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Abstract 

Since black carbon and brown carbon are among the greatest contributors to radiative 

forcing (black carbon being second only to carbon dioxide), this work focuses on the laboratory 

measurement of their optical properties using cavity ring-down spectroscopy (CRDS) and 

integrating nephelometry. Water soluble soot is collected using an impinger and cascade 

impactor by burning different fuel types to mimic ambient aerosols dominant in regions where 

biomass burning is the main source of aerosols. Using an optical parametric oscillator (OPO) as a 

light source, we are able to measure extinction and scattering over a wide range of wavelengths. 

A correction factor is calculated using a method by Anderson and Ogren to reconcile scattering 

from the nephelometer to extinction from the CRDS. The extinction-minus-scattering method is 

then used to determine absorption. Purely scattering polystyrene latex (PSL) spheres of known 

sizes (100 – 700 nm) are used in the lab to calibrate the system for this study. Measurements of 

optical properties of soot collected from different fuel sources at different stages of burning are 

reported.  
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1 CHAPTER 1 

Introduction and Background 

Solar radiation is the primary source of energy for life on our planet. The amount of 

radiation that reaches the earth’s surface is called the radiation budget, measured in watts per 

meter squared (W/m
2
).  Too much fluctuation one way or the other may lead to global warming 

or cooling. Radiation may be scattered or absorbed by anything in its path, either particles in the 

air, or the earth’s surface itself. Scattered radiation is generally reflected back into space, leading 

to a cooling effect. Absorbed radiation is generally reemitted as infrared radiation, or heat, 

leading to a warming effect. This study is primarily concerned with the contribution of soot 

aerosols, created by biomass burning, to the scattering or absorbing of radiation in the 

atmosphere. This is accomplished by measuring the optical properties of the soot (its ability to 

scatter or absorb radiation) in a laboratory setting. This information can then be used in climate 

models and for accurate interpretation of remote sensing measurements. 

1.1 Description of Aerosols  

 An aerosol can be any particulate matter suspended in a gas. Aerosols have many 

different physical and chemical properties, such as size, shape, and index of refraction, which 

affect their ability to scatter or absorb light. The size of an aerosol can vary greatly, anywhere 

from a few nanometers to over fifteen micrometers in diameter. Aerosols with sizes smaller than 

50 nanometers either spread out too quickly to make much of an impact or form into larger 

aerosols through agglomeration. Aerosols much bigger than 2 µm have short lifetimes in the 

atmosphere due to gravitational settling. However, aerosols between these ranges can stay in the 

atmosphere for up to a few weeks. 



3 

 

 

 This extended lifetime gives aerosols the opportunity to have far-reaching effects as they 

stay airborne longer; they even have the potential to travel across continents. Sometimes, the 

hazy conditions experienced in North America are actually the result of sand, sea salt, or soot 

aerosols from another continent. This longer lifetime also means that the contributions of 

aerosols can have a long-term effect on the climate of a region. They affect the climate directly 

by scattering or absorbing light and indirectly through the formation of clouds, which in turn 

scatter or absorb light. As shown in Figure (1), the uncertainty of these effects is one of the 

biggest unknowns for modeling radiative forcing (IPCC 2013). This study focuses on aerosols in 

the range of 100 to 700 nm. Aerosols near 100 nm or below begin to experience scattering 

differently as will be explained below. 

 

Figure 1. Contribution to radiative forcing of greenhouse gasses and aerosols (IPCC 2013). 
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 The shape of aerosols can vary greatly, making it difficult to determine the dependence of 

optical properties on their shape. As light strikes different sides of the aerosol, it is presented 

with different geometrical cross sectional areas depending on the orientation of the aerosol. Our 

current equipment is only able to determine the maximum diameter of the given orientation for 

the aerosol, giving an upper limit to the cross sectional areas measured, which will be discussed 

in a later chapter. 

1.2 Sources of Aerosols 

 Aerosols can come from natural sources, such as wild fires, or anthropogenic sources, 

such as cooking, manufacturing, or agricultural burning. Although aerosols can be produced in 

many ways, this study focuses on aerosols produced through biomass burning, using wood as a 

primary source of soot aerosol. In recent controlled emission studies of biomass burning, 

Yokelson et al. (2013) discovered several hundred chemicals and particulates. Many of these 

particulates are poorly understood. As we better understand these particulates, we can better 

estimate their contribution to the cooling or warming of the atmosphere. 

1.3 Importance of Aerosols in the Atmosphere 

Although aerosol particles can have adverse effects on the health of living organisms, of 

particular interest in this study are the optical properties of aerosols, as this describes their effects 

on the earth’s radiation budget. This effect has the potential to disrupt the natural climate. 

Aerosols interact with this radiation by either scattering (reflecting) or absorbing the incoming 

light. Soot aerosol is primarily absorbing in nature and reemits radiation in the infrared as heat, 

causing a warming effect on the earth. Other aerosols may be more reflective and scatter light 

instead, leading to a cooling effect on the earth. Although it is known that aerosols behave in this 
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way and contribute to global warming and cooling, the uncertainty of these contributions is still 

fairly large (IPCC 2013). 

 A highly absorbing aerosol, such as black carbon, would increase the temperature of the 

atmosphere as it absorbs radiation. With less radiation available to reach the earth’s surface, the 

temperature of the ground decreases. This difference in temperature prevents evaporation, 

causing a decline in cloud formation, which in turn leads to less rainfall (Bond et al. 2013). 

Another detrimental effect happens when a highly absorbing aerosol mixes with snow. The snow 

then absorbs more radiation than it would have normally and melts faster, leading to increased 

flooding in some regions (Hansen et al. 2004). More recent studies (Wang et al 2013; Saide et al. 

2014; Yuan 2014) have also linked aerosols with severe weather. 

 Aerosols can influence climate indirectly as they serve as cloud condensation nuclei but 

they can also change climate by absorbing or scattering radiation. Among the aerosols black 

carbon is recognized as one of the greatest contributors to global warming (Bond et al. 2013). It 

is important to take accurate measurements of aerosol optical properties over the entire solar 

(Ramanathan et al. 2007) spectrum in order to quantify the impact of aerosols on climate and 

severe weather. It is for these reasons that we are attempting to increase the body of knowledge 

concerning aerosols and their optical properties. 

1.4 Optical Properties of Aerosols 

 The extinction coefficient, 𝛼𝑒𝑥𝑡, of an aerosol measures the attenuation or gradual loss in 

the intensity of light. It has units of m−1 and is given by equation (1), where 𝜎𝑒𝑥𝑡 is the cross 

section and 𝑁 is the number density (𝑁 = 𝑛/𝑉) of the aerosol. Similar equations can be used in 

determining the scattering and absorption coefficients. 

𝛼𝑒𝑥𝑡 = 𝜎𝑒𝑥𝑡𝑁𝑒𝑥𝑡         (1) 
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 These coefficients may also be determined from Beer-Lambert’s law, given in equation 

(2), where I is the intensity, 𝐼0 is the initial intensity, and r is the distance traveled through the 

medium. This gives us the loss in intensity of light. As the distance traveled, r, increases, the 

intensity is lost exponentially. The extinction coefficient is the value that we will measure 

experimentally in our cavity ring-down system, which will be further explained in the second 

chapter. 

𝐼 = 𝐼0𝑒−𝛼𝑒𝑥𝑡𝑟         (2) 

 The single scattering albedo (ω) of an aerosol measures its ability to scatter light versus 

absorb light. The value of ω is always between 0 and 1. If ω = 1, the particle is purely scattering, 

but if ω = 0, the particle is purely absorbing. This value can be determined by dividing the 

scattering cross section of the aerosol by its extinction cross section as in equation (3). 

𝜔 =  
𝜎𝑠𝑐𝑎𝑡

𝜎𝑒𝑥𝑡
=  

𝜎𝑠𝑐𝑎𝑡

𝜎𝑠𝑐𝑎𝑡+𝜎𝑎𝑏𝑠
=  

𝛼𝑠𝑐𝑎𝑡𝑁𝑒𝑥𝑡

𝛼𝑒𝑥𝑡𝑁𝑠𝑐𝑎𝑡
     (3) 

Here it can be noted that extinction is equal to scattering plus absorption, which is a useful 

relationship. It should also be noted that while the number densities should be the same in the 

above equation and cancel out, these are usually measured separately in the lab and will give 

different results depending on particle loss throughout the system. 

 It is also interesting to know whether these properties are wavelength dependent on the 

incoming radiation. This dependency is called the Ångstrom coefficient and is given in equation 

(4). The Ångstrom coefficient may also be used to extrapolate the scattering coefficients to 

wavelengths beyond the range of our equipment. Specifically, the nephelometer used in this 

study only took measurements at three specific wavelengths (450, 550, and 700 nm), so 

extrapolating the data was necessary to compare results with data gathered from the cavity ring-

down system. 
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å =  −
log

𝛼(𝜆1)

𝛼(𝜆2)

log
𝜆1
𝜆2

        (4) 

 Another important quantity relates the cross section of extinction, scattering, or absorbing 

to the actual geometric cross sectional area. This is called the efficiency of scattering, and is 

given by equation (5), where 𝐴 = 𝜋𝑟2 for a spherical particle. The geometric cross sectional area 

can be thought of as the shadow cast by the particle if a beam of light is shining on it; it is only a 

two-dimensional shape. 

𝑄 =
𝜎

𝐴
         (5) 

1.5 Definition of Black Carbon 

Black carbon (BC) is one of the primary contributors to absorption in the atmosphere and 

the effects of global warming, due to its mostly absorbing qualities. The terms “soot”, “black 

carbon” and “elemental carbon”, among others, are often confused and used interchangeably, 

even though they have distinctly different meanings. In general, black carbon refers to primarily 

light-absorbing carbonaceous material (Moosmüller 2009). More recently, black carbon has been 

given a very stringent list of properties that it must possess in order to be called “black carbon”. 

The following quote from Petzold et al. (2013) gives these properties as summarized from Bond 

et al. (2013): 

 “…BC is characterized by the following distinct properties: 

(1) it strongly absorbs visible light, with a MAC [mass absorption 

cross section] value above 5 m2g−1 at a wavelength 𝜆 = 550 nm 

for freshly produced particles; (2) it is refractory, with a 

volatilization temperature near 4000 K; (3) it is insoluble in water, 

in organic solvents including methanol and acetone, and (4) it 
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consists of aggregates of small carbon spherules of <10 nm to 

approximately 50 nm in diameter. In order to include a distinct 

microstructural feature, we add a fifth property saying that (5) it 

contains a high fraction of graphite-like sp
2
-bonded carbon 

atoms…” 

 By this definition, the soot samples collected in this phase of our work would not be 

considered black carbon, in violation of the third property. As will be described in more detail in 

the third chapter, our current solution consists of distilled water. 

 Other important synonyms of “black carbon” include “elemental carbon”, “ns-soot” (a 

relatively new term coined by Buseck et al. (2012)), and “soot” or “soot carbon” (Petzold et al. 

2013). Elemental carbon simply refers to any particulate matter that is mostly carbonaceous, with 

little to no bonding with other elements. Ns-soot particles, short for nanosphere-soot, exist 

between 10 and 100 nm, and are the building blocks of soot aggregates. When viewed under a 

microscope, it can be seen that the fractal patterns of these aggregates can be subdivided into 

smaller spherical structures. This can be seen in Figure (2), where we were able to view our 

samples using a scanning electron microscope. However, as these ns-soot particles form into 

bigger and bigger aggregates, they exceed the size range of our equipment. Instead, we are 

primarily looking at the last category mentioned above, soot, which contains carbon produced 

from the combustion of fossil fuels, with small contributions by hydrogen and oxygen. Although 

this definition excludes any organic species present during combustion, we currently have no 

way to separate these in the laboratory, so it is possible that they may be included in our findings. 
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Figure 2. Scanning electron microscope image of soot aerosol during the smoldering stage. 

No matter which definition is used, it is strongly recommended that any references to “black 

carbon”, “soot”, etc., be further clarified based on the experimental methods used and the 

application. For the remainder of this paper, we will use the words “soot”, “soot particle(s)”, or 

“soot aerosol(s)” interchangeably to define the particulate matter being studied. These particles 

were produced from the combustion of various types of wood. It is assumed that the majority of 

these particles are absorbing; however, other organic compounds may be present, which would 

affect the absorption of the sample as a whole. The words “aerosol(s)” and “aerosol particle(s)” 

will continue to describe any aerosol in general. Although this work focuses on soot aerosol, any 

aerosol between 100 and 700 nm may be measured using our system. 
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1.6 Biomass Burning as a Source of Soot Aerosols 

Biomass burning is the combustion of living and/or dead vegetation that is initiated by 

humans or lightning. The most significant form of biomass burning in the USA is wood burning. 

The Environmental Protection Agency (EPA) (EPA 1986) in 1984 estimated that there were 11 

million U.S. wood burning stoves, that they burned 43 million tons for woodstoves annually, that 

fireplaces burned an additional 11 million tons, and industry another 2 million tons of wood. 

Many third-world nations use wood, straw, dung, leaves, or other materials for heating and 

cooking food. Worldwide, huge amounts of biomass are burned in tropical rain forests in South 

America, Africa, and Malaysia/Indonesia to make room for agricultural crops (Curtis 2002).  

Most recent studies point to the potent source of human-induced climate warming: 

aerosol particles emitted by biomass burning (Bond et al. 2013. IPCC 2013, Wang et al. 2013). 

The recent estimate (IPCC 2013)
 
of biomass aerosol radiative forcing is 50% larger than earlier 

estimates. 

The combustion of wood is a complex process. Wood is generally considered to burn in 

three distinct, but overlapping stages (Tillman 1981). The first stage, ignition, involves use of 

heat to drive off moisture and bring the wood to the pyrolysis temperature. In the second stage, 

flaming, the wood undergoes pyrolysis (thermal decomposition under oxygen-poor conditions) 

when it reaches around 500-600°F. This process leads to production of organic gases with 

increasing high molecular weight as combustion progresses. The remaining portion is charcoal, 

which burns at about 1100°F. Once volatiles are driven off, direct combustion of black carbon 

occurs in the third stage, smoldering. Any unburned gas-phase residue will be in the form of 

smoke or condensed pyrolysis gases. Complete combustion requires plenty of oxygen and the 

three elements of temperature, turbulence, and time.  
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 The combustion technique as well as operational parameters such as fuel load, airflow 

setting, and the fuel itself has an important influence on the amount and the composition of 

particle emissions (Schmidl 2011; Fine et al. 2001; 2002; 2004 a, b). Soot is formed from 

organic precursors in zones of high temperatures and lack of oxygen, where volatiles and 

primary tars react to form secondary tars and polyaromatic hydrocarbons, which can 

subsequently form soot particles by further agglomeration and release of hydrogen (Schwartz 

and Lewis 2012). 

1.7 Purpose of Thesis 

 The focus of this study was to continue the efforts of previous work in the calibration of a 

cavity ring-down and nephelometry system to make it usable for measuring the optical properties 

of soot aerosols that mimic ambient aerosols where biomass burning is a major source of soot 

(Singh et al. 2014).  Earlier measurements of aerosol optical properties (Radney et al. 2009, 

Moosmuller et al. 2005, Pettersson et al. 2004) have been confined to a specific range of light 

wavelength, usually around 532 nm. Our setup allows us to scan over a wide range of 

wavelengths to mimic the solar spectrum in order to better understand the optical properties of 

aerosols. The work presented here used the extinction minus scattering technique where 

extinction is measured using a cavity ring down system and scattering is measured using an 

integrating nephelometer. This will be further explained in the second and third chapters. 

 Currently, most remote sensing applications do not measure the optical properties of 

individual species within an aerosol volume, but only of the aerosol as a whole. That is why it is 

important to study aerosols in a laboratory setting where the components can be separated and 

analyzed individually. This would allow us to accurately interpret remote sensing data. Our 

laboratory setup is very flexible and gives us the ability to quickly measure the optical properties 
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of several samples over a given wavelength range. This range can also be adjusted without too 

much difficulty by replacing several mirrors in the optical setup and their corresponding dye in 

the dye laser (if used instead of the optical parametric oscillator). 

  In chapter two, the different types of scattering are discussed, specifically Rayleigh and 

Mie scattering, including several methods to measure the cross sections. In chapter three, the 

experimental setup is described in detail, and includes: soot aerosol collection, laboratory setup, 

and data collection. Results comparing scattering spheres, absorbing spheres, and soot particles 

at a size of 400 nm are presented in chapter four, and conclusions are reported in chapter five. 
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CHAPTER 2  

Measurement of Optical Properties 

2.1 Reflection and Refraction 

 When a wave, such as electromagnetic radiation, is incident on a surface, part of the wave 

is reflected from the surface and part is transmitted through the surface of the second medium at 

a refracted angle. The reflected angle is equal to the incident angle and the refracted angle can be 

calculated from Snell’s Law (𝑛1 sin 𝜃1 =  𝑛2 sin 𝜃2) if the refractive index, n, of each of the 

media is known. This index is equal to the ratio of the speed of light in a vacuum to the speed of 

light in the medium (𝑛 = 𝑐 𝑣𝑚𝑒𝑑𝑖𝑢𝑚⁄ ). If 𝑛2 is bigger than 𝑛1, the reflected wave is inverted at 

the boundary between the two media or shifted 180° out of phase; otherwise, it remains upright 

and in phase with the original wave. 

For absorbing particles, the index of refraction becomes complex. It is expressed as 

�̃� = 𝑛 + 𝑖𝜅, where κ is related to the permittivity of the medium. In this case the incoming wave 

is split into three parts: reflection (scattering), refraction (transmission), and absorption. If a 

wave is absorbed and immediately reemitted, this can also be considered as scattering. The 

absorption coefficient can now be given by equation (6). 

𝛼𝑎𝑏𝑠 =
4𝜋𝜅

𝜆0
         (6) 

 The above theory holds as long as the wavelength of the radiation is small when 

compared to the size of the surface it is coming into contact with. When the wavelength is 

similar in size to the diameter of an aerosol particle (when considering spherical particles) or 

some other size parameter (when considering non-spherical particles), the method of reflection 

and refraction is not as straight-forward. 
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 When electromagnetic radiation is reflected from many different surfaces, as it does 

when traveling through an aerosol, the result is called scattering. This scattering is generally 

divided into three categories based on an equal-volume-sphere size parameter, 𝛸 =  𝜋𝐷𝑝/𝜆, 

where 𝐷𝑝 is the diameter of a single particle and λ is the wavelength of the radiation. When 

𝛸 ≫ 1, the particle is much bigger than the wavelength, normal geometry applies, and reflection 

and refraction happen as described above. When 𝛸 ≪ 1, the wavelength is much bigger than the 

particle, and Rayleigh theory applies, which will be described below. For all other values of 𝛸 in 

the middle range near 1, the particle and the wavelength are comparable to each other in size and 

Mie theory applies, which will also be described below. These theories are all based on the 

solutions of the spherical wave equation for the scattering of electromagnetic radiation by a 

sphere. 

2.2 Mie Theory 

 Gustav Mie (1908) showed that the solutions of the wave equations with spherical 

boundary conditions could be found in terms of an infinite series of magnetic and electric poles. 

Equations (7) through (9) give these solutions for the extinction, scattering, and absorption cross 

sections. (Bohren, and  Huffmann, 2010). 

𝜎𝑒𝑥𝑡 =
𝜋𝐷𝑝

2

2𝛸2
∑ (2𝑛 + 1)[−Re(𝑎𝑛 + 𝑏𝑛)]∞

𝑛=1     (7) 

𝜎𝑠𝑐𝑎𝑡 =
𝜋𝐷𝑝

2

2𝛸2
∑ (2𝑛 + 1)(|𝑎𝑛|2 + |𝑏𝑛|2)∞

𝑛=1     (8) 

𝜎𝑎𝑏𝑠 = 𝜎𝑒𝑥𝑡 − 𝜎𝑠𝑐𝑎𝑡        (9) 

 The last equation describes the relationship between extinction, scattering and absorption. 

If both extinction and scattering are known, then absorption is easily found. The terms 𝑎𝑛 and 𝑏𝑛 

are the magnetic and electric multipoles of order n, where ψ and ξ are the Riccati-Bessel 
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functions, j represents the Bessel functions, and h represents the Hankel functions. These are 

given in equations (10) through (13). These are actually quite complicated to calculate and were 

not easily attained when Mie first formulated the theory. It is now easy to perform these 

calculations using computer algorithms. 

𝑎𝑛 =
𝑚𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥)−𝜓𝑛(𝑥)𝜓𝑛
′ (𝑚𝑥)

𝑚𝜓𝑛(𝑚𝑥)𝜉𝑛
′ (𝑥)−𝜉𝑛(𝑥)𝜓𝑛

′ (𝑚𝑥)
     (10) 

𝑏𝑛 =
𝜓𝑛(𝑚𝑥)𝜓𝑛

′ (𝑥)−𝑚𝜓𝑛(𝑥)𝜓𝑛
′ (𝑚𝑥)

𝜓𝑛(𝑚𝑥)𝜉𝑛
′ (𝑥)−𝑚𝜉𝑛(𝑥)𝜓𝑛

′ (𝑚𝑥)
     (11) 

𝜓𝑛(𝑚𝑥) = 𝑚𝑥𝑗𝑛(𝑚𝑥)       (12) 

𝜉𝑛(𝑚𝑥) = 𝑚𝑥ℎ𝑛
(1)

(𝑚𝑥)       (13) 

 This theory is good only if the particles are pure spheres. For non-spherical particles, we 

can use the so called T-matrix method. This method, developed by Waterman (Mishchenko et al. 

1996), is kept up to date by Mishchenko et al. (2013). We did not use the T-Matrix method in 

this work even though the soot aerosols are non-spherical. Approximate results can be obtained 

using Mie theory. 

2.3 Rayleigh Theory 

 Rayleigh theory applies in the range where the diameter of the particle is about one tenth 

of the wavelength of the incoming radiation or smaller. For the visible spectrum (~400-700nm), 

this would happen for sizes less than or equal to 50 nm. Experimentally, it was found that even 

particles up to 100 nm can be approximated fairly accurately using this kind of scattering. 

 Rayleigh theory is only an approximation of the more general Mie theory. Only the 

lowest order terms of 𝑎𝑛 and 𝑏𝑛 are considered. Most of those become zero, leaving only the 𝑏1 

term. This term reduces to equation (14), which then gives the Rayleigh cross sections as 

equations (15) and (16), where �̃� is the complex index of refraction of the aerosol particles as 
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defined above. Rayleigh scattering is dominated by the 𝜆−4 term. Since this cross section 

depends on the wavelength of light, shorter wavelengths are scattered more than longer 

wavelengths. Since the wavelength of blue light is smaller than the wavelength of red light, blue 

light has a larger cross section, meaning it scatters more than red light, which is why the sky 

appears blue during the day. 

𝑏1 = −
2𝑖

3
(

�̃�−1

�̃�+2
) 𝛸3       (14) 

𝜎𝑒𝑥𝑡 =
𝜋2𝐷𝑝

3

𝜆
Re (

�̃�−1

�̃�+2
)       (15) 

𝜎𝑠𝑐𝑎 =
2𝜋5𝐷𝑝

6

3𝜆4
(

�̃�2−1

�̃�2+2
)

2

       (16) 

2.4 Comparison of Measurement Techniques 

 Several methods are available for measuring the various coefficients (extinction, 

scattering, and absorption). The first general category is filter-based methods (Hansen et al., 

1982). These involve collecting aerosol on a filter and determining the absorption coefficient by 

measuring the transmission of light through the filter. This method is very inexpensive, making it 

the most widely used method; however, this method suffers from artifacts and does not take 

scattering into account. This means that the resultant measurement is really extinction and the 

absorption is consistently high (Schmid et al., 2006; Müller et al., 2011; Collaud-Coen et al., 

2010). Although corrections may be applied, accuracies of this method range between 20 and 

30%, though some may be as low as 12%. These corrections are usually based on laboratory-

generated particles, which could limit their usefulness (Bond et al. 2013). 

 Another popular method, which is very accurate for measuring absorption, is the 

photoacoustic spectrometer (PAS) (Arnott et al. 1999; Lack et al. 2006, Ajtai et al. 2010, Sharma 

et al. 2013).  In this method, particles within a cavity absorb energy from a laser. When this 
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energy is absorbed, the temperature of the particles increases, causing increased vibrations of the 

aerosol particles. These vibrations create an increase in the pressure of the gas containing the 

aerosol, producing acoustic waves which can then be measured by a very sensitive microphone. 

The uncertainty of the absorption measured using this method is only 5% (Bond et al. 2013); 

however, the equipment involved can be very costly. 

 The method chosen for this work is the extinction-minus-scattering method, using cavity 

ring-down spectroscopy (CRDS) to measure extinction, combined with integrating nephelometry 

to measure scattering (Moosmüller et al. 2009; Bond, and  Bergstrom 2006, Gerber, 2009).  

There are two main advantages to using this method. The first is that the equipment is less 

expensive than the PAS system. The second advantage comes from the fact that the effective 

path length of the cavity is much longer than the physical length of the cavity, due to a single 

laser pulse making multiple passes through the same sampling volume. CRDS is well-

characterized and can be used for making absolute measurements. Further detail is given in the 

next section. 

2.5 Cavity Ring-Down Spectroscopy 

 Cavity ring-down spectroscopy was first developed by Deacon and O’Keefe (O’Keefe et 

al. 1988, Zalicki and Zare 1995,), to measure the concentration of gases. It has since been used 

by other groups (Riziq et al. 2007, Radney et al. 2009, Pettersson et al. 2004, Moosmüller et al. 

2005, Baynard et al. 2007 ) in the measurement of aerosol optical properties. 

The laboratory setup includes a cavity having highly reflective mirrors at each end, 

coupled with a pulsed laser. 99.99% of the laser pulse is reflected before entering the cavity, but 

the part that does makes it inside is effectively trapped, with only a small portion escaping with 

each pass of the laser. With each pass, only a fraction of the original intensity escapes the cavity 
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to be measured by a photomultiplier tube. The intensity decreases exponentially, and the time 

that it takes to reach 1/e of the original amount, called the ring-down time (𝜏0), can be calculated. 

This is the effective photon lifetime in the cavity. When an aerosol is introduced into the cavity, 

the ring-down time (τ) is shortened, due to the additional scattering and absorbing of light by the 

aerosol particles. This difference can be used to find the extinction coefficient of the aerosol and, 

subsequently, its extinction cross section, as given in equation (17), where 𝑐𝑎𝑖𝑟 is the speed of 

light in air and 𝑅𝐿 is the ratio of the mirror-to-mirror distance to the length of the cavity occupied 

by the sample. The sample is separated from the mirrors by a small purge flow of nitrogen, to 

keep the aerosol from building up on the mirrors. Here, the number density is the average 

number of particles in the cavity at any given time. As mentioned previously, due to losses 

throughout the system, this value is not the same at other locations where measurements of the 

aerosol are taken. 

𝛼𝑒𝑥𝑡 =
𝑅𝐿

𝑐𝑎𝑖𝑟
(

1

𝜏
−

1

𝜏0
) = 𝜎𝑒𝑥𝑡𝑁𝐶𝑅𝐷      (17) 

 This method has a huge advantage over other methods when calculating extinction due to 

the large effective distances that can be achieved through proper alignment of the laser with the 

cavity. This gives a high resolution as the laser passes through the aerosol multiple times before 

it decays to 1/e of its original value. Our maximum ring down time was measured at 80 µs. 

Given that light can travel at 3 × 108  m s⁄ , our effective distance is approximately 24 km. Since 

the length of our cavity is 170 cm, this gives over 140,000 passes for one pulse of the laser. 

Another advantage of this method is that the resulting measurements are not dependent on pulse-

to-pulse variations of the laser intensity—each individual measurement simply measures the time 

taken to reach 1/e of the initial intensity for that particular pulse. 
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2.6 Integrating Nephelometry 

 The method used to calculate the scattering coefficients of aerosols is integrating 

nephelometry (Anderson et al. 1996, Anderson and Ogren, 1998). In order to calculate the 

absorption coefficients, we will use the extinction-minus-scattering method. Nephelometry is 

very sensitive due to the fact that scattering (in small quantities) is easier to detect than the 

resulting attenuation of light caused by the same amount of scattering. As the nephelometer is a 

common instrument for measuring the scattering of aerosols, only a brief explanation will be 

given here. 

The nephelometer is capable of measuring scattering over a range of angles (compared to 

the incident light) within its sampling volume. These measurements are made by three 

photomultiplier tubes (PMTs). Each of these PMTs is paired with a different dichroic filter 

having one of the following specific wavelengths: 450, 550, and 700 nm. These three 

measurements can be extrapolated to cover the full visible spectrum using the Ångstrom 

coefficient mentioned in the first chapter. Previous work was done to determine the uncertainty 

contributed by the nephelometer (Massoli et al. 2009, Singh et al. 2014). It was found that a 

correction factor needed to be applied to match the scattering coefficient with the extinction 

coefficient for purely scattering particles. This will be discussed in the fourth chapter. 

2.7 Summary 

As mentioned above, the soot particles that we are interested in have a size of 100 to 700 

nm. We are investigating their optical properties in the visible spectrum, which ranges from 

about 400 to 700 nm. Since these are on the same order of magnitude, we must use Mie theory to 

determine their properties, without relying on the Rayleigh approximation. Since Mie theory 

only works for spherical particles, it can be applied to manufactured spherical aerosols in order 
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to calibrate our system. These will serve as an upper limit when considering the equal-volume-

size parameter Χ of our non-spherical particles. 

 

  



21 

 

 

2 CHAPTER 3  

Experimental Details 

3.1 Soot Aerosol Collection 

Soot aerosol is generated by burning biomass in the form of wood. Wood was placed in a 

fifty-five gallon steel barrel (Figure 3). A hood and chimney was made using an aluminum 

bucket with a galvanized steel pipe attached. The steel barrel had holes drilled in the side to 

allow air flow. This flow could be adjusted by sliding a sheet of aluminum around the barrel to 

block or unblock the holes. However, it was found that the fire was being smothered unless more 

air was allowed to enter the drum through the gap between the barrel and the hood. While most 

of the soot escaped through this gap or the chimney, part of it was drawn through half-inch 

copper tubing connected to the side of the chimney. This was coiled to act as a passively-cooled 

heat exchanger. Care had to be taken not to let the copper tubing rest above the fire as this would 

not allow the soot to cool down. The coil was set at an angle to allow any condensation to drip 

back into the fire. This was then connected to half-inch Teflon tubing, which ran to a junction. 

Quarter-inch tubing was used initially, but it was found that larger tubing was needed to prevent 

it from getting clogged with condensation. From there, the soot was split into three flows: one for 

soot collection via impinger, one for soot collection via cascade impactor, and one for size 

distribution analysis via scanning mobility particle sizer (SMPS). 

An impinger (Ace Glass, model 7542-06) was used to collect the soot for analysis in the 

laboratory. Chloronapthalene was originally chosen for its compatibility with soot; however, this 

solvent was found to cause problems with the aerosol generation equipment in the lab. Instead, 

distilled water was used as a solvent. Although not all of the aerosol particles were captured, we 

were still able to study those that were water-soluble. The impinger was filled with 30 mL of 
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distilled water, with a flow rate of 12.5 L/min as specified in the catalog for use with this type of 

impinger. This flow was maintained by a vacuum pump (Gast, model DOA-P701-DB) which 

served as the main method to draw the soot from the chimney. Each sample was taken for 15 

minutes. The impinger was then emptied into sample jars using disposable pipettes. Care was 

taken not to transfer large (visible) pieces of soot into the sample jars, since they were obviously 

beyond the size range of interest for this study. 

 

Figure 3. Soot aerosol collection system. 

 A Sioutas cascade impactor was used with a Leleand Legacy pump (both obtained 

through SKC) to collect the soot on filters to be analyzed by a scanning electron microscope 

(SEM). This was done at the microscopy lab at the Joint School of Nanoscience and 

Nanoengineering. The samples were collected on aluminum filters, which were selected based on 

their conductivity. The impactor also contained a Teflon filter. Samples were collected for 3 

minutes. For times much longer than this, the pump on the impactor began to choke and our 

samples became saturated. The filters were then removed from the impactor and stored in 

Ziplock bags. The particle size cut-points for the impactor are 2.5 µm, 1.0 µm, 0.50 µm, and 0.25 

µm. Only the smallest size range was actually viewed under the SEM because the others were 
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beyond the range of interest for this study. The SEM was used to determine the general size and 

shape of the soot particles. Figure (4) shows the fractal nature of one of the samples. 

 

Figure 4. Scanning electron microscope image of soot aerosols during the flaming stage. 

 A scanning mobility particle sizer (SMPS) was used to determine the size distribution of 

the aerosol generated. This was later compared to size distributions of the soot after being re-

aerosolized in the laboratory. The morphology of the soot will change after it has been put into a 

solution due to chemical interactions. Soot also becomes more compact as it ages (Zhang et al. 

2008). This would mean that the optical properties measured were not representative of fresh 

soot. Unfortunately, not much was gained from this measurement since it exceeded the 

maximum capabilities of our SMPS, which will be described in more detail in the laboratory 

setup. 
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 Soot samples were taken during each stage of burning: ignition, flaming, and smoldering. 

The ignition stage was contaminated with particles from the method used to start the fire: 

cardboard, gas, etc. These samples were not analyzed in the lab. Care had to be taken not to 

smother the fire during the flaming stage; otherwise, the smoldering stage was entered 

prematurely. Soot samples were also taken from three different types of trees: white pine, red 

oak, and cedar. It is uncertain whether the optical properties will vary from one species to 

another. 

3.2 Laboratory Setup 

 3.2.1 Aerosol Generation. Once the aerosol had been collected, it was taken to the 

laboratory for measurement. There, the samples were diluted by adding another 100 mL of 

distilled water. This ensured that the SMPS would not become maxed out as it was in the field. 

Before measuring the optical properties of the collected soot, it had to be re-aerosolized (Figure 

5). 

 

Figure 5. Aerosol generation setup in laboratory.  

 The sample jars were connected to a Model 9302 Single-jet Atomizer and a Model 3062 

Diffusion Dryer, both from TSI. The atomizer had a flow of 35 psi of nitrogen, which provided 

flow throughout the system. The dryer contained silica gel, which removed excess water from 

the soot particles, effectively turning them back into an aerosol. From here, the particles passed 
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through an impactor with a cutoff of .0701 cm, which removed any particles that were too big for 

this study, before going into a Model 3080 Electrostatic Classifier with a Model 3081 Long 

Differential Mobility Analyzer (DMA), both from TSI. Once inside the classifier, the particles 

were given a charge. The DMA then used the electric mobility of the particles to choose a 

specific size to send through the rest of the system. 

 At this point, the particles entered the cavity, which was made of stainless steel, having a 

length of 170 cm and an outer diameter of half an inch. The interaction between the aerosol and 

the laser will be described in the next section. A purge flow of 20 mL/min of nitrogen was used 

to keep the particles from building up on the highly reflective mirrors at the ends of the cavity. 

From here, the particles went into a Model 3563 Integrating Nephelometer from TSI. Routine 

calibration of the nephelometer was generally done before a major round of experiments. Finally, 

the particles were counted by a Model 3787 General Purpose Water-based Condensation Particle 

Counter (WCPC). 

 3.2.2 Laser and Optics. To simulate different wavelengths of light, an optical parametric 

oscillator (OPO) was used, having a bandwidth of ~0.9 nm at 550 nm, ~2 nm at 600 nm, and ~9 

nm at 680 nm. The OPO contains a birefringent crystal capable of producing light at wavelengths 

from the visible range up to the near infrared. The 355 nm beam from a Continuum Surelite I-20 

Nd:YAG laser, operated at 20 Hz, was used to pump the OPO. An ND 6000 dye laser is also part 

of this setup, but was not used to collect data for this study due to technical issues. 

 Careful alignment of the laser must be used to obtain mode matching within the cavity. 

Several optical components (Figure 6) were used for this alignment of the beam with the cavity. 

For the OPO, an iris and achromatic lens with a focal length of 40 cm (Thorlabs, AC254-400-A-

ML) were needed to collimate the beam before reaching the other optics. To allow space for both 
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of the lasers on the optics bench, two silver turning mirrors were used to align the beam from the 

OPO with the rest of the optics. The following optical setup applies to both of the lasers. 

 

Figure 6. Laser and optics setup in laboratory. 

An iris was used to block out any parasitics. This gave us a nice round beam to work with. This 

was followed by a polarizer (Thorlabs, model GL5), which was aligned to allow maximum 

intensity of the beam to pass through. This was determined by rotating the fast axis of the 

polarizer until none of the beam could be seen, then rotating it back 90°. A quarter wave plate 

(Thorlabs, AQWP05M) was then used with its fast axis at an angle of 45° with respect to the fast 

axis of the polarizer. This kept any reflections from the rest of the system, specifically the highly 

reflective mirrors, from going backwards into the laser. If the beam is polarized horizontally, a 

shift of 45° while going forwards and another shift of 45° while going backwards gives a total 

shift of 90° when compared to the polarizer. This shift in polarization is then canceled by the 

polarizer. 

 Next we have a Galilean telescope consisting of two plano-convex lenses having focal 

lengths of 30 cm and 15 cm (CVI/Melles Griot, PLCX-C series). Both lenses were mounted on 

moving platforms so that the distances could be adjusted to mode-match with the cavity. This 
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was primarily done by moving the second lens so that the new focal point of the laser was in the 

center of the cavity. A pinhole was placed at the focal point to ensure that there were no extra 

fringes at the beam waist. The pinhole was chosen based on the diffraction limited spot size of 

the laser beam and is given in equation (18), where D is the diameter of the pinhole, λ the 

wavelength of the laser, f the focal length of the converging lens, and r the radius of the beam 

waist. Using the upper end of our wavelength spectrum, λ was set equal to 750 nm, and r was 

measured to be 3 mm. This gives a pinhole diameter of 87.5 µm. It was found experimentally 

that a diameter of about twice this value eliminated the diffraction pattern seen from the pinhole 

itself. The pinhole that was actually used had a diameter of 150 µm. After the laser passed 

through the telescope, it was cleaned up, reduced by a factor of 2:1, and mode-matched with the 

cavity. 

𝐷 =  
𝜆𝑓

𝑟
         (18) 

 Two more turning mirrors (CVI/Melles Griot, TLM1 series) were used to align the beam 

with the cavity. Another iris was used between these mirrors for calibration purposes. 

Throughout the alignment process, a helium neon laser was used going backwards through the 

cavity to center all of the optics and align the incoming laser beam with the cavity. Once the 

laser has been aligned with the cavity, the highly reflective mirrors were attached to the ends of 

the cavity one at a time and aligned with the beam. After this, a photomultiplier tube (PMT) 

(Electron Tubes Ltd., 9558B) was attached to the far end of the cavity using a fiber optic cable 

(Thorlabs, M25L01) and collimator (Thorlabs F220SMA-A or F220SMA-B). 

3.3 Data Collection 

 Several quantities were measured for each sample. The first was a size distribution of the 

sample. This was done using the DMA and WCPC in tandem to create a scanning mobility 
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particle sizer (SMPS). The DMA scans through a range of particle sizes while the WCPC counts 

the number of particles at each size. This information can then be used to select which size of 

sample particles to work with. A sample size distribution for soot aerosol is given in Figure (7). 

This size distribution is Gaussian if the x-axis has a log scale. 

 

Figure 7. Size distribution for soot aerosol. Range of SMPS is approximately 15 to 725 nm. 

 The PMT was connected to the cavity using a fiber optic cable was used to measure the 

intensity of light “leaking out” of the cavity. The sensitivity of the PMT could be adjusted using 

a high voltage power supply. This was measured and plotted by a LabView program as an 

exponential decay, while measuring the time taken for the intensity to decrease to 1/e of the 

original intensity. This time is called the ring-down time and assigned to the variable τ. 𝜏0 is the 

ring-down time with no particles inside the cavity (other than air particles, which cannot be 
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completely removed). The difference in these values can be used with the geometry of the cavity 

to find the extinction coefficient as given in the second chapter. 

 The nephelometer was used to measure the scattering coefficient of the aerosol at 

predefined wavelengths: red (700 nm), green (550 nm), and blue (450 nm). The values obtained 

were averages over the length of the experiment. These values can be extrapolated to predict the 

scattering coefficient at any wavelength of light using the Angstrom Coefficient. Initially, the 

extinction coefficient and scattering coefficient did not match for perfectly scattering polystyrene 

latex (PSL) spheres, so a correction factor was applied to reconcile these differences. This 

correction factor had to be done at each particle size measured to avoid errors caused by 

extrapolation. 

 The WCPC counted the total number of particles exiting the system to get the particle 

number density of the aerosol. Using the data from our loss measurements (described in the next 

chapter), it can be determined how many particles were inside both of the major components of 

our system: cavity and nephelometer. These values were used to determine the extinction and 

scattering coefficients, respectively. From here, the single scattering albedo and Angstrom 

coefficients could also be found. 
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3 CHAPTER 4 

Results and Discussion 

4.1 Calibration and Loss Measurements 

Calibration of the laboratory equipment was done using manufactured polystyrene latex 

(PSL) spheres with a known refractive index. Both purely scattering and purely absorbing 

spheres were used. The size range of the purely scattering spheres was between 100 nm and 700 

nm in increments of 100 nm. A size of 400 nm was used for the absorbing spheres due to their 

availability. It was experimentally determined using our SMPS that the peak concentration of 

particles were generally larger than the size listed on the bottle from the manufacturer. This may 

be due to the sensitivity of the SMPS, however, it is more likely that this was caused by the 

presence of surfactant on the PSL spheres. While the surfactant keeps the PSL spheres from 

sticking to each other in a solution, it also adds a few nanometers to the thickness of the spheres, 

which is measured as a larger diameter. Both the manufactured diameter and the experimental 

diameter are given in Table (1) with particle concentrations in the middle three columns and the 

loss terms in the last two. 

The loss measurements themselves were taken at three points in the experimental setup: 

before the cavity, after the cavity, and after the nephelometer. The WCPC was used to measure 

the concentration of the aerosol at each of these points. A 10-inch piece of tubing with a 

connector was used in front of the WCPC for all measurements. The aerosol particles that made 

it through all of the aerosol generation equipment, up to and including the DMA and the tubing 

from the DMA to the cavity, were considered as the starting concentration of aerosol. The next 

measurement included the volume of the cavity. More specifically, the purge flow volume was 

not included in this measurement. Finally, the nephelometer and all tubing connected to it were 
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included in the last measurement. These losses were used to calculate error in aerosol 

concentration within the cavity and nephelometer volumes. Previous work was done using the 

PSL spheres to study sources of systematic error within our system (Singh et al. 2014) and it is 

applied in the analysis in this work and briefly discussed here. 

Table 1.  

Loss measurements for the cavity and nephelometer. 

Manufactured 

Diameter 

(nm) 

Experimental 

Diameter 

(nm) 

Before 

CRDS 

Before 

Neph. 

After 

Neph. 
𝐿𝐶𝑅𝐷 𝐿𝑁𝑒𝑝ℎ 

102 105.5 4970 4650 3370 0.9356 0.7247 

203 213 1250 1220 1000 0.9760 0.8197 

296 304 386 359 291 0.9301 0.8106 

390 390 (A) 251 227 174 0.9035 0.7675 

400 404 263 244 217 0.9278 0.8893 

498 525 107 97.7 80.8 0.9157 0.8270 

600 625 86.4 78.7 65.3 0.9109 0.8297 

707 740 18.1 17.3 14.2 0.9558 0.8208 

 

4.2 Error Analysis 

 A comprehensive treatment of CRDS random and systematic error has been performed 

by Miles et al. (2011) and our lab (Singh, 2014). The error analysis performed for absorbing and 

nonabsorbing polystyrene spheres is applied in analyzing the data presented here for soot. The 

analysis is described below. 

In this work, ring-down decays are plotted on a log scale and a least squares linear fit is 

performed between two user-selected cursors in LabVIEW. In our work it is unlikely that cursor 
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selection has an important effect compared to run-to-run variability, so long as low S/N is 

avoided and the ring-down trace cursors are observed to be appropriate over the wavelength 

range of the experiment. 

 A potential source of random and systematic error is the difference between the aerosol 

concentration in the ring-down cell and where it is measured in the WCPC. There are several 

mechanisms for particle losses in the system, including dilution due to purge flows, gravitational 

settling, inertial impaction at the inlet, and diffusion to the walls (Pettersson et al. 2004). In this 

work we have elected to perform WCPC measurements before and after the cavity and 

nephelometer to determine losses empirically. The loss term L for each instrument (Table 1) is 

the fraction of particles making it through the instrument (L<1). Loss in the nephelometer (LN) is 

assumed to occur after the sampling volume. For the CRDS, it is assumed that the concentration 

within the CRDS is (or is, on average) midway between the particle concentration entering and 

exiting the cavity. Thus the relation between the number density measured at the WCPC (NWCPC) 

can be related to the number density in the cavity (NCRD) and in the nephelometer (NNeph) by 

equations (19) through (21). It is possible that, due to optical tweezing effects (Butler et al. 

2007), the particle number density within the beam is higher than the bulk; however, these 

contributions were found to be negligible. 

𝑁𝑁𝑒𝑝ℎ =
𝑁𝑊𝐶𝑃𝐶

𝐿𝑁𝑒𝑝ℎ
        (19) 

𝑁𝐶𝑅𝐷 =
𝑁𝑊𝐶𝑃𝐶

2𝐿𝑁𝑒𝑝ℎ
(

1

𝐿𝐶𝑅𝐷
+ 1)      (20) 

𝑁𝐶𝑅𝐷

𝑁𝑁𝑒𝑝ℎ
=

(
1

𝐿𝐶𝑅𝐷
+1)

2
        (21) 
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 Another factor impacting the accuracy is the potential for coherent forward-scattered 

light to be recaptured by the resonating pulse of light in the optical cavity (Smith 2011). This 

results in the observed extinction cross section (σext,obs) being smaller than the actual extinction 

cross section because a portion of the scattered light is not removed from the beam, and is 

instead coupled back into the incident beam. In that work, an upper bound in the relative 

extinction cross section change was found to be given by equation (22), where ω0 is the beam 

waist radius (the denominator being the beam diameter) and V is the laser beam volume. While 

this volume was assumed to be cylindrical in this theoretical work 2

0( / )Ld R , this likely 

underestimated the number of particles within the beam (NCRDV), since the beam is wider at 

either end of the cavity. The systematic correction due to recapturing forward-scattering light is 

extremely small relative to other sources of random and systematic error, and therefore, 

correction due to this effect is neglected in this work. 

|
∆𝜎𝑒𝑥𝑡

𝜎𝑒𝑥𝑡
| < 𝑁𝐶𝑅𝐷𝑉 (

𝐷𝑝

2𝜔0
)

3

≈
𝜋𝑑

4𝑅𝐿
𝑁𝐶𝑅𝐷𝐷𝑝

2
    (22) 

 It is assumed that τ and τ0 are normally distributed and not correlated. If instrument error 

is associated with τ0 and any differences between the standard deviations, s(τ) and s(τ0), are due 

to statistical fluctuations in the particle concentration, it can be assumed that s(τ) = s(τ0) and that 

the instrument and particle statistics errors are additive and separable. The standard deviation of 

the extinction cross section s(σext) is given by equation (23). While it may appear that this 

equation fails when τ = τ0, it does not when α, which has τ and τ0 terms in it, is multiplied 

through it. 

𝑠(𝛼𝑒𝑥𝑡) = 𝛼𝑒𝑥𝑡√ 1

𝑁𝐶𝑅𝐷𝑉𝑟𝑡𝑠
+ (

𝑠(𝑅𝐿)

𝑅𝐿
)

2

+
𝑠(𝜏0)2

(𝜏−𝜏0)2 (
𝜏0

2

𝜏2 +
𝜏2

𝜏0
2)   (23) 
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 Using error propagation methods, the standard deviation of the extinction cross section 

s(σext) is given in equation (24). For any correction to the number density that doesn’t contribute 

to the error, it can be shown that RSD of the WCPC (0.1) can be directly applied to the CRDS 

without alteration. 

𝑠(𝜎𝑒𝑥𝑡) = 𝜎𝑒𝑥𝑡√(
𝑠(𝑁𝑊𝐶𝑃𝐶)

𝑁𝑊𝐶𝑃𝐶
)

2

+
1

𝑁𝐶𝑅𝐷𝑉𝑟𝑡𝑠
+ (

𝑠(𝑅𝐿)

𝑅𝐿
)

2

+
𝑠(𝜏0)2

(𝜏−𝜏0)2 (
𝜏0

2

𝜏2 +
𝜏2

𝜏0
2) (24) 

 The largest contributor to the errors is easily the uncertainty of the WCPC, followed by 

s(τ0). Changes of s(α)stat mostly reflects concentration variations on different days, not between 

runs on the same day. In comparing the overall % error to the error when contributions are 

removed, the removal of the particle statistics contribution makes an insignificant difference 

under these conditions and RL only produces a change of ~0.03 percentile points. Without the 

contribution of WCPC error, the overall error drops between 8.9 percentile points on the low end 

of error and only 5.2 in cases where the s(τ0) dominates. The wavelength variability is only 

attributed to s(τ0), and the overall error becomes 10.03% uniformly and seemingly without 

significant contribution from either s(α)stat or RL. 

 There are a number of other contributors to the uncertainty of the nephelometer. After 

calibration with reference gases and blanking adjustments, most nephelometers must take into 

account truncation errors, non-ideal angular response, imperfect wavelength response, and 

aerosol sampling issues (Anderson et al. 1996; Müller et al. 2009). For backscattering 

measurements, the shutter does not provide a perfectly sharp separation at 90° (Anderson et al. 

1996). The systematic error due to non-idealities is strongly dependent on particle size and is 

more significant for particles >1 μm in diameter (Müller et al. 2009) due to the forward 

truncation angle cutoff altering measurements of these strongly forward-scattering particles. Sub-

micron particles are more prone to errors resulting from non-Lambertian illumination. Below 50 
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nm, the accuracy of the nephelometer is only dependent on the accuracy of the calibration gas 

and photon-counting statistics, because scattered light is radiated isotropically (Anderson et al. 

1996). For the nephelometer used here, the precision is excellent, and is generally ~1%. This 

instrument mainly suffers from the inability to measure strongly forward (>170°) or backward 

(<~7°) scattered light, non-idealities in the cosine-weighted diffusing lens that follows the light 

source (because Lambertian (isotropic) illumination over all angles is imperfect), and detector 

band width (Anderson et al. 1996; Anderson and Ogren 1998).  

Several corrections were performed to nephelometer measurements. Particle loss 

measurements within the nephelometer, performed similarly to the CRD cell, revealed 

significant losses at these flow rates. These were performed with the manufacturer-supplied 

bypass block in place, and losses were significantly greater when the unpowered blower was in 

place. The bypass block or blower is mounted after the scattering volume. The losses were 

significantly greater than the manufacturer’s specified losses (<5%). To take these losses into 

account, it was initially assumed that particles were lost after the sampling volume, as opposed to 

before or within. This makes the concentration of particles within the nephelometer NNeph = 

NWCPC/LN.  

 A broadband correction factor A was used to reconcile scattering with extinction for 

completely scattering particles. This also enabled the determination of whether or not to apply 

the empirical Ångstrom exponent-based correction of Anderson and Ogren (1998) to each 

channel of the nephelometer. The determination of the corrected scattering coefficient scat uses 

equation (25), where C(λ) is a truncation angle correction factor, which could be the Anderson 

and Ogren correction, or some other user defined correction. 

𝛼𝑠𝑐𝑎𝑡(𝜆) = 𝐴𝐶(𝜆)𝛼𝑠𝑐𝑎𝑡,𝑢𝑛𝑐𝑜𝑟(𝜆)      (25) 
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 Uncorrected scattering cross sections were found to be smaller than extinction cross 

sections. For completely scattering particles, values for extinction and scattering should be equal 

(i.e. have a single scattering albedo (SSA) of 1). Since this CRDS system is well-characterized 

and is an absolute measurement, a broadband (i.e. applied to all channels) correction factor for 

the nephelometer was found for each particle size and mirror set used here. By plotting the mean 

extinction cross section vs. the mean scattering cross section and performing a forced-through-

zero linear fit, the correction factor A can be found by the inverse of the slope. A possible cause 

for the necessity of using A would be if particles were lost within or before the measurement 

volume of the nephelometer. Since cross sections found using the nephelometer were 

systematically smaller than the CRDS, this would make sense.  

Several works point to a required accuracy for SSA when used in radiative transfer 

models. While Mishchenko et al. (2004) suggested an SSA accuracy of 0.03, Bond et al. (2009) 

argue that an accuracy of 0.02 is required. Given that SSA is limited to values ≤1, an accuracy of 

≤2% is extremely challenging for a factor that relies on multiple measurement techniques. 

Previous work using a similar setup estimated SSA uncertainty to be <12% at 532 nm (Li et al. 

2011), or variable depending on SSA (Massoli et al. 2009). When determining SSA using 

equation (3), the number density in the CRDS and nephelometer is included. When propagating 

the error from this equation, the WCPC error is included twice, which causes SSA errors of 14.5-

27.9% for 107 and ~14.3% for 207 and 303 nm PSL particles. A way of improving this would be 

to use the relationship between the number densities in each instrument instead of using the 

absolute values for number densities. This results in NCRD/NNeph being replaced with 

((1/LCRD)+1)/2 (or Z for short), and the error is only dependant on the relative standard deviation 

(RSD) of scat and ext. If one assumes this relationship is free from error the SSA error becomes 
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3.5-32.6% (8.0% average), 1.7-4.1% (2.1% average), and 1.7-4.3% (2.1% average) for 107, 207, 

and 303 nm particles, respectively. The run-to-run variability of SSA measurements is on par 

with this. Assuming an error in C(λ) can be maintained ≤2% through methods described in 

above, a mean SSA error of ≤2.9% is expected using this method. Errors of ≤2% is somewhat 

unreasonable, since even the most complex schemes involving determining C(λ) with an 

assumed refractive index and size distribution information can lead to C(λ) error of ≤2% alone. 

Only through a separate and accurate measurement of refractive index and size distribution can 

SSA error be further reduced. Yet, compared to previous work with similar setups, these errors 

are quite low. Massoli et al. (2009) observe nephelometer scattering cross section errors using 

Anderson and Ogren (A&O) correction to be 3% at SSA = 1, increasing to 5% at SSA = 0.7, and 

29% at SSA = 0.4. This is the main contributor to SSA error, which is 30% at SSA = 0.4. They 

reduced this to 25% using an alternative scheme for deriving C(λ), but the CRDS/PAS 

combination yielded SSA errors of between <1% at SSA = 1 and 8% at SSA = 0.4. This is likely 

optimistic in light of the CRDS error described in this work. Should a scheme bear fruit, whereby 

the nephelometer error is reduced by increasing the accuracy of C(λ), the CRDS/Nephelometer 

combination would be more than competitive with CRDS/PAS. 

 Using the relationship between number densities in the CRDS and nephelometer, the 

influence of WCPC error on the absorption cross section can also be reduced. The RSD of the 

absorption cross section is in equation (10), where WCPC error only appears once instead of, 

effectively, twice. When equation (26) is employed, the absorption cross section error for 390 

nm absorbing polystyrene latex (APSL) spheres becomes 11.1-44.3% (mean of 15.1%). While 

this is large compared to instruments that measure only absorption, it does represent a significant 

improvement. 



38 

 

 

𝑠(𝜎𝑎𝑏𝑠)

𝜎𝑎𝑏𝑠
= √

(𝑠(𝛼𝑒𝑥𝑡) 𝑍⁄ )2

(𝛼𝑒𝑥𝑡 𝑍⁄ −𝛼𝑠𝑐𝑎𝑡)2 + (
𝑠(𝑁𝑊𝐶𝑃𝐶)

𝑁𝑊𝐶𝑃𝐶
)

2

     (26) 

4.3 Results 

Graphs containing the data gathered during this study are presented at the end of the 

chapter. All measurements were done with an aerosol particle size of 400 nm, using the OPO 

with a wavelength range of 515 to 560 nm. Flow rate through the DMA and WCPC was 2.8 

L/min and 0.6 L/min respectively. Excess flow is removed from the system before reaching the 

WCPC. Relative humidity varied slightly, but remained consistent over the time interval of each 

experimental run, which was between 10 and 20 minutes. Particle number density also varied 

somewhat over the experiment (generally decreasing), but remained mostly consistent. Any runs 

where the number density was seen to fluctuate were ignored. 

 In general, error was higher for smaller wavelengths, due to the range of the highly 

reflective mirrors being used. This is almost directly caused by decreased ring down time as 

more light is allowed to pass through the mirrors, leading to a faster loss in intensity of light, 

resulting in a lower ring down time. 

 The PSL spheres are plotted in Figure (8). As mentioned previously, a correction factor 

was applied such that the extinction cross section matches up with the scattering cross section to 

give an absorbing cross section of zero. This same factor was applied to both the absorbing 

spheres and the soot aerosol. In general, the cross sections of both aerosol types decreased with 

respect to wavelength. 

 In Figures (12) through (14), the cross sections of all aerosols are graphed without error 

bars to allow comparison without confusion. For the flaming stage of burning, all three types of 

wood had similar cross sections for both extinction and scattering. The variation between types 

of wood was 4-7% for the extinction cross section and 6-8% for the scattering cross section. For 
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the smoldering stage of burning, the variation was much higher, at 10-13.5% for the extinction 

cross section and 30-40% for the scattering cross section. 

 The single scattering albedo for all types of wood had a slope close to zero, meaning that 

this quantity is independent of the wavelength in the range of wavelengths used in this 

experiment. One interesting thing to point out is that the SSA of the red oak during the 

smoldering stage was much lower than during the flaming stage, meaning that soot from the 

smoldering stage is actually more absorbing than during the flaming stage. This is opposite from 

the other two types of wood studied, as their SSA during the smoldering stage was higher than 

the flaming stage, meaning the soot is less absorbing. 
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Figure 8. Extinction, scattering, and absorption cross sections for scattering and absorbing PSL spheres. 
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Figure 9. Extinction, scattering, and absorption cross sections for white pine during flaming and smoldering stages. 
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Figure 10. Extinction, scattering, and absorption cross sections for cedar during flaming and smoldering stages. 
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Figure 11. Extinction, scattering, and absorption cross sections for red oak during flaming and smoldering stages. 
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Figure 12. Comparison of extinction cross sections among PSL spheres and soot samples. Error bars not included for clarity. 
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Figure 13. Comparison of scattering cross sections among PSL spheres and soot samples. Error bars not included for clarity. 
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Figure 14. Comparison of absorption cross sections among PSL spheres and soot samples. Error bars not included for clarity. 
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Figure 15. Comparison of single scattering albedo for PSL spheres and soot samples.  
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4 CHAPTER 5 

Conclusions 

 Although we can easily scan through a range of wavelengths using the OPO, we must 

select one particle diameter at a time to analyze. As previously determined, aerosol sizes <200 

nm have greater error and are not recommended for use with our current laboratory setup (Singh 

et al. 2014). We are also limited by the cutoff of the DMA, which is near 700 nm at the current 

flow rate of 2.0 L/min. Aerosol particles with a diameter of 400 nm were chosen for this study 

because both scattering and absorbing PSL spheres were available at this size and correction 

factors derived from PSL measurements can be applied to the soot samples. 

 Loss measurements were performed and nephelometer losses were found to be ~17%. 

Losses in the CRDS were less systematic. We have accounted for all known sources of random 

and systematic error in a comprehensive and holistic fashion, and have discussed multiple 

methods for propagating error and sample averaging. A statistical framework was developed for 

including the contributions to random error due to WCPC measurement uncertainty, ring down 

cell geometry (RL), statistical fluctuations in particle counts, fluctuations in the blank ring-down 

time, and MFC flow error. Under the conditions investigated in this work using PSL particles, 

only WCPC measurement uncertainty and τ0 fluctuations were significant contributors, though 

particle statistics may dominate the uncertainty at lower particle concentrations. Systematic 

uncertainties due to particle losses, RL, WCPC counting efficiency, ring-down regression fitting, 

τ0 drift, optical tweezing, and recapturing of forward scattered light were also investigated. For 

particles in this size range under the cell geometry used here, only the first two factors are 

important. A broadband correction factor for each particle size and mirror set was found to be 

necessary to reconcile extinction and scattering measurements for completely scattering 
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particles, though no wavelength-dependent correction was needed. The employment of 

correction factors using the method of Anderson and Orgen was evaluated, and was found to be 

slightly better than a broadband-only correction. Random errors from the correction factors and 

measurement variability were only slight contributors to σscat error, which was dominated by 

WCPC error. 

By using number density relationships in place of absolute values, the errors in calculated 

SSA and σab values could be significantly reduced. Barring significant technological 

improvements in the accuracy of submicron particle counting, this method is the only foreseeable 

way of reducing SSA error to acceptable levels. The accuracy of SSA, based on extinction and 

scattering, is limited largely by the nephelometer at low SSA values. Specifically, the truncation 

angle correction C(λ) is the limiting factor.  

 The data in the preceding figures only represent a small portion of the visible spectrum, 

from 515 nm to 560 nm. While we did not observe any significant dependence of the optical 

properties as a function of wavelength, the range used is too small to rule out any wavelength 

dependence. Work to measure the properties at a wider range of wavelengths is needed to make 

such a conclusion. We currently have the ability to increase this range to 740 nm given the 

capabilities of our OPO and dye laser with our current selection of the highly reflective mirrors.  

 The high sensitivity of the cavity ring-down system allows for the accurate measurement 

of extinction cross sections. No observable contribution of water absorption was seen over the 

wavelengths of light used in this study. Calculating the single scattering albedo (SSA) for a given 

aerosol allows us to compare different aerosol types to determine which ones are more scattering 

or more absorbing. This study found that, in general, the SSA for different types of wood during 

the flaming stage produced values that were much more consistent than during the smoldering 
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stage (i.e. fuel type does not play a significant role during the flaming stage). The flaming stage, 

in general, is also more absorbing than the smoldering stage, with the exception of the red oak 

sample. It is not clear at this time why this is the case. Samples from a wider selection of trees 

and fuels are needed to determine if the flaming stage is generally more absorbing than the 

smoldering stage. Cedar was the least absorbing of the three types studied. 

Additional types of fuel are also being considered for measurement, including dung and 

other species of wood. Although our primary focus is soot aerosol, any aerosol could be analyzed 

using our system, provided it has a size between 200 and 700 nm. 

 The single scattering albedos found in this work can be used by others to gain a better 

understanding of how soot aerosols contribute to radiative forcing. By reducing the uncertainty 

of these measurements, greater accuracy can be achieved for climate models and other 

applications. Further research will expand upon the work done here, by increasing the 

wavelength range and studying other sources of soot aerosol. 
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