

accuracy for smooth solutions, these parameter values do not provide the reduction in oscillatory

behavior.

Based on the results presented above, we see that for m = 1.5, oscillations have been

damped when the parameters k and m are equal in value. Raising the value of k beyond the value

of m results in amplified oscillatory behavior more severe than results produced by the original

weight functions. We will now consider a new value of m with the same set of values for k. In the

next set of results, we let m = 2. Originally, m=2 was chosen to create a difference in scales, which

is used to identify potential regions containing discontinuities. This implies that raising the power

of m deals with the damping factor of oscillations. Here, we follow the guidance of the literature

and have m = 2 and examine the quality of non-oscillatory behavior of the numerical scheme.
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Figure 8. The exact and numerical solutions obtained using the ESWENO scheme with k = 1.5
and m = 2.

Figure 8 shows that the numerical solution is free of spurious oscillations without begin

overly dissipative. As compared to the results of the original weight functions, we see that

recovering the reconstruction order near discontinuities significantly improves the shock-capturing

capabilities of the ESWENO scheme.
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Figure 9. The exact and numerical solutions obtained using the ESWENO scheme with k = 1.75
and m = 2.

The solution profile is nearly monotonic, thus indicating that the new weight functions with

k = 1.75 and m = 2 outperform the original Y-C weights in terms of the damping of oscillations.

The results are slightly less effective than those obtained using m = 2 and k = 1.5.
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Figure 10. The exact and numerical solutions obtained using the ESWENO scheme with k = 2
and m = 2.

As in the case of m = 1.5, we see that the amplitude of oscillation increases as k becomes

larger. Having k = 2 and m = 2 reduces oscillatory behavior near discontinuities, but the results
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are less effective than those obtained using k = 1.75 and m = 2. Results obtained for k = 2 show

that the solution becomes more oscillatory near the discontinuities. It appears that having k = 1.5

provides the best accuracy for the discontinuous solution and the design order of accuracy for

smooth solutions.

Choosing the smallest possible values of k and m implies the resulting numerical scheme

will produce the desired properties, without unnecessarily increasing the stiffness of the WENO

operator. A plot of the error convergence rate is given for the case when m = 1.5 and k = .6; the

smallest possible value of k when m = 1.5.
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Figure 11. Error Convergence of 5th order ESWENO schemes with m=1.5 and selected values of
k; convergent behavior for smaller values of k.

Figure 11 indicates a loss in accuracy when the value of k is decreased. By significantly

decreasing the stiffness of the WENO operator, we sacrifice the accuracy of the numerical scheme

on coarse computational grids. This implies that making k too small will result in the loss of

accuracy when approximating sufficiently smooth solutions.
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CHAPTER 5

Discussion and Future Research

Improved formulas for the weight functions of the 5th-order ESWENO scheme of

Yamaleev and Carpenter were derived. For the improved weight functions, the parameters k and m

can assume infinitely many values. Upon recognizing that there are no optimal values of these

parameters, numerical tests were executed using smaller values of k and m to minimized the

stiffness of the WENO operator. For smooth solutions, monotonic convergence at the 5th-order

rate is obtained for all values of k when m = 1.5 When m = 1.2, monotonic convergence at the

5th-order rate is obtained for all values of k on sufficiently refined computational grids. For coarse

computational grids. Accuracy is lost when k = 1.5. It was also demonstrated that making the

value of k too small results in significant losses of accuracy. For discontinuous solutions, results

show that k = 1.5 and m = 2 provided the most improvement in reconstruction order near the

shocks, without being overly dissipative. These same results indicate that increasing the power of

k results in amplification of oscillatory behavior near strong discontinuities.

Based on observations, the values k = 1.75 and m = 2 are the recommended values for the

improved weight functions. Having k = 1.75 when m = 2 also provides improved reconstruction

order near the shocks. The determining factor was that having k = 1.75 and m = 2 provide the

design order of accuracy on both coarse and refined computational grids for sufficiently smooth

solutions. Results showed that k = 1.5 and m = 2 only provided these properties on sufficiently

refined computational grids. Note that the recommended values are not the only choices of the

parameters, but they obtain the desired properties of significantly reduce oscillations near regions

of strong discontinuities, and retention of design order accuracy for sufficiently smooth regions of

the solution.
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