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Abstract 

Thermal characterization of composite materials plays an important role in engineering 

design of thermal structures and aerospace systems and automotive, etc. There are limited data 

on these materials in the literature. In particular, multidirectional thermal characterization needs 

to be established for polymer matrix composites to determine their working temperatures and 

thermal conductivities. In unidirectional fiber reinforced composites, thermal conductivities are 

different in axial and transverse directions of the composite material. The purpose of this 

research was to determine multidirectional thermal conductivities of IM7-G/8552 unidirectional 

carbon/epoxy composite laminate and validate the data with micromechanics models and data in 

the literature for similar materials. IM7-G/8552 unidirectional composite material was fabricated, 

and two different types of specimens in axial and transverse direction were prepared. Flash 

Method was used to measure the thermal diffusivity in axial and transverse directions of fiber 

using the ASTM E-1461 standard. Differential Scanning Calorimeter was used to measure the 

specific heat of the composite material using the ASTM E-1269 standard. Then thermal 

conductivity was calculated by multiplying thermal diffusivity, specific heat capacity, and 

material density. The experiments were performed at temperatures ranging from 20°C to 100°C. 

The measured test results agreed well with micromechanics model and similar material in 

literature. Thermal conductivities of IM7/8552 at room temperature were k1= 4.89 W/m°C in 

axial and k3= 0.58 W/m°C in transverse directions.  
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CHAPTER 1  

Introduction  

Applications of fiber reinforced composite materials are expanding to a number of 

industries including transportation and infrastructure. Composite materials provide more 

flexibility in design of vehicles in aerospace applications. Polymer matrix fiber reinforced 

composite materials consist of two materials, namely, polymer matrix and reinforcing fibers. The 

reinforcement fiber is usually stiffer, stronger, and continuous, and the matrix phase is weaker 

but holds the fibers together (Daniel & Ishai, 1994). Composite materials are superior in specific 

strength, stiffness, fatigue, and corrosion. Because of these reasons, they are in high demand in 

transportation applications. Thermal properties of the materials are essential for design of 

thermo-mechanical structures. The thermal property such as conductivity depends on fiber 

direction. Furthermore, heat transfer through composite materials plays a critical role in 

determining thermal effect on structures. Therefore this thesis focused on measurement of 

thermal conductivity of IM7-G/8552 carbon composite along and across the fiber directions.  

1.1 Background of Fiber Reinforced Composites 

Composite materials consist of two different phases or constituents which result in 

superior properties than the parent constituents. These constituents are reinforcement and matrix. 

The reinforcement is fiber and provides stiffness and strength to the combined material. The task 

of matrix is to keep together the fibers in relative position to create a unique material with 

superior properties. Composites are classified as continuous and discontinuous fiber according to 

the type of reinforcement. Discontinuous-fiber composites have short fibers, whiskers or 

nanotubes. Continuous fibers extend along the composites. Continuous fiber reinforced 

composites are stronger and flexible than discontinuous fiber composites. They could be in form 
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of unidirectional, multidirectional or cross ply laminates.  These composites can be obtained in 

the market as unidirectional tapes, waves or braids. 

 

Figure 1.1 Classification of composite materials (Daniel & Ishai, 1994) 

The other classification of composite materials is based on the type of matrix used. These 

types are polymer matrix composites (PMC), metal matrix composites (MMC), ceramic matrix 

composites (CMC) and carbon–carbon composites. PMC contain thermoset (epoxy, polymide, 

polyester) or thermoplastic (poly-ether-ketone, polysulfone) matrix reinforced with glass, carbon 
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(graphite), aramid or boron fibers. Low temperature applications are usually the choice of PMC. 

MMC is made up metals or alloys (aluminum, magnesium, titanium, and copper) reinforced with 

boron, carbon or ceramic fibers. Their limitation is maximum temperature of melting points of 

the metal matrix. CMC consists of ceramic matrices reinforced with ceramic fibers. They are 

good at working at high temperature applications. Carbon-carbon composites contain carbon or 

graphite matrix reinforced with carbon fibers. They are superior at high temperature and thermal 

shock applications. 

A lamina, or ply, is a layer of unidirectional fibers with a matrix. A laminate consists of 

two or more unidirectional lamina or plies bagged together. Laminae can be oriented in various 

orientations in a laminate as shown in figure 1.2. The laminate can be in form of different 

thicknesses and materials. The thickness is much smaller than length and width measurements. 

 

Figure 1.2 Multidirectional composite laminate 

1.2 Literature on Thermal Properties and Thermal Conductivity Measurement 

1.2.1 Experimental approaches. There are numbers of approaches to measure the 

thermal conductivity of materials. The five commonly used methods are summarized here 

Steady-state method is one of the commonly used to measure the thermal conductivity. This 
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method cannot be performed when the temperature of the material is changing. The unknown 

material set up between two plates. Hot plate is placed on top and cold plate is placed below. The 

heat is supplied from top to down to stop convection within sample. The measurement is made 

after sample reach steady-state. Behzad and Sain (2007), Han et al. (2008), and Shim et al. 

(2002) developed the method using steady-state heat flow condition. The biggest disadvantage is 

that providing steady-state condition is very hard.  

Transient Plane Source (TPS) is another method is used for transient temperature 

(changing) application. The main idea behind this technique is using a circular double nickel 

spiral sandwiched between thin polyimide film Kapton. The spiral is the heat source using 

electric power. Thermal conductivity can be calculated if variation of temperature and voltage 

with time, and heat flow data is known. Kalaprasad et al. (2000) and Johnston (1997) are used 

TPS for determination of thermal conductivities of two different materials. This method is quick 

however mathematical analysis of the data is in more difficult than steady-state method. 

In the hot wire method, a metal is being used as heater. A pure platinum wire located 

between two brick. Then, a constant electric current is applied to pure platinum. Heat flows from 

wire into the refractory bricks. The rate of temperature increase of the platinum wire is defined 

by measuring the increase in the same way a platinum resistance thermometer is used (ASTM 

C1113, 2013).  The disadvantage of this method is usually being used for isotropic materials and 

not a suitable for anisotropic materials.  

Three-ω method (Rowe, 2005; Tian, 2011) is one of the other methods to measure the 

thermal conductivity. In this method, a thin narrow metal film placed on the surface with good 

thermal contact to the sample. The heater is driven with AC current at frequency ω which makes 

the heat source at frequent 2 ω. Thermal conductivity can be determined by reporting AC voltage 

http://en.wikipedia.org/wiki/Polyimide
http://en.wikipedia.org/wiki/Kapton
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as a function of frequency. The last voltage drop the across the heating at wire 3ω has thermal 

properties of the material. The main difficulty to measure with this method is it needs 

microlithography and specialists to design the method.  

Flash Laser Method is used to measure the thermal diffusivity of the material. In this 

method, thermal conductivity is obtained by multiplying thermal diffusivity, specific heat 

capacity, and density of the material. This method is simpler, accurate, and most acceptable 

method in the literature because of the use of commercial equipment. Flash method (commonly 

called) is similar to other methods of measuring thermal diffusivity: thermal wave interferometry 

method and thermographic method (Cernuschi et al., 2002). Since, the flash method has become 

the ASTM standard, it will be used in the present study.  

Most of the work including the ASTM Standard here to fore was for metallic material, we 

use the same equipment by properly preparing test samples so that the directional diffusivity of 

composite is measured.   

1.2.2 Micromechanics models. A number of analytical models were developed to 

calculate axial and transverse thermal conductivity of composites based on micromechanic 

analysis.  

1.2.2.1 Rule of mixture for axial thermal conductivity (k1). The resin is assumed as 

isotropic and the fiber is orthotropic. Determining the axial thermal conductivity of the fiber 

composite material can be performed by a rule of mixture. Rule of mixture is used to predict 

axial thermal conductivity of composites in the literature (Springer & Tsai, 1967; Thornburgh & 

Pears, 1965). 

mmff kVkVk  11        (1.1) 
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1.2.2.2 Models for transverse thermal conductivity (k3). There are numbers of models to 

predict the transverse thermal conductivity in the literature. The following six models were most 

commonly used and accuracy of these models is validated by Wetherhold and Wang (1994), for 

AS Graphite/ Epoxy composite. All equations are expressed in terms of conductivities of fiber 

(k3), resin (km) and fiber volume fraction (Vf). 

1.Rayleigh (1892): Rayleigh analyzed influences of obstacles arranged in rectangular order and 

derived the equation for k3 in the form: 

 




























































1

1
'

0134.0

3058.0

''
'

2
1

2

1

8241

3

f

m

f

m

fff

f

m

k

k

k

k

C

C

V
v

C
V

C
V

V
kk






                                  (1.2) 

2. Halphin and Tsai (1964): Halphin – Tsai model is based on bounding principles and an 

analogy similar to mechanical (shear) properties: 
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When ξ = 1 the equation can be written as equation 1.4 

Where; 

The expression for ν’ is; 

Where; 
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3.Hashin (1983): Hashin model is based on bounding principles and analogies to mechanical 

(shear) properties. This model is same as Halphin-Tsai equation, except it is written in the 

different form: 
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4.Springer and Tsai (1967): Springer – Tsai is based on simple combinations of thermal 

resistance model: 
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5.Chawla (2012): Chawla is based on simple combinations of thermal resistance model: 
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6.Farmer and Covert (1994): Rayleigh and Farmer-Covert models are the same except for 

interphasial property effect. If the interphasial effect is neglected the two models give the same 

results, which is the case in present analysis: 

Where; 
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Here α is 3.75µm and hc is 4×10
6
 W/m

2
°C from Wetherhold and Wang (1994) for AS Graphite/ 

Epoxy. 

1.3 Composite Material of Interest  

In this study, intermediate modulus carbon fiber IM7-G and toughened 8552 epoxy 

composite was chosen because of wide use of the material in aircraft and rotor craft applications. 

Properties of IM7-G carbon fiber and 8552 epoxy are listed in table in 1.1. The IM7-G/8552 was 

supplied by Hexcel Corporation. 

Table 1.1  

Properties of IM7-G fiber and 8552 matrix 

 

Property 

IM7-G 

fiber 

8552 

matrix 

Diameter, µm 4 

 Density, g/cm
3
 1.8 1.3 

Longitudinal modulus, GPa 290 

 Transverse modulus, GPa 21 

 Tensile modulus, GPa 

 

4.7 

Tensile strength, MPa 5,170 120.6 

Thermal conductivity, W/m°C 5.4 0.1 

 

Where; 

And; 



10 

 

 

1.4 Objective of the Research  

Objective of the research is to measure axial and transverse thermal conductivity of IM7-

G/8552 composite laminate as a function of temperature, verify the results with current 

micromechanics models. Finally, establish a simple equation as functioning temperature for 

IM7-G/8552 composite.  

1.5 Scope of the Thesis 

The thesis consists of six chapters. Chapter 1 presents the background of the research, 

general information about the composite laminates, literature on experimental approaches, and 

analytical models of thermal conductivity of composite materials. Research objectives and the 

scope of thesis are also in this chapter. Chapter 2 provides the experimental approach to 

determine the thermal conductivity of composites. Chapter 3 describes the preparation of 

specimens and principle directions of thermal conductivity measurement of IM7-G8552. Chapter 

4 presents the results and discussion on thermal diffusivity, specific heat capacity, and thermal 

conductivity for IM7-G8552 composite laminate. Chapter 5 provides thermal conductivity of 

fiber reinforced composites by micromechanics and comparison with the experimental data. 

Finally, Chapter 6 presents the conclusions of the research and possible future work. 
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CHAPTER 2 

Experimental Approach 

2.1 Introduction 

In this chapter, experimental approach of measuring of thermal conductivity of fiber 

reinforced composite material is explained. The two properties of materials are required thermal 

diffusivity and specific heat capacity. NETZSCH Differential Scanning Calorimeter (DSC) and 

Anter Flashline are used to measure specific heat and diffusivity, respectively. Mathematical 

principals and details of the equipment are explained. Furthermore, an approach of the 

conductivity measurement of unidirectional composite materials is described. 

2.2 Approach 

Thermal conductivity is commonly measured through thermal diffusivity, specific heat, 

and density. The equation to calculate thermal conductivity is shown in the following equation: 

pCk           (2.1) 

Where α is the thermal diffusivity (m
2
/s), ρ is the mass density (kg/m

3
), and Cp is the specific 

heat capacity (J/kg°C) of the material. Once the ρ, Cp, and α are measured, the conductivity k 

(W/m°C) can be calculated. DSC and Flash method are used to determine specific heat capacity 

Cp and thermal diffusivity α of the materials. These methods are simple and give more reliable 

and accurate results than the other techniques in the literature (Cernuschi et al., 2002; Coquard & 

Panel, 2009). American Society for Testing and Materials Standard ASTM E-1461 (2007) 

describes the flash method to measure diffusivity and ASTM E-1269 (2005) DSC method to 

measure the specific heat. 

  

 



12 

 

 

2.3 Measurement of Thermal Diffusivity 

Thermal Diffusivity is one of the significant characteristics of a material to calculate the 

conductivity of a material. Thermal diffusivity gives the result of how fast heat transfers through 

the material. There are several methods to measure thermal diffusivity. However, the flash 

method is used in this thesis because it is easy, reliable, and accurate and the ASTM standard is 

available using a commercial equipment (Cernuschi et al., 2002).  

2.3.1 Flash method mathematical model. Flash Method was developed by Parker et al. 

(1961) and has become most common method to determine thermal diffusivity of a material. In 

many countries, it is considered a standard for thermal diffusivity of solid materials since flash 

method has no limitations on the materials (van Laack, 2014).The advantages of this method are 

simple specimen geometry, small specimen size requirements, and rapidity of measurement. It is 

defined by American Society for Testing and Materials E1461. It involves a small disc specimen 

is heated to desired temperature. High intensity short duration radiant energy pulse is subjected 

to the material when the material is reached the stated temperature. Figure 1 describes the 

approach of Flash Method to measure the thermal diffusivity. The energy source can be a laser or 

lamp. The energy is absorbed on the front surface and transfers the heat to the temperature rise 

(thermogram) is measured with respect to the time by IR Detector (ASTM E-1461, 2007). The 

data acquisition system records the change of temperature with time on the back face of the 

specimen. 
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Figure 2.1 Methodology of Flash Method 

After the furnace is set at specific temperature, instantaneous energy pulse is applied to 

the front face of the specimen. The temperature change (ΔT) with time on the back face is 

recorded. The energy pulse continuous until the ΔT becomes constant with respect to time. This 

ΔT is recorded as ΔTmax and the time required to reach 
2

Tmax
 is recorded as half time t1/2. The 

half time and the specimen thickness (L in cm) are used to calculate the thermal diffusivity of the 

composite material in Parker’s equation 2.2 (ASTM E-1461, 2007). The test is described valid if 

the t1/2 resulted between 0.01 and 1 s. 

2/1

2

237.1

t

L
p





                    (2.2) 

Parker’s equation is for the ideal case and theoretical model of the flash method. Specimens are 

assumed isotropic and homogenous material. It assumes one dimensional heat transfer, no heat 

loss, and energy pulse is uniform and instantaneous. Many other researchers proposed correction 

factors to Parker’s equation to consider the heat loss, finite pulse time, and non-uniform heating 

effects. Cowan, Clark and Taylor, Koski, and Heckman’s correction factors are mostly used in 

the literature (Clark III & Taylor, 1975; Cowan, 1963; Heckman, 1973). These correction factors 

Thickness (L)

Back Face

Instantaneous Pulse

Front Face

Temperature Increase 

[T = T0+ΔT(t)] IR Indicator

x
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can be used together to place additional parameters. The one found to be simple, accurate and 

incorporated in Anter FlashLine Equipment is Clark and Taylor correction factor (KR). The Clark 

and Taylor correction factor includes the radiation heat losses, and is used in this research. Clark 

and Taylor examined the thermogram before system reached the maximum temperature. The 

correction factor is derived from taking time to reach 25% and 75% of the ΔTmax, where ΔTmax is 

maximum temperature rise on the back face. Than the correction factor KR is given by:  

2

25.075.025.075.0 )(06520543.0)(361578.03461467.0 ttttKR    (2.3) 

where KR is the correction factor. The material diffusivity is given by: 

Rcorrected K
t

L

2/1

2

                     (2.4) 

The Clark and Taylor’s correction factor was used in this research. 

2.3.2 Flashline apparatus The essential components of the flashline apparatus are the 

laser flash source, specimen holder, temperature response detector, and recording device. These 

components are shown in Fig.2.2 in the block diagram along with data acquisition and analysis 

software. In addition, an environment control system is required to testing when the temperature 

is above and below the room temperature (ASTM E-1461, 2007). The flash source is generally a 

lamp or laser that can be able to beam quick energy pulse. The apparatus used in the research 

was Flashline™ 2000 by Anter Corporation. It has a high intensity xenon lamp as the pulse 

source. The pulse duration time should be less than 2% halftime of the specimen to be measured 

in order to keep the error due to finite pulse less than 0.5%. This equipment is able to test four 

specimens in one run. The samples are placed on sample change instrument in apparatus. 

Specimens are surrounded by furnace that increases the temperature of specimen. The technical 

specifications of equipment are listed in table 2.1. 
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Figure 2.2 Block Diagram of a Flash System 

Table 2.1 

Technical Specifications of the FlashLine
TM 

2000 Thermal Properties Analyzer 

 
  

Flashline™ 2000 by Anter Corporation 

Pulse Source: High Speed Xenon Discharge 

Thermal Diffusivity Range: 0.001 – 10 cm
2
/s 

Operating Temperature Range: Room Temperature to 330°C 

Furnace: Nichrome Heaters 

Atmosphere: Air or Inert Gas Purge 

Interlock: Four Sample (Indexed) System 

Testing Samples: 

Cylindrical shape, 1 – 6 mm thick, 6 – 30 mm 

Diameter, wide range of materials and 

compositions 

Cooling System: LN2 

 

LASER

PULSE DELIVERY

FURNACESAMPLE

DETECTOR

SIGNAL CONDITIONING

COMPUTER DATA 
ACQUISITION SYSTEM

SOFTWARE



16 

 

 

 

Figure 2.3 Experimental Setup for the Thermal Diffusivity measurement  

The thermal property analyzer also has vacuum-capable environmental enclosure. 

Nitrogen gas is used as inert gas to evacuate chamber. The detector needs to identify any linear 

electrical output to a small temperature rise. The amplifier response time should be less than 2% 

of the half time. Indium Antimonide (InSb) detectors are very sensitive infrared detectors for 

thermal imaging systems. The InSb infrared detectors outputs a linear signal proportional to a 

small temperature change on the back face of the sample after the pulse applied on the front face. 

2.3.3 Experimental procedure. ASTM E-1461 (2007) test standard was followed while 

conducting the experiments. Five of 12.5 mm diameter samples were prepared to make 

measurement of axial direction thermal diffusivity. Four of 12.5 mm diameter samples were 

prepared to measure the thickness direction thermal diffusivity. The diameter, thickness, mass, 

and density were measured and documented. Each sample was placed in the specimen holders 

inside a vacuum sealed environmental enclosure. Nitrogen gas was purged into the 

environmental enclosure as inert gas.  

A large Dewar approximately 20L is filled with liquid nitrogen from Airgas, Inc. The 

liquid nitrogen in this large Dewar was poured into the small Dewar which is about 1 L. The 
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liquid nitrogen was manually poured in the receptacle of the IR detector. While running the 

experiment, IR detector was feed regularly with the liquid nitrogen. The measured specimen 

thickness, diameter, and mass were input into the Flashline
TM

 2000 System, and test temperature 

program is set to the required value. The test was started from the room temperature and each 

sample was tested at different intervals to a maximum temperature of 100°C. At each 

temperature segment two to three flashes were performed at a time. The results were compiled, 

and analyzed, and corrections were made if necessary. 

2.3.4 Calculation and correction. The Parker Equation (Equation 2.2) was used to 

calculate thermal diffusivity (αp) by using the specimen thickness, L, and half-rise time t1/2. Then, 

Clark and Taylor correction factor is applied to minimize heat loss deviation using the 

thermogram data. Thermogram data gives the plot of temperature rise versus time as shown in 

figure 2.4. Mathematical model is provided by ASTM E-1461 (2007). The figure 2.3 shows the 

difference between the mathematical model and experimental data. 
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Figure 2.4 The Flash Method Thermogram 

ΔT= Rise temperature in Celcius 

ΔTmax= T∞ - T0  

T∞= Max temperature that diffusivity can get closed 

T0= Initial Temperature 

t1/2= time, s, required for the back face temperature to be one- half ΔTmax 

Experimental data and mathematical model give 3% variations for the Clark and Taylor 

correction factor. 

2.4 Measurement of Specific Heat Capacity 

Specific heat is the amount of heat required to raise the temperature of one gram of a 

material by one degree Celsius. Differential Scanning Calorimetry (DSC) is the most popular 

method to measurement of specific heat. The technique of DSC is based on comparing the heat 

t/t1/2

Δ
T

/Δ
T

m
a

x

Mathemaical

Model

Experimental 

Data

t1/2

maxT

2
maxT
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flow of the sample with the heat flow of a reference material whose properties are known in a 

controlled increasing temperature program (Höhne et al., 2003). DSC can determine how the 

specific heat of the sample varies with respect to the temperature using the data of the heat flow 

of the sample.  

2.4.1 Differential Scanning Calorimetry model. Differential Scanning Calorimetry 

(DSC) is a thermo-analytical technique that is commonly used for specific heat measurement. 

DSC, in addition, can provide various properties of materials such as glass transition, melting 

points, crystallization time and temperature, rate and degree of cure, and oxidative/thermal 

stability (Blumm & Kaisersberger, 2001). Heat flow rate
dt

dQ
 and heating rate 

dt

dT
  is measured 

using DSC, and then the measured data is used to calculate specific heat capacity of the unknown 

material using the equation 2.5 at constant pressure: 

dT

dQ

m
C p

1
          (2.5) 

Where m is the mass of the material and 
dT

dQ
is the gradient of the heat flow with respect to the 

temperature T. Applying the chain rule of differentiation, specific heat can be written as: 

dt

dQ

dT

dt

m
C p

1
           (2.6) 

Machine constant (Em) has a significant role in this measurement, since the precise measurement 

of 
dt

dQ
and 

dt

dT
 are very difficult to measure and depends on equipment to equipment. The 

machine constant is determined using a Cp of a known material. The sapphire is used as 

reference material and Em was determined to be 0.28 for the NETZSCH DSC 200 F3 Maia®. 

Then the Cp of a unknown material is calculated by: 
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mp E

dt

dT
m

dt

dQ

C



















                     (2.7) 

The Em was calculated from separate test with the same equipment and a sapphire as a reference 

material, for which Cp is known. The following gives the value Em: 

pm C

dt

dQ

dt

dT
m

E



















          (2.8) 

The experiment was conducted by setting the machine to operate from 20°C to 100°C with a set 

heating rate 0.25°C/s. The measured Em was 0.28, and it was constant for a temperature range of 

20°C to 100°C. This value is used to measure the Cp of the material of study.  

2.4.2 DSC apparatus. The calorimeter used in this research is NETZCH DSC 200 F3 

Maia®. The essential components of the apparatus consists of furnace, temperature sensor, 

differential sensor, and a test chamber environmental enclosure and temperature controller, 

recording device, containers, and cooler. This calorimeter uses the technique in which the 

difference in the heat flow to a sample and to a reference is observed as a function of time or 

temperature. It is a heat flux system that combines high stability, high resolution, fast response, 

and easiness to operate (NETZSCH, 2008). The NETZSCH DSC operates according to the 

ASTM E-1269 (2005).  
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Figure 2.5 DSC 200 F3 Maia® 

The operation range is between -170°C to 600°C since it contains external cooler which 

improves the temperature range and allows the equipment to cool fast from raised temperatures 

to preferred temperatures. The furnace block surrounds sensor plate to arrange no temperature 

gradient difference occurs between reference and sample. The furnace, also, provides uniform 

and controlled heating. The heating range is between 0.001 K/min to 100 K/min. The figure 2.6 

shows cross-sectional view of DSC 200 F3 Maia®.  
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Figure 2.6 Cross-sectional view of DSC 200 F3 Maia® 

The sample is placed in the pan and sealed with instrument’s lid, and the three additional 

lids at the top to prevent influence of outside environment. External cooling system is used as 

temperature controller. The calorimeter contains high sensitive E type heat flux sensor for its 

experiments (NETZSCH, 2008). 

2.4.3 Experimental procedure. Experimental procedure of DSC is according to the 

ASTM E-1269 (2005). The DSC 200 F3 Maia® Measuring Cell was opened. Proteus® Software 

was used to analyze the recorded data. The argon gas was used as inert gas and turned on to 

purge into the system. Gas purging rate was 40 ml/min which is enough to keep system in inert 

environment. Calibration test was done before starting to the test. The Indium (In) material with 

known mass was used for calibration of equipment. Three runs were performed in order to 

measure the specific heat of the unknown material.  

Cooling System
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Baseline and reference material were tested before the samples’ tests. The aluminum 

crucibles are used inside of the apparatus to place the samples. Since the crucibles are contacting 

with samples, there is an additional contact resistance present. The baseline test corrects the 

contact resistance and increase the accuracy of the test. The baseline test must be applied same 

temperature program with the sample. The software was set to correction and temperature 

program was defined. Two empty crucibles were enclosed with lids and carefully carried into the 

reference and sample positions of the heat flux sensor. The crucibles were centered on the 

sensors. The figure 2.7 shows the crucibles on the heat flux sensor.  

The program started at 20°C. Then, it cooled at a rate of 2°C/min to 5°C and was held 

there at least four minutes isothermally. The cell was heated to 120°C at a rate of 15°C/min and 

held isothermally for 5 minutes. The temperature program was cooled to 40°C and held there to 

get final ambient temperature. The equipment transmitted the heat signal to the data acquisition. 

The data acquisition gave thermal curves which show the thermal resistance versus temperature 

or time.  

The calorimeter temperature was decreased to ambient temperature after the baseline run. 

The crucible on the sample location was taken out and sapphire reference material was placed 

into it. Then, the crucible was located on sample location again. The same program used for the 

baseline was executed for the sapphire reference. The mass of the reference material was 

inputted into the software before the test began. Following this test, the reference material was 

replaced with the specimen and the same procedure was repeated for the third time. The mass of 

the specimen was measured and input into the software.  The data of heat flux of sapphire 

reference and specimen were recorded and saved in the software. The ratio method was used to 
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determine the specific heat of the material. This procedure was repeated for each sample 

material.    

Table 2.2 

Technical Specifications of NETZSCH DSC 200 F3 Maia 

    

Technical Specifications of NETZSCH DSC 200 F3 Maia 

Temperature Range: -170°C to 600°C 

Heating Rates: 0.001°C/min to 100°C/min 

Cooling Rates: 0.001°C/min to 100°C/min 

Sensor: E type heat flux System 

Measurement Range: 0 mW to ±600mW 

Temperature Accuracy: 0.1 K 

Enthalpy Accuracy: ˂1% 

Cooling Options: Intracooler  

Atmospheres: Inert gas (N2) 

 

2.5 Validation of Methodology 

Thermographite was tested to validate the results with literature (Maglić & Milošević, 2004). 

Thermographite was selected because it is common reference material for flash method. The 

present test results varied between 0.1% and 5.3% literature data Plot of α vs T is shown in figure 

2.7. 
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Figure 2.7 Validation of Flash Method with literature data 

Sapphire (Al2O3) was chosen to validate the Cp method by DSC.  The test was done and 

compared with the literature. The results shown in figure 2.8 the results vary between 2 % to 

3.5% (Ditmars & Douglas, 1971).  
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Figure 2.8 Validation of DSC with literature data 

2.6 Preparation of Unidirectional Composite Test Samples 

Thermal properties of fiber reinforced composites vary with in the directions of fiber. The 

axial and perpendicular directions of fiber formed the orthogonal principal directions for 

unidirectional composite materials. Therefore specimens are prepared in two different directions 

to measure axial and transverse conductivity. Thermal diffusivity changes with the direction of 

the fiber and can be measured by Anter FlashLine 2000 following ASTM E-1461 (2007). The 

density and specific heat capacity are scalar and they do not change with the direction. Therefore 

these properties are separately measured. The principal directions of fiber in the unidirectional 

composite material are shown in the figures 2.7 and 2.8. The axial and transverse directions are 

represented by x1, and x2 (x3) axes respectively. The thermal properties in x2 and x3 directions are 
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same, because of transverse isotropy of the plane x2-x3. Therefore specimen shown in figure 2.9 

and 2.10 are used for measuring α3 and α1, respectively, of the composite laminate. 

 

 

Figure 2.9 Transverse conductivity, and diffusivity (k2 = k3), (α2= α3) 

 

Figure 2.10 Axial conductivity, and diffusivity (k1), (α1) 

2.7 Summary 

An approach of determination of thermal conductivity of unidirectional fiber reinforced 

composite materials presented by measurement of thermal diffusivity, specific heat and material 

density. NETZSCH DSC 200 F3 Maia apparatus to measure the specific heat and Anter 

Flashline 2000 to measure thermal diffusivity were described. The description of the 

methodology and associated equations were summarized. In addition, preparing unidirectional 

.
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x2, k2, α2

x1, k1, α1

x3, k3, α3

x2, k2, α2
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composite specimen to measure axial and transverse directions thermal conductivity was 

explained.  
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CHAPTER 3  

IM7-G/8552 Carbon Epoxy Composite Materials 

3.1 Introduction 

In this chapter, fabrication of composite panel, directions of thermal property 

measurement and the associated specimen preparations are explained. Two types of specimens 

are prepared, axial and transverse where the fibers in parallel and perpendicular, respectively, to 

the direction of thermal conductivity determination.  

3.2 Fabrication of Panels 

Two IM7-G/8552 composite laminates were prepared for fabrication of test samples. One 

with 4-ply thick (0.648 mm) and 152.4 by 152.4 mm in-plane dimension and the other and 117-

ply thick (19 mm) and is 76.2 by 76.2 mm size in-plane direction. The prepeg was supplied by 

Hexcel and laminate was fabricated using autoclave process as per the supplier specification at 

Center of Composite Material Research (CCMR), North Carolina Agricultural & Technical State 

University. The areal density of the carbon fibers used in prepreg was 160 g/m
2
 and the density 

of carbon fiber is 1.78 g/cm
3
 and the measured thickness of the thin panel is 0.64 mm and the 

thick panel is 19mm. The fiber volume fraction of the composite material was calculated using 

the equation: 

h

NA
V

f

f

f
310

       (3.1) 

Where Vf  is the fiber volume fraction, N is the number of plies in the laminate, Af is the 

fiber areal weight (g/m
2
), and h is the laminate thickness (mm). Calculated Vf is 0.58 and 0.6 for 

transverse (thin) and axial (thick) direction, respectively, from the equation 3.1.  
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3.3 Principal Directions of Thermal Property Measurement  

Two or more layers of unidirectional plies in same directions were stacked as a composite 

laminate to measure the thermal properties. The three principal directions of the lamina were x1, 

x2, and x3 that represent the axial and two transverse direction of the fiber, as shown in figures 

3.1 and 3.2. The thermal properties is x2-x3 plane was same isotropic in all directions, therefore 

measuring x1 and x3 directions were enough to determine thermal conductivity of unidirectional 

composite material. Figure 3.1 and 3.2 also shows the thermal conductivity in principal 

directions. Since, the carbon fibers were more conductive than epoxy matrix, thermal 

conductivity the fiber direction (x1) was more than through the transverse direction. The reason 

for this difference was because of difference in thermal diffusivity of fiber and matrix. Since the 

density and the specific heat capacity were scalar, they did not affect the thermal conductivity in 

terms of direction. However, the thermal diffusivity is the unique characteristic that thermal 

conductivity is related in fiber direction.  

 

Figure 3.1 Through the thickness direction of IM7-G/8552 unidirectional composite material 
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Figure 3.2 Axial direction of IM7-G/8552 unidirectional composite material 

3.4 Specimen Preparation  

The cylindrical samples of diameter 12.5 mm were cut in two different directions (x1 and 

x3) to measure thermal diffusivity along the x1 and x3 directions, respectively. Four samples were 

prepared for each case, the photograph of the specimens are in figure 3.3.a and 3.4.a, 

respectively, for transverse and axial diffusivity tests. Additionally, samples of 4 mm diameter 

and 1.5 mm thick were prepared for specific heat measurement. 

3.4.1 Diffusivity measurement test samples. Four samples were cut and tested to 

determine the thermal diffusivity in through the thickness direction from the thin laminate (152.4 

x 152.4 x 0.64 mm) five samples were cut for the axial direction thermal diffusivity from 76.2 x 

76.2 x 19 mm thick laminate. The test specimens were prepared in thin 12.5 mm disk shapes. 

The area of the front faces must be smaller than that of the energy pulse beam (ASTM E-1461, 

2007).  The figure 3.3. through 3.6 show the model and photography of specimens prepared for 

through the thickness and axial direction.  
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Figure 3.3 Specimen model of thermal diffusivity through the thickness (t-t-t) samples 

 

 

Figure 3.4 Photography of thermal diffusivity through the thickness (t-t-t) samples 

 

Figure 3.5 Specimen model of thermal diffusivity axial direction samples 

 

Figure 3.6 Thermal diffusivity axial direction samples 

d
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The optimum thickness (L) depends upon the magnitude of the estimated thermal 

diffusivity. The thickness should be chosen according to the half time, which should be between 

10 to 1000 ms. In order to fulfill these dimensions, a milling machine drill press equipment was 

used to cut sample to proper thickness. Each of the specimens was hand sanded at the top and 

bottom faces to remove the mold release coat. All specimens were washed with ethanol, and then 

they were cleaned in an ultrasonic bath. Weight and the dimensions of the samples were 

measured, recorded and listed in the table 3.1. In this table, the specimen number is represented 

by S-T-# or S-A-#, where ‘S’ stand for specimen, ‘T’ for fiber transverse direction, and ‘A’ for 

fiber axial direction. The ‘#’ goes from 1 to 4 for transverse specimens and 1 to 5 for axial 

specimens. 

Table 3.1 

Physical properties of specimens 

 

    

Test 

Specimen 

Mass, 

mg 

Diameter, 

mm 

Thickness, 

mm 

Density, 

mg/mm3 
Vf 

S-T-1 122.76 12.60 0.62 1.59 0.58 

S-T-2 123.85 12.54 0.63 1.59 0.58 

S-T-3 124.01 12.61 0.62 1.59 0.58 

S-T-4 117.91 12.54 0.60 1.58 0.56 

      S-A-1 388.23 12.56 1.98 1.58 0.60 

S-A-2 389.81 12.57 1.99 1.58 0.60 

S-A-3 389.67 12.56 1.99 1.58 0.60 

S-A-4 388.37 12.56 1.98 1.58 0.60 

S-A-5 388.72 12.56 1.99 1.58 0.60 

 

3.4.2 Specific heat measurement test samples. The thermal contact between the heat 

flux sensor and the sample is significant for proper measurement of specific heat. The cylindrical 

specimens were machined to 4 mm diameter and 1.5 mm thickness. The top and bottom faces of 
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the specimen were precisely machined to maintain the flatness. The specimen’s bottom face 

should be as flat as possible to achieve best contact with the crucible. The specimen mass, 

diameter and thickness were measured by microbalance and digital caliper and listed in table 3.2.  

Table 3.2 

Physical Specifications of Specimens 

  

Test Specimen 
Mass, 

mg 

Diameter, 

mm 
Thickness, 

mm 

S-Cp-1 11.33 3.81 1.55 

S-Cp-2 11.65 3.85 1.55 

S-Cp-3 11.66 3.89 1.54 

S-Cp-4 11.58 3.87 1.53 

    
Sapphire (Al2O3) 24.88 3.99 3.83 

 

Sapphire (Al2O3) was used as a reference material to determine the machine constant, its 

geometry and found with the known mass are listed in table 3.2.  

 

Figure 3.7 Specimen geometry of  specific heat samples 

 

Figure 3.8 Photograph of test samples 

4 mm

1.5 mm
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3.4.3 Optical microscopy of specimen. One of the specimen was tested for proper fiber 

orientation. This specimen was polished on the planes x2-x3 and x1-x3 planes to ensure direction 

of fiber for thermal diffusivity measurement. The optical images were taken to confirm the fiber 

directions. The specimen were polished using EcoMet® 250/300 supplied by BUEHLER. The 

lubricants,  grades of abrasives , time, force, speed, and directions used are listed in table 3.3. 

After polishing, the specimen was cleaned and dried before taking the optical image. 

Table 3.3 

Polishing sequence, parameters and materials (Buehler Equipment Components) 

Step Surface Lubricant Abrasive 

Time, 

min Force  

Speed, 

rpm Direction 

1 CARBIMET® Water SiC- 320 grit Till Plane 5 lb 230 In Phase 

2 CARBIMET® Water SiC- 600 grit 3:00 5 lb 230 In Phase 

3 TEXMET® NA 

METADI 

SUPREME- 9µm 5:00 5 lb 130 Contra 

4 TEXMET® NA 

METADI 

SUPREME- 3µm 5:00 5 lb 130 Contra 

5 MICROCLOTH® NA 

MASTERPREP®- 

0.05µm 3:30 5 lb 130 Contra 

 

Nikon Eclipse LV150 Microscope (see Fig 3.9) was used for imaging the specimens. 
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Figure 3.9 Nikon Eclipse LV150 

The optical image of x1-x2 and x2-x3 planes of thin specimen (used for transverse 

diffusivity test) and thick (used for axial diffusivity test), are shown in Figure 3.10 and 3.11, 

respectively. Each image were magnified x20 and x50 , respectively. The figures show the fibers 

perpendicular and parallel to the direction of diffusivity measurement. 

 

x2

x1

x20
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Figure 3.10 Optical image of x1-x2 planes the thin specimen for transverse diffusivity 

measurement in x20 magnification 

 

Figure 3.11 Optical images of x2-x3 plane of the thick samples for axial diffusivity measurement 

in x50 magnfication 

3.4.4 Specimens for special study. Although the specific heat is a material property 

independent of specimen shape, this was reconfirmed for IM7-G/8552-2 carbon/epoxy 

composite. Three types of specimen, about the same mass, were selected: Square (Sq), 

rectangular (Re), and circular (Cr). The mass and geometry of all 12 specimen are listed in Table 

3.4. Specific heat of these specimen were measured seperately to confirm the independence of 

this property. 

 

 

 

x3

x2

x50
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Table 3.4 Physical Properties of Special Assesment Specimens 

  

Test Specimen Mass, mg 
Diameter, 

mm 
Length, mm Width, mm Thickness, 

mm 

S-Sq-1 33.60 - 3.94 3.95 1.40 

S-Sq-2 33.61 - 3.93 3.93 1.42 

S-Sq-3 33.64 - 3.95 3.92 1.43 

S-Sq-4 33.00 - 3.94 3.92 1.39 

S-Sq-5 33.43 - 3.94 3.92 1.40 

      S-Re-1 28.25 - 4.53 2.98 1.34 

S-Re-2 27.80 - 4.53 2.99 1.31 

S-Re-3 27.99 - 4.53 3.00 1.32 

S-Re-4 28.15 - 4.54 3.00 1.33 

S-Re-5 28.90 - 4.52 3.00 1.37 

      S-Cr-1 25.84 3.95 - - 1.40 

S-Cr-2 26.16 3.95 - - 1.41 

 

The figure 3.12 and 3.13 show the cutted sample for shape effect 

                             

Figure 3.12 Square Shape Samples   Figure 3.13 Rectangular Shape Samples 

 

3.5 Summary 

IM7-G/8552 unidirectional composite laminate was fabricated by autoclave process as 

per the prepreg supplier specification at the Center of Composite Material Research (CCMR), 

NCA&TSU. Two sets of specimens were prepared to measure two different directions of 

diffusivity and one set for specific heat. All geometric properties were measured to verify the 

proper orientation of fiber, a typical specimen was polished and optical images were taken and 

recorded. 
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CHAPTER 4 

Experiment and Results 

4.1 Introduction  

This chapter presents an experimental measurement of thermal diffusivity of IM7-G/8552 

carbon fiber composite along fiber and transverse to fiber directions, followed by the 

measurement of composite’s specific heat. Using these properties thermal conductivities of the 

composite along and transverse directions are calculated. Thermal properties are measured over a 

temperature range of 20°C to 100°C to establish the conductivity and temperature relation. Room 

temperature properties of IM7-G/8552 are compared with the other carbon fiber/epoxy 

composites to assure the consistence and reasonableness of material properties. 

4.2 The Measurement of Thermal Diffusivity  

The thermal diffusivity tests were made using Anter Flashline 2000. Equipment thermal 

diffusivity tests transverse and axial directions of the fiber were measured, as explained 

previously, in two different directions of the fiber reinforced composites. Four samples were 

tested in transverse fiber direction and five samples were tested in axial direction of fiber. The 

diameter, thickness, mass, and density of all samples were measured and documented. The 

thickness was chosen according to the half time within the 10 to 1000 ms range (ASTM E-1461, 

2007). The figure 4.1 shows the FlashLine™ 2000. 
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Figure 4.1 The FlashLine™ 2000 

The nominal diameter of the test specimens were about 12.54 mm and the thickness 

about 0.62 and 1.98 mm for transverse and axial thermal diffusivity samples, respectively. First, 

the diffusivity was calculated according to Parker’s Equation and Clark and Taylor’s correction 

factor was applied to minimize the radiation effect. The software was started before the test and 

input data such as thickness, diameter, and density are entered. The equipment allows four 

specimens to be tested at one time. Each sample was placed in the specimen holders inside a 

vacuum sealed environmental enclosure. Nitrogen gas was purged into the environmental 

enclosure as inert gas. The gas flowed into the system at 0.034 N/mm
2
. The liquid nitrogen was 

manually poured in the receptacle of the IR detector to prevent from overheating. The samples 

were placed into the furnace by helping of tweezers. The thermal diffusivity of the composite 

material was measured between room temperature and 100°C, less than glass transition 

temperature of IM7-G/8552 composite material. This range was selected due to the temperature 

IR Detector
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limitations of the composite material. The specimens and the specimen holders are shown in 

Figure 4.2. 

 

Figure 4.2 The FlashLine™ 2000 specimen holders and specimens 

4.2.1 Axial thermal diffusivity. Axial orientation the fiber composite with respect to the 

test was important to get accurate measurement of thermal diffusivity and then conductivity of 

specimen. The axial samples shown in figure 3.6.b and were tested for axial diffusivity. The tests 

were performed from room temperature to 100°C. The measured diffusivity of samples are listed 

in tables 4.1 through 4.3. For all five samples half time (t1/2), and the calculated Parker’s 

diffusivity (α1p), and Clark and Taylor corrected diffusivity (α1) are listed in the tables for 

temperature range of 22°C to 98°C. The half time is within the ASTM limits (0 to1 s) the 

essential parameter for diffusivity.  

Table 4.1 

The half time and axial thermal diffusivity values of sample 1 and sample 2 
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Temp, 

T °C 

S-A-1, L= 1.98mm, 

ρ=1.58g/cm
3
 

  

S-A-2, L= 1.99mm, 

ρ=1.58g/cm
3
 

Half 

time 

t1/2, s 

Parker, 

α1P, 

cm
2
/s 

Clark-

Taylor, 

α1 , cm
2
/s 

Half 

time 

t1/2, s 

Parker, 

α1P, 

cm
2
/s 

Clark-

Taylor, 

α1 , cm
2
/s 

21 0.1559 0.0350 0.0344   0.1561 0.0351 0.0346 

29 0.1561 0.0349 0.0351 

 

0.1561 0.0351 0.0347 

37 0.1561 0.0349 0.0346 

 

0.1562 0.0351 0.0345 

46 0.1575 0.0346 0.0340 

 

0.1577 0.0347 0.0342 

56 0.1587 0.0343 0.0339 

 

0.1588 0.0345 0.0339 

67 0.1591 0.0342 0.0336 

 

0.1590 0.0344 0.0337 

77 0.1597 0.0341 0.0333 

 

0.1595 0.0343 0.0337 

88 0.1607 0.0339 0.0333 

 

0.1607 0.0341 0.0336 

98 0.1618 0.0336 0.0330   0.1618 0.0339 0.0336 

 

Table 4.2 

The half time and axial thermal diffusivity values of sample 3 and sample 4 

  

Temp, 

T °C 

S-A-3, L= 1.99mm, 

ρ=1.58g/cm
3
 

  

S-A-4, L=1.98mm, 

ρ=1.58g/cm
3
 

Half 

time 

t1/2, s 

Parker, 

α1P, 

cm
2
/s 

Clark-

Taylor, 

α1 , cm
2
/s 

Half 

time 

t1/2, s 

Parker, 

α1P, 

cm
2
/s 

Clark-

Taylor, 

α1 , cm
2
/s 

22 0.1571 0.0348 0.0342   0.1577 0.0346 0.0344 

29 0.1552 0.0352 0.0346 

 

0.1582 0.0345 0.0339 

38 0.1556 0.0351 0.0344 

 

0.1589 0.0344 0.0339 

46 0.1559 0.0351 0.0345 

 

0.1599 0.0342 0.0336 

57 0.1570 0.0348 0.0342 

 

0.1614 0.0339 0.0332 

67 0.1575 0.0347 0.0340 

 

0.1606 0.0340 0.0334 

78 0.1594 0.0343 0.0343 

 

0.1621 0.0337 0.0335 

89 0.1635 0.0334 0.0341 

 

0.1649 0.0331 0.0342 

99 0.1616 0.0338 0.0352   0.1624 0.0336 0.0330 
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The table 4.4 summarizes the axial diffusivity (α1) for all samples, average values, 

standard deviation, and percent coefficient of variation are listed in the last three columns. 

Table 4.3 

The half time and axial thermal diffusivity values of sample 5 

    

Temp, 

T °C 

S-A-5, L= 1.99mm, 

ρ=1.58g/cm
3
 

Half 

time 

t1/2, s 

Parker, 

α1P, 

cm
2
/s 

Clark-

Taylor, 

α1 , cm
2
/s 

22 0.1544 0.0355 0.0345 

29 0.1552 0.0353 0.0346 

38 0.1572 0.0348 0.0346 

46 0.1575 0.0347 0.0342 

57 0.1584 0.0346 0.0339 

67 0.1582 0.0346 0.0342 

78 0.1623 0.0337 0.0344 

89 0.1644 0.0333 0.0324 

99 0.1599 0.0342 0.0338 

 

Table 4.4 

Summary axial thermal diffusivity and average values of IM7-G/8552 

                  

Temp, 

T °C 
Diffusivity, α1, cm

2
/s  

STD % CV 
S-A-1 S-A-2 S-A-3 S-A-4 S-A-5 Average 

22 0.0344 0.0346 0.0342 0.0344 0.0345 0.0344 0.0001 0.4 

29 0.0351 0.0347 0.0346 0.0339 0.0346 0.0346 0.0004 1.3 

38 0.0346 0.0345 0.0344 0.0339 0.0346 0.0344 0.0003 0.8 

46 0.0340 0.0342 0.0345 0.0336 0.0342 0.0341 0.0003 1.0 

57 0.0339 0.0339 0.0342 0.0332 0.0339 0.0338 0.0004 1.1 

68 0.0336 0.0337 0.0340 0.0334 0.0342 0.0338 0.0003 0.9 

78 0.0333 0.0337 0.0343 0.0335 0.0344 0.0338 0.0005 1.4 

89 0.0333 0.0336 0.0341 0.0342 0.0324 0.0335 0.0007 2.2 

99 0.0330 0.0336 0.0352 0.0330 0.0338 0.0337 0.0009 2.7 



44 

 

 

 

Figure 4.3 shows the plot of thermal diffusivity versus temperature of IM7-G/8552 

composite. Average value and the specimen data are shown in the plot. The thermal diffusivity 

nearly constant over the temperature range but it shoes a small decrease with the temperature. 

The least square linear regression analysis fit is given by: 

T5

1 10035.0       (4.1) 

 

Figure 4.3 Axial thermal diffusivity diagram of IM7-G/8552(5 Samples) 

The statistical analysis was used to define the error based on normal distribution and 95% 

confidence. Statistical analysis was performed based on Figliola and Beasley (2011) and the 

results are summarized. The population standard deviation (STD) is given by: 
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In that equation, N is the total number of measurements, ai represents a single i
th

 measurement, 

and ā is the mean value of the data at each temperature. Standard error (SE) was calculated for 

each temperature using standard deviation of the mean: 

N

STD
SE               (4.3) 

The critical value from the normal distribution chart based on 95% confidence is 1.96, and 

the margin of error, e, is determined by the following equation: 

SEe  96.1              (4.4) 

The percent error is defined by: 

%100
mean

e
errorPercent      (4.5) 

The results for the conductivity and the percent error for the corresponding temperature values 

were calculated and are listed in Table 4.5. The plot of the error and standard deviation are given 

in Figure 4.4. 

Table 4.5 

Percent error of thermal diffusivity in axial direction 

     
Temp, 

T °C 

Average, 

cm
2
/s 

STD e 
Percent 

error 

22 0.0344 0.0001 0.0001 0.4 

29 0.0346 0.0004 0.0004 1.1 

38 0.0344 0.0003 0.0003 0.7 

46 0.0341 0.0003 0.0003 0.9 

57 0.0338 0.0004 0.0003 1.0 

68 0.0338 0.0003 0.0003 0.8 

78 0.0338 0.0005 0.0004 1.3 

89 0.0335 0.0007 0.0006 1.9 

99 0.0337 0.0009 0.0008 2.3 
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Figure 4.4 Error diagram of axial thermal diffusivity test 

4.2.2 Transverse thermal diffusivity (α3). Transverse diffusivity was measured with 

Anter Flashline 2000. Laser flash was subjected in perpendicular to the fiber direction. x2 and x3 

directions were same because they both are perpendicular to the fibers. x3 direction was chosen 

and test was run to measure transverse thermal diffusivity. The thermal diffusivity and half-time 

values of the experiment in axial direction were given previously. Transverse thermal diffusivity 

values were lower than the axial thermal diffusivity since carbon fibers are more conductive than 

the matrix and fibers extended constantly from one side to other side in axial direction of 

unidirectional composite materials. Half-time to reach to the maximum temperature is an 

important parameter and should be in the 10 to 1000ms range according to the ASTM E-1461 

(2007). Half-time, thickness, Parker equation, and Clark-Taylor correction factor measurements 

are given in the Table 4.6 and 4.7. 
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Table 4.6 

Transverse thermal diffusivity data of sample 1 and sample 2 of IM7-G/8552 

                

Temp, 

T °C 

S-T-1, L= 0.63mm, ρ=1.56g/cm
3
 

  

S-T-2, L=0.63mm,  ρ=1.58g/cm3 

Half 

time 

t1/2, s 

Parker, 

α3P, cm
2
/s 

Clark-

Taylor, α3 

, cm
2
/s 

Half 

time 

t1/2, s 

Parker, 

α3P, cm
2
/s 

Clark-

Taylor, α3 , 

cm
2
/s 

22 0.1280 0.0043 0.0041   0.1377 0.0041 0.0038 

29 0.1292 0.0043 0.0041 

 

0.1390 0.0040 0.0038 

38 0.1307 0.0042 0.0040 

 

0.1405 0.0040 0.0038 

46 0.1318 0.0042 0.0040 

 

0.1416 0.0039 0.0037 

57 0.1333 0.0041 0.0039 

 

0.1435 0.0039 0.0037 

68 0.1349 0.0041 0.0039 

 

0.1450 0.0038 0.0036 

78 0.1360 0.0040 0.0038 

 

0.1465 0.0038 0.0036 

89 0.1374 0.0040 0.0038 

 

0.1481 0.0038 0.0036 

99 0.1375 0.0040 0.0038   0.1480 0.0038 0.0036 

 

Table 4.7 

Transverse thermal diffusivity data of sample 3 and sample 4 of IM7-G/8552 

                

Temp, 

T °C 

S-T-3, L= 0.64mm,  

ρ=1.55g/cm3 

  

S-T-4,L= 0.61mm,  ρ=1.57g/cm3 

Half 

time 

t1/2, s 

Parker, 

α3P, cm
2
/s 

Clark-

Taylor, α3 

, cm
2
/s 

Half 

time 

t1/2, s 

Parker, 

α3P, cm
2
/s 

Clark-

Taylor, α3 , 

cm
2
/s 

21 0.1333 0.0043 0.0041   0.1122 0.0045 0.0044 

29 0.1481 0.0039 0.0039 

 

0.1132 0.0045 0.0043 

38 0.1418 0.0040 0.0038 

 

0.1145 0.0044 0.0043 

46 0.1434 0.0040 0.0038 

 

0.1159 0.0044 0.0042 

57 0.1473 0.0039 0.0038 

 

0.1166 0.0043 0.0042 

67 0.1471 0.0039 0.0038 

 

0.1184 0.0043 0.0042 

78 0.1505 0.0038 0.0038 

 

0.1184 0.0043 0.0041 

89 0.1508 0.0038 0.0037 

 

0.1202 0.0042 0.0041 

99 0.1509 0.0038 0.0036   0.1212 0.0042 0.0041 
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The experiment was conducted between room temperature and 100°C. Axial thermal 

diffusivity was approximately 8.5 times more than transverse thermal diffusivity. The diffusivity 

in transverse direction decreases with increasing the temperature. Transverse thermal diffusivity 

(α3) decreases against to temperature. Average value of the 4 specimens is close to the linear 

curve. Figure 4.5 illustrates the data of all specimens and the average value of those specimens at 

each temperature. Equation of the average value of α3 is determined by least square linear 

regression, and the equation is: 

T5

3 1040042.0         (4.6) 

Table 4.8 

Transverse thermal diffusivity and average data of IM7-G/8552 

              
 

Temp, 

T °C 

Diffusivity, α3, cm
2
/s  

STD % CV 
S-T-1 S-T-2 S-T-3 S-T-4 Average 

22 0.0041 0.0038 0.0041 0.0044 0.0041 0.0002 6.0 

29 0.0041 0.0038 0.0038 0.0043 0.0040 0.0002 6.1 

38 0.0040 0.0038 0.0038 0.0043 0.0040 0.0002 5.9 

46 0.0040 0.0037 0.0038 0.0042 0.0039 0.0002 5.6 

57 0.0039 0.0037 0.0038 0.0042 0.0039 0.0002 5.5 

68 0.0039 0.0036 0.0038 0.0042 0.0039 0.0003 6.5 

78 0.0038 0.0036 0.0037 0.0041 0.0038 0.0002 5.7 

89 0.0038 0.0036 0.0036 0.0041 0.0038 0.0002 6.3 

99 0.0037 0.0035 0.0036 0.0041 0.0037 0.0003 7.1 
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Figure 4.5 Transverse thermal diffusivity of IM7-G/8552(4 Samples) 

The statistical analysis of the test is made and the results are presented in table 4.9 and figure 4.6. 

Table 4.9 

Percent error of thermal diffusivity in transverse direction 

     
Temp, 

T °C 

Average, 

cm
2
/s 

STD e 
Percent 

error 

22 0.0041 0.0002 0.0002 5.2 

29 0.0040 0.0002 0.0002 5.4 

38 0.0040 0.0002 0.0002 5.2 

46 0.0039 0.0002 0.0002 5.0 

57 0.0039 0.0002 0.0002 4.9 

68 0.0039 0.0003 0.0002 5.7 

78 0.0038 0.0002 0.0002 5.0 

89 0.0038 0.0002 0.0002 5.5 

99 0.0037 0.0003 0.0002 6.2 
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Figure 4.6 Error Bars of transverse thermal diffusivity measurement 

4.3 Measurement of Specific Heat (Cp) 

The specimens were prepared using 4-ply thick (0.648 mm) and 152.4 by 152.4 mm in-

plane dimension IM7-G/8552 unidirectional composite laminate to measure specific heat 

capacity. Four specimens were prepared in 4 mm diameter and 0.624 mm thickness to fit inside 

of the crucibles. Measurement of specific heat methodology is given by ASTM E1269 (2005). 

The test was conducted from room temperature (22°C) to 100°C at heating rate of 15°C/min and 

collected data interval about 10°C. The data acquisition system was calculated the Cp at each 

temperature and that was calculated by Equation 2.7. To make measurement with DSC, a test 

specimen and reference were located on a metallic block with high thermal conductivity and 

closed to the same furnace in the calorimeter. The importance of metal block is to ensure the heat 
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flow path between the specimen and reference. The reference is an inert material such as 

alumina, or just an empty pan. The temperature of sample and the reference were increased at 

identical constant rate. The changes in the specific heat leaded to a difference of temperature and 

heat flux relative to the reference. The DSC calculated the specific heat capacity of tested sample 

using the heat flow data by ratio method technique. The change in enthalpy of reference to the 

heat absorbed or released by reference because the DSC is at constant temperature (ASTM E-

1269, 2005). 

The test was four steps including calibration. The Indium (In) material was used to 

calibrate the equipment. As the first step, in material’s melting point was determined by the 

equipment to calibrate. The equipment’s results were exactly matched with the In data. Second 

step was the baseline test. Baseline test needed to be conducted to set the reference material and 

unknown material in same baseline. To achieve this, two empty pan were placed into on to the 

furnace block in the equipment. The picture of the pans and furnace block is in figure 4.7. 

 

Figure 4.7 Pans and the inside of the DSC Device 

SampleReference
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After the baseline test was done. The sample crucible on the right was taken and the 

reference material, Al2O3 Sapphire was put and the crucible placed back into the equipment. The 

sapphire was replaced with the IM7-G/8552 Unidirectional composite material to measure the 

heat flux in respect to the temperature. Measurement of the composite material was done at the 

last step. Then, the specific heat capacity could be calculated by using the ratio method. Figure 

4.8 shows the reference material (sapphire) and the IM7-G/8552 with pans and lids. 

 

Figure 4.8 The Sapphire and IM7-G/8552 with pans and lids 
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Table 4.10 

The measured specific heat data of IM7-G/8552 

      

    

Temp, 

°C 

Specific Heat, Cp, J/g°C 
STD % CV 

S-Cp-1 S-Cp-2 S-Cp-3 S-Cp-4 Average 

22 0.8809 0.9294 0.8972 0.9099 0.9043 0.0205 2.3 

29 0.9229 0.9638 0.9342 0.9493 0.9425 0.0178 1.9 

38 0.9725 1.0115 0.9791 0.9955 0.9896 0.0175 1.8 

46 1.0109 1.0575 1.0170 1.0325 1.0295 0.0208 2.0 

57 1.0617 1.1152 1.0683 1.0808 1.0815 0.0238 2.2 

68 1.1145 1.1653 1.1212 1.1309 1.1330 0.0226 2.0 

78 1.1550 1.2050 1.1628 1.1768 1.1749 0.0220 1.9 

89 1.1921 1.2449 1.2035 1.2169 1.2143 0.0228 1.9 

99 1.2278 1.2819 1.2400 1.2519 1.2504 0.0232 1.9 

 

The specific heat measurements of the four samples of IM7-G/8552 unidirectional 

composites all show trends that are extremely close to linear. The tests were run from 22°C to 

99°C. All specimens were tested at same temperature program. The comparison of the results can 

be found in Table 4.10. The average and the standard deviation of the four specimens are listed 

in last two columns. Figure 4.9 illustrates plot of the Cp versus temperature for all four 

specimens. The specific heat of the materials increased as the testing temperature increases. This 

was expected since the molecules energy increase with the temperature. The equation of the 

average values of Cp obtained by the least square regression which is followed by: 

TCP

3105.4816.0        (4.7) 

With the R value of 0.99.  
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Figure 4.9 The specific heat measurement of the IM7-G/8552 

The error calculation of specific heat capacity was made. To make calculation, standard 

deviation, standard error determined, and then percent error was calculated with using average 

values of Cp at each temperature. The Error data is given in table 4.11 and the graph is given by 

Figure 4.10.  
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Table 4.11 

The Percent Error of Specific Heat Capacity 

  
    

Temp, 

T °C 

Average, 

cm
2
/s 

STD e 
Percent 

error 

22 0.9043 0.0205 0.0180 2.0 

29 0.9425 0.0178 0.0156 1.7 

38 0.9896 0.0175 0.0153 1.5 

46 1.0295 0.0208 0.0182 1.8 

57 1.0815 0.0238 0.0209 1.9 

68 1.1330 0.0226 0.0198 1.7 

78 1.1749 0.0220 0.0193 1.6 

89 1.2143 0.0228 0.0199 1.6 

99 1.2504 0.0232 0.0203 1.6 

 

 

Figure 4.10 Error diagram of the specific heat Cp of IM7/8552 
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4.4 Thermal Conductivity 

The density, specific heat, and thermal diffusivity were used to determine the thermal 

conductivity of IM7-G/8552 unidirectional composite material by using the following equation: 

  PCk       (4.8) 

The thermal diffusivity and specific heat capacity are explained in detailed in previous chapters. 

In addition, the measurement results are presented in this chapter. The density is calculated with 

using the equation: 

 
V

m
             (4.9) 

Mass, m, is measured with Mettler Toledo XP6 weighing equipment which is able to give 6 

decimal of gram. Then, volume was calculated by measuring the diameter and the thickness of 

the each specimen. The calculated average density (ρ) of the laminate was 1.57 g/cm
3
. The 

results for the thermal conductivity of IM7-G/8552 in axial and transverse direction are shown in 

Table 4.12 and 4.13.  
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Table 4.12 

Thermal Conductivity of IM7-G/8552 in axial direction, k1 

                  

Temp, 

T °C 

Conductivity k1, w/m°C, ρ= 1.57 g/cm
3
 

STD %CV 
S-A-1 S-A-2 S-A-3 S-A-4 S-A-5 Average 

22 4.8960 4.9244 4.8675 4.8960 4.9102 4.8988 0.0211 0.4 

29 5.2067 5.1474 5.1326 5.0287 5.1326 5.1296 0.0641 1.3 

38 5.3890 5.3734 5.3578 5.2800 5.3890 5.3578 0.0454 0.8 

46 5.5087 5.5411 5.5897 5.4439 5.5411 5.5249 0.0537 1.0 

57 5.7701 5.7701 5.8212 5.6510 5.7701 5.7565 0.0630 1.1 

68 5.9913 6.0091 6.0626 5.9556 6.0983 6.0234 0.0569 0.9 

78 6.1575 6.2315 6.3424 6.1945 6.3609 6.2573 0.0902 1.4 

89 6.3641 6.4215 6.5170 6.5361 6.1921 6.4062 0.1387 2.2 

99 6.4941 6.6122 6.9271 6.4941 6.6516 6.6358 0.1773 2.7 

 

Table 4.13 

Thermal Conductivity of IM7-G/8552 in transverse direction, k3 

                

Temp, 

T °C 

Conductivity k3, w/m°C, ρ= 1.57 g/cm
3
 

%CV 
S-T-1 S-T-2 S-T-3 S-T-4 Average STD 

22 0.5835 0.5408 0.5835 0.6262 0.5835 0.0349 6.0 

29 0.6082 0.5637 0.5785 0.6379 0.5971 0.0329 5.5 

38 0.6230 0.5919 0.5919 0.6697 0.6191 0.0368 5.9 

46 0.6481 0.5995 0.6157 0.6805 0.6359 0.0359 5.6 

57 0.6638 0.6298 0.6468 0.7149 0.6638 0.0368 5.5 

68 0.6954 0.6419 0.6776 0.7489 0.6910 0.0446 6.5 

78 0.7027 0.6657 0.7027 0.7581 0.7073 0.0381 5.4 

89 0.7262 0.6880 0.7071 0.7836 0.7262 0.0413 5.7 

99 0.7478 0.7085 0.7085 0.8068 0.7429 0.0465 6.3 

 

The thermal conductivity of the axial direction is much higher than that of transverse 

direction. The magnitude of highness is almost 10 times because the heat is able to transfer 

longitudinally along the fiber better than the across the fiber. Furthermore, the heat must transit 
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across the resin that has less conductivity than carbon fiber. This causes the lower thermal 

conductivity in transverse direction. The figure 4.11 and 4.12 shows the results of transverse and 

longitudinal results of IM7-G/8552. The equation of the average values of k1 obtained by the 

least square regression which is followed by: 

Tk 2

1 1025.249.4             (4.10) 

 

 

Figure 4.11 Thermal Conductivity of IM7-G/8552 in longitudinal direction  

Five samples of transverse conductivity measurements are constant and close to linear. 

Mean equation is given in the graph. The equation of the average values of k3 obtained by the 

least square regression which is followed by: 

Tk 3

3 101.2548.0            (4.11) 
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Figure 4.12 Thermal Conductivity of IM7-G/8552 in transverse direction 

The five samples of longitudinal thermal conductivity results are given in the diagram. 

The results show that transverse thermal conductivity of IM7-G/8552 is approximately 10 times 

higher than the longitudinal thermal conductivity. This is expected since the heat does not across 

the resin that has much lower thermal conductivity and heat transfer through the thickness is 

lower from the longitudinal.  

4.5 Special Studies 

Two special studies were performed in this research. The first study was independency of 

specific heat with specimen geometry, keeping the mass same. The second study was the effect 

of surface coating on thermal diffusivity on carbon/epoxy composite specimen. 
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carbon/epoxy composites. Three different shapes of composite material were cut, namely square, 

rectangular, and circular shapes specimen geometry were presented in chapter 3. These three 

types of specimens were tested in NETZSCH DSC equipment and measured Cp with 

temperature are listed in tables of 4.14 through 4.17.  

Table 4.14 

Specific heat capacity of IM7-G/8552-1 square shape samples  

Temp, 

°C 

Specific Heat, Cp, J/g°C 

S-Sq-1 S-Sq-2 S-Sq-3 S-Sq-4 Average 

20 0.8557 0.8212 0.8901 0.9083 0.8688 

30 0.8976 0.8642 0.9377 0.9468 0.9116 

40 0.9315 0.8988 0.9748 0.9798 0.9462 

50 0.9638 0.9365 1.0145 1.0093 0.9810 

60 0.9948 0.9729 1.0500 1.0385 1.0140 

70 1.0261 1.0084 1.0851 1.0668 1.0466 

80 1.0553 1.0412 1.1173 1.0949 1.0772 

90 1.0862 1.0730 1.1489 1.1226 1.1077 

100 1.1166 1.1037 1.1792 1.1513 1.1377 
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Table 4.15 

Specific heat capacity of IM7-G/8552-1 circular shape samples  

      

Temp, 

°C 

Specific Heat, Cp, J/g°C 

S-Cr-1 S-Cr-2 

Average 
1st Run 

2nd 

Run 
1st Run 2nd Run 

20 0.8895 0.9327 0.91905 0.84185745 0.8958 

30 0.9231 0.9606 0.9495 0.9319 0.9413 

40 0.9578 0.9959 0.9819 0.9663 0.9755 

50 0.9924 1.0265 1.0189 0.9979 1.0089 

60 1.0262 1.0572 1.0552 1.0294 1.0420 

70 1.0589 1.0872 1.0884 1.0606 1.0737 

80 1.0911 1.1161 1.1197 1.0905 1.1043 

90 1.1234 1.1455 1.1494 1.1207 1.1347 

100 1.1554 1.1750 1.1777 1.1511 1.1648 

 

Table 4.16  

Specific heat capacity of IM7-G/8552-1 rectangular shape samples  

      

  

Temp, 

°C 

Specific Heat, Cp, J/g°C 

S-Re-1 S-Re-2 S-Re-3 S-Re-4 S-Re-5 Average 

20 0.9347 0.9408 0.8494 0.8755 0.9590 0.9119 

30 0.9723 0.9709 0.8860 0.9147 0.9951 0.9478 

40 1.0049 0.9989 0.9197 0.9489 1.0241 0.9793 

50 1.0358 1.0257 0.9529 0.9852 1.0537 1.0107 

60 1.0636 1.0531 0.9842 1.0185 1.0823 1.0403 

70 1.0922 1.0802 1.0158 1.0523 1.1140 1.0709 

80 1.1200 1.1074 1.0464 1.0823 1.1443 1.1001 

90 1.1474 1.1335 1.0771 1.1107 1.1746 1.1287 

100 1.1753 1.1605 1.1082 1.1375 1.2052 1.1574 
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Table 4.17 

Comparison of specific heat capacity of IM7-G/8552-1 samples 

      

Temp, 

°C 

Specific Heat, Cp, J/g°C 

S-Re S-Cr S-Sq 
Variation      

( Cir/Rec) 

Variation    

( Sq/Cir) 

20 0.8688 0.8958 0.9119 9.7397 1.7644 

30 0.9116 0.9413 0.9478 2.9907 0.6865 

40 0.9462 0.9755 0.9793 2.9762 0.3923 

50 0.9810 1.0089 1.0107 2.7939 0.1731 

60 1.0140 1.0420 1.0403 2.6343 -0.1576 

70 1.0466 1.0737 1.0709 2.4467 -0.2645 

80 1.0772 1.1043 1.1001 2.2973 -0.3867 

90 1.1077 1.1347 1.1287 2.1606 -0.5402 

100 1.1377 1.1648 1.1574 2.0350 -0.6422 

 

In all three cases Cp variation is with 3% and over the temperature range 20 to 100°C. 

These results reconfirm the independency of the specific heat with the specimen shape as long as 

the specimen mass is small and specimen maintains uniform temperature at each measurement. 

The figure 4.x shows the plot Cp vs T for three different shapes. The results follow the linear 

equation: 

TCP

3102.3836.0            (4.12) 

With the R value of 0.99. 
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Figure 4.13 Specific Heat capacity versus temperature for three of different shapes of specimens 

4.5.2 Effect of surface coating on thermal diffusivity. In this test, the effect of carbon 

coating on the specimen top and bottom surfaces on the thermal diffusivity of the carbon/epoxy 

composite was assessed. One sample of the axial thermal diffusivity and one sample through the 

thickness (transverse) thermal diffusivity were chosen, coated. Specimen diffusivity was 

measured before and after graphite powder. The two results for temperature range of 20 to 100°C 

are listed in table 4.18 and the sample results are compared in Figure 4.14 and 4.15, respectively 

for axial and transverse directions. The percent difference between coated and uncoated varied 

from 1.74% to 2.7% in axial direction and between 0 and 2.3% in transverse direction. The 

difference is generally at high temperature but still less than 3%. Therefore, graphite powder 

coating had no effect on the measurement. 
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Table 4.18 

Thermal Diffusivity comparison of coated and plain samples in two directions 

 
Temp, 

T °C 

Diffusivity, α1, cm
2
/s,    

L=1.98mm %CV 

  

Diffusivity, α1, cm
2
/s, 

L=0.63mm  %CV 

Original Coated Original Coated 

20 0.0344 0.0350 1.7   0.0041 0.0041 0.0 

29 0.0351 0.0348 -0.9 

 

0.0041 0.0041 0.0 

38 0.0346 0.0341 -1.4 

 

0.0040 0.0040 0.0 

46 0.0340 0.0342 0.6 

 

0.0040 0.0040 0.0 

57 0.0339 0.0342 0.9 

 

0.0039 0.0039 0.0 

67 0.0336 0.0337 0.3 

 

0.0039 0.0039 0.0 

78 0.0333 0.0334 0.3 

 

0.0038 0.0039 2.6 

89 0.0333 0.0342 2.7   0.0038 0.0038 0.0 

 

Thermal diffusivity of carbon graphite coated and plain composite specimens are in axial 

and transverse directions in figure 4.2 and 4.3. 

 

Figure 4.14 Thermal Diffusivity comparison of carbon coated and uncoated materials in axial 

direction 
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Figure 4.15 Thermal Diffusivity comparison of carbon coated and uncoated materials in 

transverse direction 

As a result, when we compared the data, there is no effect of graphite powder to the 

thermal diffusivity of the materials since the diffusivity variations are under 3%, at most of the 

segments under 1%. Graphite powder does not affect the thermal diffusivity. 

4.6 Summary 

Anter Flashline 2000 was used to measure thermal diffusivity and NETZSCH DSC 200 

F3 Maia was used to measure specific heat capacity of IM7-G/8552. Thermal diffusivity was 

measured in two different directions by Anter Flashline. Specimens were prepared by axial and 

transverse direction of the fiber to get both axial and transverse thermal diffusivity and 

conductivity of the composite material. Test results were presented in this chapter. The following 

equations are obtained for axial and transverse directions. 

TCp 3105.4816.0         (4.12) 

T5
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T5

3 1040042.0         (4.14) 

Then, thermal conductivity equations obtained as: 

Txk 2

1 1025.249.4         (4.15) 

Txk 3

3 101.2548.0         (4.16) 

All the equations were developed for a temperature range 22°C to 100°C. However, extension of 

the equations from 0°C to 125°C will give reasonable accurate results.  

The thermal conductivity of IM7-G/8552 composite laminate at room temperature is k1= 

4.89 W/m°C and k3=k2 since the transverse isotropy of the unidirectional composite material k3= 

0.58 W/m°C. Thermal diffusivity results in both directions at room temperature are α1 = 0.034 

cm
2
/s and α3 = 0.0041 cm

2
/s. Specific heat capacity of IM7-G/8552 is Cp= 0.904 J/g°C at room 

temperature (22°C). 

The conductivity of similar composites, such as AS4/3501-6 Carbon/Epoxy is k1 = 4.9 

W/m°C and k3= 0.69 W/m°C with thermal diffusivity of AS4/3501-6 is α1 = 0.039 cm
2
/s and α3 = 

0.0054 cm
2
/s, and the specific heat capacity is Cp= 0.898 J/g°C at room temperature (22°C) 

(Osman, 2015). 
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CHAPTER 5  

Thermal Conductivity of Fiber Reinforced Composites by Micromechanics 

5.1 Introduction 

This chapter describes prediction of axial and transverse thermal conductivity of the 

unidirectional IM7-G/8552 composites by micromechanics analysis. Rule of mixture was used to 

calculate longitudinal (k1) and six models from literature were used to calculate transverse 

thermal conductivity (k3) of the composite. The predicted values were compared with the 

experimental data in chapter 4.  

5.2 Unit Cell Model  

The unit cell model shown in the figure 5.1 explains an idealized structure of the 

unidirectional fiber reinforced composite material. The unit cube cell model describes that the 

fiber is distributed in a square array. The rule of mixture was successfully used in Springer and 

Tsai (1967) to calculate k1. There are number of models in literature for transverse conductivity 

based different assumptions, among than six are presented here. 

 

Figure 5.1 Unit cell of a unidirectional composite laminate 

 

x2, k2

1=unit

1=unit

x3, k3

x1, k1
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5.2.1 Axial conductivity (k1) models. The resin is assumed as isotropic and the fiber is 

orthotropic. Springer and Tsai (1967) and Thornburgh and Pears (1965) proposed rule of mixture 

model to calculate axial thermal conductivity of the composite by the equation: 

(5.1) 

Where k1 is the composite axial thermal conductivity, Vf  is the fiber volume fraction, k1f  is the 

longitudinal thermal conductivity of the fiber, km is the thermal conductivity of the matrix, and 

the matrix volume fraction is Vm =1-Vf. IM7 fiber and 8552 matrix conductivity properties were 

taken from Hexcel Tow
®

 IM7 Product Data Sheet and Johnston (1997). Using these values and 

measured Vf = 0.58 the k1 of the composite was calculated using equation 5.1 and it was found to 

be 3.19 W/m°C. However, the measured k1 was 4.9 W/m°C. As explained in the literature, the 

equation 5.1 is suppose to accurately predicts k1 therefore fiber k1f was back calculated for k1 =4.9 

W/m°C agrees with the measured k1. The resulting k1f is 8.34 W/m°C, and this is also listed in 

table 5.1 within parenthesis.  

Table 5.1 

Constituent thermal conductivity 

            

Materials Vf 

Conductivity, W/m°C  

Fiber, kf 
Matrix, 

km  

Equation 5.1, 

k1 

Present 

Experiment, k1 

IM7-G/8552 0.58 5.4
1 

(8.34)
2
 0.148 

3
 3.19 4.9 

AS Graphite/Epoxy
4
 0.60 5.22 0.190 - - 

 

1
 Hexcel Tow

®
 IM7 Product Data 

2
 Back calculated value by rule of mixture, Equation 5.1 

3
 Johnston (1997) 

4 
Wetherhold and Wang (1994) 

mmff kVkVk  11
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5.2.2 Transverse conductivity (k3) models. Prediction of through the thickness thermal 

conductivity (k3) is more complex than axial conductivity. There are number of analytical models 

reported in the literature for calculation of k3. Commonly used six models are reviewed in and 

are summarized below. The following six models are validated by (Wetherhold & Wang, 1994), 

for AS Graphite Epoxy composite. Constituent properties of the material are listed in table 5.1.  

1. Rayleigh (1892): Rayleigh used the analogy of obstacles arranged in rectangular to derive the 

equation. 

 

 

(5.2) 

 

 

 

 

2. Halphin and Tsai (1964): Halphin – Tsai model is based on bounding principles and analogies 

to mechanical (shear) properties. 

 

 

 

(5.3) 

 

1

1

1

1
3






















































m

f

m

f

f

f

m

k

k

k

k

v

v
kk




























































1

1
'

0134.0

3058.0

''
'

2
1

2

1

8241

3

f

m

f

m

fff

f

m

k

k

k

k

v

C

C

V
v

C
V

C
V

V
kk






70 

 

 

4. Hashin (1983): Hashin model is based on bounding principles and analogies to mechanical 

(shear) properties. This model is same as Halphin-Tsai equation, except it is written in the 

different form. 

 

 (5.4) 

 

 

3. Springer and Tsai (1967): Springer – Tsai is based on simple combinations of thermal 

resistance model 

 

 

(5.5) 

 

 

 

 

5. Chawla (2012): Chawla is based on simple combinations of thermal resistance model. 
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6. Farmer and Covert (1994): 

 

 

(5.7) 

 

 

 

Rayleigh and Farmer-Covert models are the same except for interphasial property effect. If the 

interphasial effect is neglected the two models give the same results, which is the case in present 

analysis. Therefore, the model was not used because α and hc are not known. 

The k3 was calculated using all models for AS Graphite/ Epoxy composite using the 

constituent properties given in Table 5.1. The resulting k3 is compared with literature data 

(Wetherhold & Wang, 1994) k3 = 0.71 W/mK and found at Rayleigh’s model agrees very well 

while all other models gave about 7% less. 
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5.2.3 Comparison of predicted k3 with experimental data. Table 5.3 lists the k3 

calculated from Equation 5.2, through 5.4, and 5.6 for Vf =0.58. Among the four models, 

Rayleigh’s model predicts (0.554 W/m°C) the closest results to the experimental data (0.584 

W/m°C) for kf = 8.34 W/m°C. The difference is about 5%. All other models predicts lower 

values, Chawla’s model predicts the lowest. Since the conductivity k3 is sensitive to Vf , k3 was 

calculated and listed for Vf =0.57 and 0.59 (0.01 on either side of the Vf ) and the deviation is 

about 0.02 W/m°C. The difference between Rayleigh’s model and experiment reduced to 2% for 

Vf =0.59. 

Table 5.3 

Comparison of predicted and measured conductivity k3 of IM7-G/8552  

            

Model 

Calculated Conductivity k3, W/m°C 

Vf = 0.58,               

kf = 5.4 

W/m°C  

kf = 8.34 W/m°C 

Vf = 0.58               Vf = 0.57               Vf = 0.59,             
Measured 

k3 

Rayleigh 0.535 0.554 0.536 0.574 

0.584 

Halpin-Tsai 0.508 0.524 0.510 0.539 

Springer-Tsai 0.491 0.508 0.490 0.527 

Chawla 0.488 0.495 0.480 0.510 

Farmer-Covert 0.535 0.554 0.536 0.574 

 

Predicted value of k3 using the Hexcel data sheet kf = 5.4 W/m°C is also listed in table 5.3 and it 

is 0.535 W/m°C based on Raleigh’s model. This value is much lower than estimated kf =8.34 

W/m°C. 
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5.3 Summary  

The rule of mixture is accurate for prediction of k1, providing the fiber axial conductivity 

is accurate. However, Halphin-Tsai, Springer-Tsai, and Chawla models gave nearly same value 

of k3 but 11-16% lower than the experiment. Rayleigh’s model predicted 5-11% higher than 

Halphin-Tsai, Springer-Tsai, and Chawla models and 5% lower than measured value (k3 = 0.584 

W/m°C) 
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CHAPTER 6  

Concluding Remarks and Future Work 

6.1 Concluding Remarks 

Thermal conductivity of IM7-G/8552 fiber reinforced composite laminate was 

determined using measured thermal diffusivity (α), specific heat capacity (Cp), and material 

density (ρ). Then the conductivity was calculated from the equation: 

  PCk       (6.1) 

This approach is commonly used for isotropic materials and the approach is standardized by 

ASTM E-1461 and ASTM E-1269. Here this approach was applied to unidirectional composite 

laminate to determine both axial and transverse thermal conductivity. The novelty of the 

approach is in the specimen preparation to adapt the existing simple and accurate technique to 

determine both axial and transverse conductivity of a unidirectional composite.  

Anter Flashline was used to measure thermal diffusivity for along and across fiber 

direction of the unidirectional fiber composite. Because the transverse plane (x2-x3) is isotropic, 

thermal diffusivity in x1 (α1) and x3 (α3) directions are only parameters needed. Two types of 

cylindrical specimens with diameter 12.5 mm were prepared to measure axial and transverse 

thermal diffusivities. The reinforcing fibers are along and across the heat flow directions in the 

axial and transverse test specimen, respectively. 

Small size of specimens (11.5 mg) were prepared to maintain constant temperature on 

samples to measure specific heat capacity (Cp).Thermal diffusivity and specific heat capacity 

were measured for a temperature range 20°C to 100°C and at least for four specimen for each 

test case. Using the measured diffusivity, specific heat capacity at each temperature, and the 

density of the specimen the conductivity was calculated. 
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The average thermal diffusivity along the fiber of IM7-G/8552 composite laminate was found to 

be:  

T5

1 101035.0         (6.2) 

Thermal diffusivity across the fiber, 

T5

3 1040042.0        (6.3) 

The specific heat of the composite is, 

TCp 3105.4816.0         (6.4) 

The average densities (ρ) of the axial and transverse specimens were 1.58 and 1.57 g/cm
3
, 

respectively. The calculated thermal conductivity in axial (k1) and transverse (k3) followed the 

equations, 

Txk 2

1 1025.249.4        (6.5) 

Txk 3

3 101.2548.0        (6.6) 

The parameter T is the temperature in Celsius. Thermal diffusivity is nearly constant or shows 

small decreases with temperature. However, specific heat capacity and thermal conductivity 

increased with temperature rise. The room temperature conductivity of IM7-G/8552 composite 

laminate are k1= 4.89 W/m°C and k3= 0.58 W/m°C. Because of nonavailability of IM7-G/8552 

data, the measured conductivities are compared with similar composites and the micromechanics 

prediction in the literature. The conductivity of AS4/3501-6 carbon/epoxy k3= 0.61 W/m°C and 

prediction of k3= 0.55 W/m°C at room temperature (Saad & Doleman, 2013). The equations 6.5 

and 6.6 are valid for temperature between 20°C and 100°C. 
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6.2 Future Work 

Based on the research performed in this thesis following future work are suggested.  

1. Extended work to characterize the thermal conductivities of composite at cryogenic 

temperatures for space applications.  

2. Measure multidirectional conductivity of a composite laminate and validate by the 

macromechanics models. 

3. Extend the work to measure electrical and magnetic properties of composite laminate. 
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