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Abstract 

Food insecurity is defined as the situation where people are not able to access enough 

food at all times for an active, healthy life. The 2012 food security report stated that 49 million 

Americans including children lived in food insecure households. Many individuals suffering 

from food insecurity obtain assistance from governmental programs and nonprofit agencies. 

Food banks are one of many non-profit organizations assisting in the fight against hunger. They 

serve communities by distributing food to those in need through charitable agencies. Many of the 

food distributed by the food bank comes from donations. These donations are received from 

various sources in uncertain quantities at random points in time. Working with this type of 

uncertainty in supplies can be very challenging. This thesis aims at developing a decision-

making model that will assist food banks to distribute supplies equitably as well as measure their 

performance using the pounds per person in poverty indicator. This model will also assist them 

in managing their inventory levels in order to meet the demand of aid recipients with the random 

supplies (donations) to the food bank.   
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CHAPTER 1 

Introduction 

1.1 Food Insecurity 

 Food insecurity is defined by United States Department of Agricultural, Economic 

Research Service (USDA, ERS) as the situation where people are not able to access enough food 

at all times for an active, healthy life. The United Nations Food and Agriculture Organization 

(UNFAO), estimates that nearly 870 million people out of the 7.1 billion people in the world 

suffered from chronic malnutrition in the years 2010-2012 (FAO et al., 2012). In the United 

States, 49 million Americans including children lived in food insecure households in 2012 

(Coleman-Jensen et al., 2013). Children are mostly shielded from the disrupted eating patterns 

and reduced food intake that characterize food insecure households. However, the 2012 report on 

household food security stated that 3.9 million households were unable to provide enough 

nutritious food for their children (Coleman-Jensen et al., 2013). Figure 1 shows the percentage of 

households that were food insecure in 2012. 

 

Figure 1. U.S. households by food security status, 2012. 
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Since 1995, the U.S. Department of Agriculture has collected data annually on food 

access and adequacy, food spending, and sources of food assistance for the U.S. population. A 

major motivation for this data collection is to provide information about the prevalence and 

severity of food insecurity in U.S. households. Figure 2 shows an increasing trend in the 

percentage of households that were food insecure from 1995 to 2012 (Coleman-Jensen et al., 

2013). 

 

Figure 2. U.S. The prevalence of food insecurity in the United States. 

(Source: Calculated by ERS based on Current Population Survey Food Security) 

 The prevalence rates of food insecurity can also be measured at the state level and it 

varies significantly from one state to the other. Figure 3 illustrates ten states that exhibited 

significantly higher household food insecurity rates than the national average of 14.7% from the 

year 2000 - 2012. 
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Figure 3. Top 10 states that exhibited higher household food insecurity rates than the U.S. 

national average 2000-2012. 

1.2 Causes of Food Insecurity  

Food insecurity may be caused by natural or man-made disaster such as drought, war or 

earthquakes. It can also be caused by persistent poverty (Barrett, 2010). People may be starving 

not because of scarcity of food but due to financial difficulty to cover the cost of three square 

meals a day. In some cases, people have to make a tradeoff between using the money to cover 

medical expenses or other bills and buying food. In 2012, 46.5 million people (15.0 %) in the 

United States were in poverty (DeNavas-Walt et al., 2013); this is close to the 49 million people 

that were reported to be food insecure in the same year (Coleman-Jensen et al., 2013). This 

shows that there is a correlation between poverty and food insecurity.  

The United States (U.S.) government has established several public assistance programs 

to address the problem of food insecurity. The U.S. Department of Agriculture (USDA) food and 

nutrition assistance program provides safe, sufficient and nutritious food supply for people at risk 

of hunger. The Supplemental Nutrition Assistance Program (SNAP) originally established as the 
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Food Stamp Program ensures access to healthy food for low-income households. Women, 

Infants, and Children (WIC) program helps ensure the nutritional health of pregnant, postpartum 

and breastfeeding mothers, infants and children. The Emergency Food Assistance Program 

(TEFAP) provides food and administrative funds to states to supplement the diets of low-income 

individuals, including the elderly.  

1.3 Feeding America and its Network of Food Banks 

Feeding America formally known as America’s second harvest is the nation's leading 

domestic hunger-relief organization whose mission is to end hunger by feeding America's 

hungry through a nationwide network of about 200 member food banks and distribution centers 

across the country (FeedingAmerica, 2014). Feeding America is the parent hunger-relief 

organization that gave birth to all the local food banks; as such, they provide administrative 

support, training of personnel, standards for food safety and standards for food distribution to the 

food banks. They also facilitate the receipt of food and funds from the Federal government 

through programs such as TEFAP and distribute to local food banks based on requests through a 

bidding system.  

The local food banks, though under the umbrella of Feeding America, remain largely 

independent with their own management system and budget. They solicit for funds, food and 

supplies from individuals, groups, farmers, local manufacturers and retailers. Donors such as 

large companies may decide to donate to food banks as part of their corporate responsibility 

program. In addition individual donors may also decide to donate in response to solicitation for 

supplies by the food bank.  The types of items donated are based on the following factors: (i) 

whether they are purchased specifically for donations per what the food bank wanted; (ii) what 

the donor felt like is appropriate to donate; or (iii) they are surplus from existing supplies.  These 
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items received represent sources of supply that enable them to meet the demand of the people at 

risk of hunger. The food banks do not have any control on the types of food, the quantity 

donated, and frequency of donations. As a result, they mostly do not have the amount and type of 

supplies they actually need to enable them to meet the needs of their clients (people at risk of 

hunger) in a timely manner.  

1.4 Performance Measurement 

Neely et al. (2002) define performance measurement as “the process of quantifying the 

efficiency and effectiveness of past actions”. Organizations periodically evaluate their 

performance over a period of time as a way of being accountable to their stakeholders and also to 

see how they are performing. This enables them to identify the deficiencies in their systems and 

find ways of improving their systems. There are several challenges that exist when measuring the 

performance of hunger-relief organizations. Some of these challenges include the immateriality 

of their services, immeasurability of their missions, unknowable outcomes, and varied interests 

of stakeholders (Balcik and Beamon, 2008). Despite these challenges hunger-relief organizations 

need to measure their performance for the following reasons. Firstly, to evaluate their previous 

performance and improve on their ability to meet demand in subsequent times. Secondly to be 

accountable to their benefactors, beneficiaries, staff, volunteers, the media, and the public in 

general. Thirdly to be able to compete with a burgeoning number of agencies, for scarce donor 

funding  (Kaplan, 2001). 

1.4.1 Pounds per person in poverty (PPIP) 

In view of the need to be able to measure the performance of hunger-relief organizations 

such as food banks, Feeding America has proposed a performance indicator to members in its 

network which is the pounds distributed per person in poverty (PPIP) by service area. The PPIP 
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indicator does not directly measure the number of pounds of food distributed to the people in 

poverty served by a given food bank, but rather divides the total number of pounds distributed by 

a given member food bank by the entire poverty population in the member’s service area (Gillis, 

2010). Feeding America's benchmark is to distribute at least 75 pounds of products for each 

person in poverty (over a 12 month period).  It’s over a 12-month period because the 12 months 

represent one fiscal year for the food banks; hence Feeding America would like to know how 

much food its members distribute over an entire fiscal year.  A food bank is successful if its PPIP 

is 75 or more. Thus, service areas that have a PPIP below 75 are considered to be under served.  

1.4.2 Food bank of central and eastern North Carolina 

The Food bank of Central and Eastern North Carolina (FBCENC), a member of Feeding 

America network, has been providing food to people at risk of hunger in 34 counties in Central 

and Eastern North Carolina for over 30 years. The FBCENC comprises six branches located in 

the Wilmington, Durham, Raleigh, Sandhills, Greenville, and New Bern areas in North Carolina. 

In addition, these branches serve as warehouses for the food bank. In fiscal year 2011-12 

(FY1112), the food bank distributed nearly 45 million pounds of food and non-food essentials 

through its partner agencies. The partner agencies consist of emergency food programs such as 

soup kitchens, food pantries, kid’s café, homeless shelters, elderly nutrition programs and 

recognized churches. These partner agencies also serve more than 500,000 individuals at risk of 

hunger across the 34 counties. The FBCENC receives donations from State and Federal 

government, individuals, organizations, manufacturers and retailers.  

1.5 Problem Statement and Motivation 

More than 70% of the food received by the FBCENC is from donations, which are 

completely voluntary. This implies that the supplies to the food bank are based on the goodwill 
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of donors and is therefore subject to significant variations due to the fact that donors are not 

obligated to give any particular type and quantity of supplies. Consequently, donations may not 

be frequent, may be almost expiring and may not be suitable for consumption after a few days, or 

the items are not what is actually being demanded.  

Working with this type of uncertainty in supplies can be very challenging. Nevertheless, 

management at the food bank needs to be able to adequately plan how to ensure that there are 

supplies coming in despite all these factors and also to plan the distribution of supplies to ensure 

food shortages are avoided.  In order to properly manage the distribution of donations, the 

FBCENC initiated the fair share program, which uses readily available poverty rates in each 

county to provide a blueprint of the areas in greatest need of food and other supplies. This 

information is used by the FBCENC’s Operations Team to move donated food and other product 

through its six warehouses to the partner agencies in the counties and to the people at risk of 

hunger. The management at FBCENC wants to use the performance indicator (PPIP) proposed 

by Feeding America to measure their performance. This thesis aims at developing a decision-

making model that will assist the FBCENC to distribute supplies equitably as well as measure 

their performance using the pounds per person in poverty indicator. And also assist them to 

manage their inventory levels in order to meet the demand of aid recipients with the random 

supplies (donations) to the food bank.  

1.6 Research Objectives 

The main objective of this project is to provide a platform (decision making model) for 

the food bank’s Decision Makers specifically, to achieve the following goals: 

 Find an optimal distribution policy that maximizes equity in the distribution of supplies 

using the PPIP; 
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 Determine reward associated with the optimal distribution policy; 

 Estimate the number of counties whose PPIPs fall below the 75;  

  Estimate the amount of unsatisfied demand for the counties whose PPIP are below 75. 

1.7 Organization of Thesis 

The remainder of the thesis is outlined as follows. Chapter 2 summarizes the related 

literature. Chapter 3 outlines the methodology employed. Chapter 4 evaluates the methodology 

using data from FBCENC and describes the experimental design constructed to answer the 

research questions. The results and key insights from the model are summarized in Chapter 5. 

Chapter 6 contains concluding remarks and extensions for future work. 
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CHAPTER 2 

Literature Review 

2.1 Introduction 

This chapter is divided into three sections. The first section is a review of humanitarian 

relief operations and the various types of humanitarian relief. Relief inventories and their 

challenges are discussed. The main challenges identified are supply uncertainty, demand 

uncertainty and equitable allocation of supplies. The second section describes decision-making 

and highlights decision-making models to solve inventory control problems. The third section 

describes the use of Markov decision-making models to solve inventory control problems.  

2.2 A Review of Humanitarian Relief Operations 

Humanitarian relief is assistance in the form of food, water, medicine, shelter and 

supplies provided to people affected by emergencies (Balcik and Beamon, 2008). Emergencies 

could vary from food insecurity primarily caused by economic hardships to large-scale 

emergencies caused by natural or man-made disasters such as war, earthquakes or floods (Mohan 

et al., 2013). Humanitarian relief operations often include preparation, planning, assessment, 

appeal, mobilization, procurement, warehousing, transportation and distribution of goods and 

services to the affected people (Blanco and Goentzel, 2006). Celik et al. ( 2012) divide 

humanitarian relief into two main categories: disaster-related operations and long-term 

humanitarian development related operations. The former concentrates on providing basic 

necessities and services to relieve the suffering and save the lives of the vulnerable in the 

interim. However the latter focuses on the long–term eradication of the root causes of 

vulnerability through capacity building. This is done by special interventions programs such as 
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the transfer of knowledge and resources through mentoring, workshops, trainings and 

infrastructure development.  

From the above classification of humanitarian relief this research falls into the category 

of long-term humanitarian development related operations. Though the research focuses on the 

long-term relief offered to people at risk of hunger, disaster related relief operations will also be 

reviewed due to its similarities with our study. The similarities are; supply chain structure, which 

allows the flow of material from donors to beneficiaries and objective functions, which are to 

alleviate human suffering and to distribute resources equitably. However, disaster related issues 

have different constraints compared to our studies. These constraints include the sudden 

occurrence of demand, extreme urgency and chaotic environments. 

Humanitarian Supply Chain (HSC) or Humanitarian Logistics (HL) is a network of 

organizations that ensure the effective and efficient solicitation, transportation, warehousing and 

the distribution of supplies and the provision of other services to people in need. Due to the 

increasing trends of natural disasters and food insecurity coupled with the need for 

accountability, relief agencies should be able to manage their supply chains effectively to 

improve their responsiveness and efficiency. In view of these reasons, HSC management has 

attracted significant attention (Altay and Green Iii, 2006; Blanco and Goentzel, 2006; Balcik et 

al., 2010; Galindo and Batta, 2013). The areas that have attracted the most research can be 

grouped into three main categories; transportation, facility location and inventory management, 

as shown in Table 1. 

Research in transportation highlights vehicle routing problems that determine effective 

distribution of relief items and the modes of transportation (such as helicopters) to reach areas 

that are not accessible by road. Research on facility locations emphasizes the pre-positioning of 



12 

 

 

 

supplies in the pre-disaster phase and strategic positioning of distribution centers close to 

demand points. Research on inventory management focuses on determining the item quantities 

required at various distribution centers, how to distribute supplies equitably, order frequency, 

and the appropriate amount of safety stock to have in order to prevent supply interruptions. 

Table 1 

Work done by various researchers in the three main areas of HSC 

Transportation Facility location Inventory control 

(Davis et al., 2014) (Roh et al., 2013) (Das and Hanaoka, 2014) 

(Liberatore et al., 2014) (Duran et al., 2011) (Davis et al., 2013) 

(Nikbakhsh and Zanjirani Farahani, 

2011) 

(Rawls and Turnquist, 

2010) 

(Rawls and Turnquist, 

2012) 

(Jr and Taskin, 2008) (Balcik and Beamon, 

2008) 

(Qin et al., 2012) 

(Campbell et al., 2008) (Ukkusuri and 

Yushimito, 2008) 

(Rottkemper et al., 2012) 

(Jahre et al., 2007) (Jia et al., 2007) (Bozorgi-Amiri et al., 

2013) 

(Barbarosoğlu and Arda, 2004) (Tzeng et al., 2007) (Chang et al., 2007) 

(Sakakibara et al., 2004) (Yi and Özdamar, 2007) (Ozbay and Ozguven, 

2007) 

(Barbarosoğlu et al., 2002)   

 

2.2.1 Relief inventories 

Relief inventories are referred to as social inventories because they serve broad social 

objectives as opposed to being used for the benefit of an individual enterprise (Whybark, 2007). 

These inventories are unique in terms of their source of supplies, objectives, recipients of 

services, workers, performance measurement and the level of uncertainty and risk they have to 

deal with (Van Wassenhove, 2005; Balcik and Beamon, 2008). Given the importance of disaster 

relief operations, the amount of research available on relief inventories is little compared to 

research on commercial inventories. Commercial inventories usually deal with predetermined 
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suppliers, predetermined facility location sites, and predictable demand; all of these factors are 

unknown in relief inventories (Cassidy, 2003). In terms of objectives, commercial inventories 

aim at increasing profits whereas relief inventories aim at alleviating the suffering of vulnerable 

people (Anisya and Kopczak, 2005 ). These differences between relief inventories and 

commercial inventories (Balcik and Beamon, 2008; Balcik et al., 2010) prevent the application 

of commercial inventory models directly to relief inventories.  

2.2.2 Challenges of relief inventories 

In contrast to managing commercial inventories, supply is highly uncertain because it is 

dependent on donations that are constantly evolving. This creates a major challenge in relief 

inventory management since without supply there will be no distribution. The defining source of 

revenue for hunger-relief organizations is scarce government funding and irregular charitable 

donations from individuals and corporations. For disaster relief operations, a preliminary appeal 

for donations of cash and relief supplies is often made within 36 hours of the onset of a disaster 

(Anisya, 2003). Fundraising and sale of goods and services is also another means by which relief 

organizations mobilize resources for their activities. 

Issues with supply uncertainty range from ability of a donor to give supplies, the varied 

quantities of supplies donated and the receipt of unsolicited and sometimes unwanted donations 

(Chomilier et al., 2003). Most often than not, relief agencies have to deal with food and 

medications that are highly perishable or past their expiry dates. They have to sort and review the 

items for quality before distribution to end users. These unwanted items clog their warehouses or 

distribution centers and thus increase the inventory cost of handling and holding these items 

(Sowinski, 2003; Murray, 2005). As a result, most relief operations have incinerators to help 

destroy these unwanted items (Murray, 2005). 
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Concerns have been raised about the nutritional quality of emergency foods due to the 

increasing rates of obesity among the food insecure (Campbell et al., 2013; Ross et al., 2013). 

Hunger-relief organizations have been asked to implement nutritional policies that will help 

improve the nutritional quality of the food they provide to aid recipients (Handforth et al., 2013; 

Shimada et al., 2013; Webb, 2013). Studies done by Campbell et al. (2013) show that just a 

handful of hunger-relief organizations are giving out more fresh produce and have programs 

where clients can choose what food items they want rather than being handed a bag filled with 

random groceries consisting of mostly canned foods. Most hunger-relief organizations express 

difficulty in implementing the nutritional policies as these have the potential of reducing the total 

amount of food that is donated, discomfort in choosing which foods should not be permitted, and 

concerns about jeopardizing relationships with donors and partners (Handforth et al., 2013). 

Hoisington et al. (2011) proposed “My Pyramid Day analysis tool” to help relief inventory 

managers to monitor key food items that are not donated. They can then conduct targeted food 

drives requesting donations of those nutritious foods or they can purchase these foods from 

available funds for distribution. 

On the demand side uncertainties arise with quantifying the needs for the services of 

relief organizations. For hunger relief, the food insecurity levels or poverty levels can serve as an 

estimate of the demand (Mohan et al., 2013). Disaster-induced demand is even more difficult to 

quantify due to the sudden nature of disaster strikes.  Thus, relief items are pushed to some 

locations in anticipation of a disaster and pulled to other locations when the need arises 

(Whybark, 2007). Demand for supplies also vary greatly depending on the type and the impact of 

the disaster, demographics, and socio-economic conditions of the affected area (Balcik and 

Beamon, 2008). Balcik and Beamon (2008) categorized emergency relief items into two main 
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groups: Type 1 and Type 2 items. Type 1 items include tents, blankets, tarpaulins, jerry cans, and 

mosquito nets; they are critical items for which the demand occurs once at the beginning of the 

planning horizon. Type 2 items are items that are consumed regularly and whose demand occurs 

periodically over the planning horizon. Examples of Type 2 items include food and hygiene kits. 

As a result of the limited supplies in humanitarian relief operations, unsatisfied demand is very 

common. 

Another major challenge faced by relief operations is the allocations of resources 

equitably. Equitable distribution helps eliminate wastage of food due to excess food on one hand 

and unmet demand due to insufficient food on the other hand. Because demand is not fully 

satisfied, resources have to be distributed equitably so that everybody gets a fair share of the 

resources. Most supply allocation problems from literature are formulated as a multi-objective 

linear programming problems where the reduction or increment of desirable outputs and inputs 

such as cost minimization, minimization of travel time, and maximization of satisfied demand 

are the objectives (Tzeng et al., 2007; Davis et al., 2013). The constraints could be budget, 

capacity and time among many others. 

2.3 Decision-making Process 

Decision-making is the process of selecting a course of action among several alternative 

possibilities with the aim of a selecting the best action.  The reason why making some decisions 

are harder than others is the level of uncertainty about the outcome of the decision in the present 

or the far future. The uncertainties arise as a result of (1) limitations in the ability to precisely 

model all the parameters and the variables related to the problem, (2) inability to accurately 

predict human behavior and (3) limited capacity to enumerate and process all the possible 

outcomes of the decision (Boularias, 2010).  
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Scientist and researchers have provided different types of decision support systems and 

models to help in the decision-making process to maximize some desired variables or arrive at an 

optimal solution. These decision-making tools can be qualitative or quantitative. Examples of the 

qualitative models are decision theories such as the rational and intuitive decision-making 

models. Quantitative models include mathematical models, decision trees, linear-programming 

models and Markov Decision Processes (MDPs) models. 

Puterman (2009) describes a sequential decision-making process where the decision 

maker observes the environment or system and based on the state that the system is in, the 

decision maker chooses an action from a set of actions. The action produces an immediate 

reward whilst the system evolves to a new state at a different point in time according to some 

probability distribution. At this subsequent point in time, the system is in a different state with 

different set of actions to choose from and the whole process is repeated. 

2.3.1 Quantitative decision-making models applied to inventory management 

Quantitative decision-making models have been broadly applied to solve commercial 

inventory management problems and their applications ranges from determining reorder points 

for a single product to controlling complex supply chain networks (Puterman, 2009). Nahmias 

(2009) identified two fundamental decisions associated with inventory management: (1) when to 

order; which depends largely on the availability of the suppliers and the lead time variability and 

(2) how much to order; which largely depends on the demand and the desired service levels. The 

decision makers in commercial inventory management seek to maximize a profit index, which 

can be calculated as revenues minus ordering costs and inventory holding costs (Giannoccaro 

and Pontrandolfo, 2002). However the decision makers in relief inventory management seek to 

save human lives.  
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Decision-making in inventory management in the presence of random supply and 

demand can be very challenging with its obvious impacts of increasing operating costs and 

decreasing customer service levels. To cope with the random supply, commercial inventory 

managers have adopted sourcing from multiple suppliers (Mohebbi, 2003; Tomlin, 2006; Ahiska 

et al., 2013) or holding more inventories. The multiple suppliers and holding more inventory 

strategy cannot be directly applied to relief inventories due to the differences between these two 

types of inventories. Hence, the objectives of quantitative decision-making models for relief 

inventory control usually include identifying the quantity of supplies needed, when to intensify 

solicitation for supplies, finding optimal ways to increase their supplies and determining the 

equitable and effective distribution of the supplies. 

 2.3.2 Quantitative decision-making models applied to relief inventory management  

 The decision-making models for relief inventory control will be reviewed under the 

objective of the model. The objectives can be grouped under the following categories: 

1. Determining the quantity of supplies needed, reorder points or safety stock levels 

2. Equitable and effective distribution of  supplies 

2.3.2.1 Determining the quantity of supplies needed, reorder points/safety stock levels 

Das and Hanaoka (2014) used a stochastic optimization model to support decision 

making in relief inventory management to identify the order quantity and reorder levels to 

prevent relief disruption following a large earthquake. The model incorporates the probability of 

a stock out per cycle, the expected shortage cost per cycle and the expected holding cost per 

cycle with the assumption of a stochastic demand and stochastic lead time, both uniformly 

distributed. The models considered two types of orders: a systematic order (normal delivery 

time) and an exigent order (delivered by expediting service). The exigent order was placed when 
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the systematic order fails to arrive on time, though it incurs a higher cost to ensure the 

continuous flow of supplies. 

Qin et al. (2012) proposed an inter-temporal integrated single-period inventory model to 

determine the optimal order quantity of emergency resources in an emergency situation such as 

flood incident. The emergency response was based on the perspective of integrating the 

“emergency management operational process” proposed by the Federal Emergency Management 

Agency (FEMA).  They classified the emergency resources into response resources (resource 1) 

and recovery resources (resource 2), where demand for resource 2 is not only dependent on the 

shortage quantity of resource 1, but also on external stochastic factors. The model captured both 

the deterministic dependent relationship and stochastic dependent relationship between the 

shortage quantity of resource 1 and the demand quantity of resource 2 with the objective to 

minimize the expected loss related to all emergency resources. In order to reflect the dependent 

relationship in demand function of resource 2, they introduced a deterministic scalar multiplied 

with a stochastic variable. A genetic algorithm based simulation approach is used to solve the 

model. 

Ozbay and Ozguven (2007) developed a time-dependent inventory control model for 

safety stock levels that could be used for the development of efficient pre-disaster and post-

disaster plans. The proposed model attempted to determine the minimum safety stock so that the 

consumption of these stocked goods could occur without disruption for a given probability at 

minimum cost. Their research focused on obtaining such an effective humanitarian inventory 

management model using the “Hungarian Inventory Control Model”; a stochastic programming 

model, which was introduced by Prékopa.  A solution procedure based on the concept of p-level 

efficient points (pLEPs) was also proposed. 
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Beamon and Kotleba (2006) also developed a stochastic inventory management model 

for a single item with irregular demand to determine the optimal order quantities and reorder 

points during a long-term emergency relief response. The model used the standard (𝑄, 𝑟) 

inventory policy that allows for two different order sizes, (𝑄1, 𝑄2) and two different reorder 

levels, (𝑟1,  𝑟2). 𝑄1 was placed when the reorder level has reached 𝑟1, a normal re-supply option. 

𝑄2 was placed when the reorder level has reached 𝑟2, expedited emergency re-supply. The 

expedited emergency supply incurs a higher fixed and per unit ordering cost than the normal 

orders. They assumed the demand to have a uniform distribution. 

 2.3.2.2 Equitable and effective distribution of supplies  

Davis et al. (2013) determined the placement of supply within the supply chain network 

in preparation for natural disasters such as hurricanes, making use of short-term forecasts. They 

used a stochastic mixed integer linear programming approach, which considered both 

uncertainties in demand and supply. They developed a two-stage recourse model. The first 

decision stage was the preposition of supplies to minimize the total expected cost and the second 

stage was equitable distribution of supplies to minimize unmet demand. 

Rottkemper et al. (2012) presented an inventory relocation and re-distribution model for 

decision-making to resolve the demand uncertainty problem in humanitarian relief for a single 

item. They considered a network model which comprised a global depot, a central depot and a 

number of regional depots. Transshipment between regional depots exists to allow effective 

relocation of inventory depending on demand surge during the relief action. A mixed-integer 

programming model was developed, which contained two objectives: minimization of 

unsatisfied demand and minimization of operational costs. To model uncertainty, demand was 

split into “certain” demand, which was known and “uncertain” demand, which occurred with a 



20 

 

 

 

specific probability. Penalty costs were introduced for the unsatisfied certain and uncertain 

demand. A sensitivity analysis of the penalty costs was done to study the trade-off between 

demand satisfaction and logistical costs.  

Bozorgi-Amiri et al. (2013) developed a multi-objective robust stochastic programming 

model for disaster relief logistics planning for earthquake scenarios under uncertainty. In their 

approach, demand, supply and the cost of procurement and transportation were considered as the 

uncertain parameters. Their model also considered uncertainty for the locations where the 

demands may arise. As well as the possibility that some of the pre-positioned supplies in the 

relief distribution center or the supplier might be partially destroyed by the disaster. The first 

objective was to maximize the ‘affected areas’ demand satisfaction levels and the minimize 

shortages in these affected areas.  The second objective was to minimize the sum of the expected 

value and the variances of the total cost. 

Lodree and Taskin (2008) proposed newsvendor variants that account for demand 

uncertainty as well as the uncertainty surrounding the occurrence of a disaster. The optimal 

inventory level was determined and compared to the classic newsvendor solution. The difference 

was interpreted as the insurance premium associated with proactive disaster-relief planning. The 

insurance premium was the additional costs incurred based on an order quantity that takes 

disruption into consideration. The insurance policy framework represented a practical approach 

for decision makers to quantify the risks/reward tradeoff associated with inventory decisions 

related to preparing for emergency relief efforts. 

2.4 Markov Decision Process (MDP) 

A Markov Decision Process (MDP) named after Andrey Markov (Markov, 1913) is a 

sequential decision making stochastic process that is used to study complex systems. They are 
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generally characterized by five elements; decision epochs, states, actions, transition probabilities 

and rewards (Puterman, 2009). The decision maker’s environment is often modeled as a 

dynamical system with different states. Decisions are made at the decision epochs (points in 

time), which can be discrete or continuous. Given such a system, the goal of the decision maker 

is to choose actions based on some decision rules that will move the system to a desirable state.  

A collection of the decision rules are called policies and the goal of the decision maker is to 

select the optimal policy that will maximize the total expected reward. 

Specifically, the system has 𝑁 number of states and at each decision epoch,  𝑡 ∈ 𝑇,   

where 𝑇 denotes the set of decision epochs, the process is in a current state 𝑖 ∈ 𝑆 at time 𝑡; 𝑆 is 

the state space which is a set of all possible states the system can occupy. As a result of the 

decision maker choosing any action 𝑎, from the action space, 𝐴𝑠, the process moves to the next 

state 𝑗 ∈ 𝑆 or remains in the same state at time, 𝑡 + 1.  The decision maker receives a 

corresponding reward 𝑟𝑖 𝑗, which could be a gain or a loss, where 𝑅 is the reward matrix with 

elements 𝑟𝑖𝑗. The probability that the system moves from the current to the next state is 

influenced by the chosen action and it is given by the state transition probability, 𝑝𝑖𝑗, where 𝑃 is 

the transition matrix with elements 𝑝𝑖𝑗. Transition to the next state 𝑗 depends on the current state 

𝑖 and the decision maker's action 𝑎 given that 𝑖 and 𝑎 are conditionally independent of all 

previous states and actions.  

2.4.1Applications of MDPs to inventory management 

The applications of MDPs in relief inventories are limited but have been greatly applied 

to commercial inventories. In commercial inventories, they are used to determine optimal order 

quantities and reorder points. The state of the system, which is a function of the inventory 

position, is viewed periodically or randomly according to an inventory review policy. Actions 
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correspond to the amount of stock to be ordered with not ordering being a possible action 

(Giannoccaro and Pontrandolfo, 2002). The reward is to minimize the total expected costs, which 

include fixed ordering cost, unit ordering cost, holding cost, backordering penalty cost and lost 

sales cost.  

Silbermayr and Minner (2014) studied a single item inventory system, with a buyer 

facing Poisson demand. The buyer can procure from a set of potential suppliers who are not 

perfectly reliable. Each supplier was considered to be fully available for a certain amount of time 

(ON periods) and then breaks down for a certain amount of time during which it can supply 

nothing at all (OFF periods). The problem was modeled as a Semi-Markov decision process 

(SMDP) where demands, lead times and ON and OFF periods of the suppliers are stochastic. The 

state of the system was defined as the inventory level, the number of outstanding orders with 

each supplier and the status of respective supplier. The actions corresponded to whether to place 

a new order, the quantity to order, and which suppliers to assign the order to.  The objective was 

to minimize the buyer's long run average cost, including purchasing, holding and penalty costs.   

Ashika et al. (2013) used a discrete-time Markov decision process (DTMDP) to model 

the supply interruption problem in order to find the optimal ordering policies that would 

minimize the total expected cost. They considered an infinite-horizon, single-product, and 

periodic review inventory system for a retailer who had adopted a dual sourcing strategy in the 

presence of stochastic demand. Amongst the two suppliers, one was perfectly reliable while the 

other was not but offered a lower price. The system states were defined as the inventory level 

and the unreliable supplier status, which could be either up or down. The actions are the 

quantities to order from each supplier. 
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Warsing Jr et al. (2013) formulated a discrete-time Markov process (DTMP) model with 

a finite state space for a single-item, single-site inventory system, operating under a periodic-

review, with stochastic demand and imperfect supply. The supplier was not entirely reliable. 

Each order was represented as a Bernoulli trial. With probability 𝛼 the supplier delivered the 

current order and any accumulated backorders at the end of the current period. With probability 

1−α, the supplier would fail to deliver. Their objective was to determine the optimal base-stock 

level and minimize the long-run average system cost per period. The states of the system were 

the inventory level and actions are the order quantities.  

Wang et al. (2010) modeled a multi-period newsvendor problem with partially observed 

supply-capacity information, which evolved as a Markovian Process (POMDP). Their objective 

was to determine an optimal purchasing policy that minimized the total cost using a dynamic 

programming formulation.  In their model the supply capacity is fully observed by the buyer 

when the capacity is smaller than the buyer’s ordering quantity. But partially observed when the 

capacity is greater than the buyer’s ordering quantity. The available capacities of the supplier 

were the states of the system and actions were the buyer’s order quantities. 

Tomlin (2006) also investigated an infinite horizon, periodic inventory model with two 

suppliers; reliable and unreliable with complete backlogging of unmet demand using a discrete-

time Markov process (DTMP). The objective was to determine the optimal sourcing strategy and 

the optimal order quantity whilst minimizing the long-run average cost. The states of the system 

were the unreliable supplier status, which could be up or down and were represented as a Markov 

process. The actions were the quantities to order from each supplier. They investigated two 

scenarios of demand: stochastic but stationary demand and deterministic demand.  
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Giannoccaro and Pontrandolfo (2002) look at the coordination of inventory policies 

adopted by different supply chain actors, such as suppliers, manufacturers and distributors. They 

modeled the problem as a Semi Markov Decision Process (SMDP) and a reinforcement learning 

(RL) algorithm is used to determine a near optimal inventory policy under an average reward 

criterion. The objective was to ensure the smooth flow of materials, meet customer demand 

responsively whilst minimizing the total supply chain costs.  The states of the system were the 

inventory position at each stage of the supply chain. Actions at each stage range from ordering 

nothing up to ordering the maximum quantity. The quantity to order equaled to the stock point 

capacity plus the current backorder plus the estimated consumption during the transportation lead 

time minus the stock on hand. 

2.5 Summary of Literature 

Much of the literature surrounding humanitarian relief management has been centered on 

disaster related issues as these are considered to be very serious and devastating situations. But 

the issue of hunger, which is a long-term humanitarian issue, has received very little research 

despite the compelling evidence of increasing food insecure households. Hence, there is a need 

for more research in this area to help hunger-relief organizations to improve their supply chains, 

especially procurement of supplies and managing their inventories to increase their service 

levels. Nevertheless, the irregular supply patterns and other constraints inherent in relief 

inventories present unique challenges to relief inventory managers.   

Commercial inventory managers effectively improve their operations using quantitative 

decision-making modeling for inventory management systems. The techniques used include 

linear programming, stochastic programming, mixed integer linear programming, genetic 

algorithms and Markov decision making processes. These techniques have also been used to 
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model relief inventories. However, quantitative decision-making models for relief inventory 

management have been centered on linear and stochastic programming techniques that 

considered demand uncertainty. Just a few of these techniques considered uncertainties in the 

supply as well. Table 2 shows the summary of some quantitative decision-making models for 

relief inventory control that have been used to solve a variety of real-life problems. 

Though MDPs are very powerful analytical tools that have been used in many instances 

to solve complex problems with uncertainties, they have not been used to model relief 

inventories. Most of their applications in inventory management have been widely centered on 

commercial inventories to deal with the problem of unreliable suppliers to determine optimal 

sourcing strategies and optimal order quantities that minimize overall cost. Table 3 shows the 

summary of some application of MDPs to commercial inventory management problems. 

Table 2  

Quantitative decision making models for relief inventory control 

Authors Type of 

relief 

Objectives Uncertain
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●   ●   ●  Stochastic  

(Bozorgi-Amiri et al., 

2013)  
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Table 2 

Cont. 

(Das and Hanaoka, 

2014)  

●   ●   ●  Stochastic 

optimization  

(Davis et al., 2013)  ●  ●  ●  ● ● Stochastic mixed 

integer linear 

programming 

(Ozbay and Ozguven, 

2007)  

●  ● ●   ●  Stochastic 

(Jr and Taskin, 2008)  ●   ● ●  ●  Mathematical  

(Qin et al., 2012)  ●   ●   ●  Mathematical 

model & Genetic 

algorithm  

(Rottkemper et al., 

2012)  

●  ●  ●  ●  Mixed-integer 

programming 

 

Table 3 

Applications of MDPs to inventory commercial management 

Author(s) Model Problem Decisions State Objective function 

(Ahiska et al., 

2013)  

DTMDP Unreliable 

supply  & 

stochastic 

demand 

Ordering 

quantities 

Inventory 

level, 

unreliable 

supplier 

status 

Minimizes the total 

expected cost 

(Warsing Jr et 

al., 2013)  

DTMDP Imperfect 

supply & 

stochastic 

demand 

Base-stock 

level 

Inventory 

position 

Minimize the 

average system cost 

per period 

(Wang et al., 

2010) 

DTMDP Unreliable 

supply   

Purchasing 

policy 

Supplier’s 

capacity  

Minimizes the total 

cost 

(Tomlin, 

2006)  

DTMDP Unreliable 

supply   

Sourcing 

strategy 

Unreliable 

supplier 

status 

Minimize the long-

run average cost 

(Giannoccaro 

and 

Pontrandolfo, 

2002)  

SMDP Unreliable 

supply   

Ordering 

policy 

Inventory 

position 

Minimize total 

supply chain costs 

(Silbermayr 

and Minner, 

2014)  

SMDP Unreliable 

supply   

Ordering 

policy 

Inventory 

position 

Minimizes the total 

cost 
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2.5.1 Research contribution 

This research contributes to the literature by simultaneously considering the objectives of 

increasing service levels and equitable distribution of supplies to obtain optimal policies for 

donation solicitation and distribution for a hunger-relief organization. The study also highlights 

the pound per person in poverty (PPIP) as measure of distribution of supplies. The approach 

presented in this research uses the Discrete Time, Discrete State (DTDS) Markov decision-

making (MDP) model. The DTDS MDP model will find an optimal allocation policy to 

equitably distribute food items to aid recipients. In addition estimate how long it takes to meet 

the PPIP criterion of 75 pounds per person set by Feeding America. The model can be used for 

benchmarking the performance of hunger-relief organizations in their efforts to meet the needs of 

the people they serve. 
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CHAPTER 3 

Methodology 

 3.1 Problem Overview 

More than 70% of the supplies to the Food Bank of Central & Eastern North Carolina 

(FBCENC) are donations from individuals and organizations. These supplies are subject to 

significant variations. Furthermore, the demands that the FBCENC needs to satisfy normally 

exceeds these supplies that come in. The FBCENC has six branches namely, Wilmington (W), 

Durham (D), Raleigh (R), Sandhills (S), Greenville (G), and New Bern (NB). These branches 

serve as warehouses for the FBCENC. The warehouses sort the supplies, conduct quality 

assessment and then store the supplies for distribution. The food bank branches transfer supplies 

among themselves when it becomes necessary. The Raleigh branch serves as the main 

warehouse; it receives a lot of donations. Thus, it transfers most of the supplies it receives to the 

other branches. Figure 4 illustrates how supplies flow in the FBCENC network. 

 

Figure 4. Supply flow in the FBCENC network. 
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Each branch (warehouse) has specific counties that it distributes supplies to. These 

counties further distribute the supplies to individuals at risk of hunger in these counties.   

Feeding America expects FBCENC to distribute food across counties such that the pounds of 

food distributed per person in poverty (PPIP) is at least 75 over a 12 month period. Counties 

whose PPIP is below the 75 pounds target are considered to be underserved. The management at 

FBCENC wants to use the performance indicator (PPIP) proposed by Feeding America to 

measure how the FBCENC performs over time.  

This chapter focuses on the formulation of a discrete time, discrete space (DTDS) 

Markov Decision Process (MDP) to achieve the following objectives: 

1. Find an optimal supply allocation policy that maximizes equity in the distribution of 

supplies using the PPIP criterion of 75;  

2. Estimate the number of underserved counties and the unsatisfied demands. 

3.2 Model Assumptions 

The inventory system considered is a single item inventory system with periodic review. 

Before we proceed to provide a mathematical formulation of the problem, the following general 

assumptions are made about the proposed DTDS Markov Decision model: 

1. The state of the system is available inventory of the warehouse at the beginning of each 

month; 

2. Donations  follow a normal distribution and occur along the time period; 

3. The poverty population in a given county serves as an estimate of the demand for that 

county; 

4. Demands are deterministic, occur along the time period and are fulfilled before the 

beginning of the next time period; 
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5. Demands are met using the available inventory and the donations according to a 

predefined allocation rule;  

6. Distribution cannot exceed demand for a given county; 

7. Transfers from other branches (transfer-in) follow a normal distribution and occur at the 

end of the time period; 

8. There is no reallocation of supplies after distribution; 

9. Transfer-in is added to what is left in inventory at the end of each period and carried over 

to the next period. 

3.3 Model Formulation 

3.3.1 Notations and definitions   

Unless otherwise stated, the following parameter definitions are used throughout the 

remainder of the model formulation. 

Table 4  

Model parameters and their definitions 

Notations Definitions 

Sets 𝑉 Set of all possible system states 

𝐶 Set of counties to be served 

𝐴 Set of allocation rules 𝐴 = {𝑎1, 𝑎2 … 𝑎𝑁} 

𝑇 Time periods with 𝑡 ∈ {1 … 𝜏}𝜏 < ∞ 

State variables 𝑣𝑡 Available inventory at time 𝑡 , 𝑣𝑡 ∈ 𝑉 (measured in pounds) 

Random variables 𝑋𝑡 Food donations at time 𝑡 with realization 𝑥𝑡 ∈ 𝑋𝑡  

𝑌𝑡 Transfers of food from other locations at time 𝑡 with 

realization 𝑦𝑡 ∈ 𝑌𝑡  
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Table 4 

Cont. 

Decision variables 𝑘𝑐𝑡
𝑎  Pounds of food distributed to county 𝑐 at time 𝑡 given 

allocation a 

 𝑓𝑐 Fraction of available inventory allocated to county 𝑐 ∈ 𝐶 

Reward variables 𝑟𝑐(𝑎) Pounds of food distributed per person in poverty in county 

𝑐 ∈ 𝐶 under allocation rule 𝑎 ∈ 𝐴 

Other variables 𝑣̃𝑡 Percentage deviation from mean available inventory 

𝑥̃𝑡 Percentage deviation from mean donation amount 

𝑦̃𝑡 Percentage deviation from mean branch transfer 

Parameters 𝑃𝑐 Poverty population in county 𝑐 ∈ 𝐶 

𝑑𝑐 Demand for county 𝑐 ∈ 𝐶 at time 𝑡 

𝐻𝑐 History of total distribution over the previous 11 months to 

county 𝑐  

𝜇𝐼 Average inventory in pounds 

𝜇𝐷 Average donation in pounds 

𝜇𝐵 Average branch transfer in pounds 

 

3.3.2 Sequence of events in the model 

At the beginning of the month, the state of the system (available inventory) is known, 

donations occur along the period and demands also occur along the period. Received donations 

are added to the current available inventory to satisfy the demands. The total inventory is then 

distributed to the counties based on the corresponding allocation decisions. The left over 
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inventory is noted after the demands have been served. Transfer-in from other branches come in 

at the end the period and it’s added to the left over inventory. The system transitions to the next 

state, which is the remaining inventory plus the transfer-in. Figure 5 illustrates how the system 

moves from one state to the next. 

 

Figure 5. Timing of events in the model. 

3.3.3 Decision epoch 

Allocation decisions are made on a monthly basis before the beginning of the next month. 

Within a period of one month the incoming donations are assumed to be available for 

distribution instantaneously. This is because the warehouse would have been able to sort the 

supplies and review it for quality in accordance with the standards for food safety and 

distribution practices of the food bank within this time period. The model is a finite time horizon 

model and the set of finite time periods is denoted as 𝑇 = {1,2, … , 𝜏}    ∀ 𝜏 < ∞. 

 3.3.4 State of the system 

The state of the system is the available inventory of the warehouse at the beginning of 

each time period. Available inventory represents the supplies (measured in pounds) in the 

warehouse. Based on the data received from FBCENC the available inventory values are very 

large and this can be any value within the ranges of 100, 000 to 800,000 pounds. Since the model 
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is a discrete state MDP, the state space is discretized using the discretization procedure described 

in section 3.3.4.1 below. It should be noted that the system state space denoted by 𝑉 =

{1,2, … , 𝑀} where  1,2, … 𝑀 are pseudo states that represent the discretized form of the actual 

available inventory values. 

3.3.4.1 Discretization procedure 

Discretization entails the process of transferring continuous data or models into discrete 

equivalents. While the number of continuous values for a data can be infinitely many, the 

number of discrete values is often few or finite. This makes discrete values easier to understand, 

use, and explain.  

3.3.4.1.1 Mean percentage deviation 

To reduce and simplify the continuous data, a heuristic approach called the mean 

percentage deviation shown in equation (1) below is used to calculate the percentage deviation of 

the actual value 𝛼 from the mean value, 𝜇. 

 𝑀𝑒𝑎𝑛 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
𝛼 − 𝜇

𝜇
× 100% (1) 

Thus, any continuous data can be represented with the mean and the mean percentage deviations. 

The mean percentage deviations can be grouped into intervals and one can reconstruct actual 

values from the mean and mean percentage deviation intervals with some errors due to the 

grouping. 

3.3.4.1.2 Binning 

Binning is one of the simplest methods used to discretize continuous data. Based on the 

range of the original continuous data, sub-ranges called bins are created. The binning technique 

groups values into bins. The bins can be created by equal-width. Let 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥 be the 

minimum and the maximum percentage deviation of the actual values. Thus the set of percentage 
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deviation of the actual values 𝛼 is bounded by the range 𝛼𝑚𝑖𝑛 ≤ 𝛼 ≤ 𝛼𝑚𝑎𝑥 where  𝛼𝑚𝑖𝑛 > −∞ 

and  𝛼𝑚𝑎𝑥 < ∞. The percentage deviation of the actual values 𝛼 are grouped into bins taken into 

consideration 𝛼𝑚𝑖𝑛 and 𝛼𝑚𝑎𝑥. Let 𝑀 be the number of bins, which are numbered, 1 through 𝑀,

𝑚 ∈ 𝑀. Also let ∆𝛼 be the bin width given by Δ𝛼 =
(𝛼max−𝛼𝑚𝑖𝑛)

𝑀
. Then, the range, 𝑅𝑚, of the mth 

bin is as shown in equation (2).  

 𝑅𝑚 = ( 𝛼𝑚𝑖𝑛 + (𝑚 − 1)∆𝛼                𝛼𝑚𝑖𝑛 + 𝑚∆𝛼   ] (2) 

It should be noted that, the choice of the number of bins 𝑀 is discretional. The lower and the 

upper ranges for 𝑅𝑚 are given by 𝑅1 = (−∞      𝛼𝑚𝑖𝑛 + ∆𝛼   ] and 𝑅𝑀 = [𝛼𝑚𝑖𝑛 +

(𝑀 − 1)∆𝛼         ∞ ) respectively. This boundary ranges are essential to cater for unknown data 

points that might fall outside the predefined domain, [𝛼𝑚𝑖𝑛  𝛼𝑚𝑎𝑥] during the lifetime of the 

model. In our approach, the values to bin are the percentage deviations from the mean. 

Consequently, each percentage deviation value belongs to one of the bins. 

3.3.4.1.3 Mapping 

A one to one mapping relation is used to associate the bins with distinct discrete values. 

Thus a specific bin is replaced by a discrete value such as 1, 2, or 3. 

3.3.5 State transitions and transition probability  

The events that cause a transition from one state to the next are: 

1. Donation, 𝑥𝑡 ∈ 𝑋𝑡, which is stochastic with CDF Φx(•) and follows a normal distribution 

2. Transfer-in, 𝑦𝑡 ∈ 𝑌𝑡, which is stochastic CDF Φy(•)  

3. Distribution to aid recipients, 𝑘𝑐𝑡
𝑎  given allocation decision 𝑎 ∈ 𝐴 

4. The available inventory at time 𝑡, 𝑣𝑡  

Given the above transition parameters, the available inventory in the next time period 𝑣𝑡+1 can 

be computed using the transition function shown in equation (3). 



35 

 

 

 

 𝑣𝑡+1 = [𝑣𝑡 + 𝑥𝑡 − ∑ 𝑘𝑐𝑡
𝑎

𝑐∈𝐶

]

+

+ 𝑦𝑡   (3) 

In equation (3) 𝑣𝑡 = (1 + 𝑣̃𝑡)𝜇𝐼,   𝑥𝑡 = (1 + 𝑥̃𝑡)𝜇𝐷,    𝑦𝑡 = (1 + 𝑦𝑡̃)𝜇𝐵 where 𝑣𝑡, 𝑥𝑡 and 𝑦𝑡 are 

the actual values of the available inventory, donation and transfer-in (measured in pounds) 

respectively. To obtain a distinct discrete value that represents 𝑣𝑡+1, the mean percentage 

deviation 𝑣̃𝑡+1 is calculated and the result binned. The discrete value associated with the bin is 

the pseudo state that represents the available inventory in the next time period, 𝑣𝑡+1.  

The probability that the system moves from the current state 𝑣𝑡,  to the next state 𝑣𝑡+1,  is 

influenced by the donation and transfer probabilities, which are assumed to be normally 

distributed. The transition probabilities are shown in equation (4). 

 

𝑝(𝑣𝑡+1|𝑣𝑡 , 𝑎)

= {

𝑝(𝑦𝑡) ∑ 𝑝(𝑥𝑡)
𝑥𝑡≤𝐾𝑡−𝑣𝑡

𝑣𝑡+1 = 𝑦𝑡

𝑝(𝑥𝑡)𝑝(𝑦𝑡) 𝑣𝑡+1 = 𝑦𝑡 + 𝑣𝑡 + 𝑥𝑡 − 𝐾𝑡; 𝐾𝑡 − 𝑣𝑡 < 𝑥𝑡

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   
(4) 

 

It should be noted that 0 ≤ 𝑝(𝑣𝑡+1|𝑣𝑡 , 𝑎) ≤ 1,   ∑ 𝑝(𝑣𝑡+1|𝑣𝑡 , 𝑎)𝑣𝑡+1
= 1 and  𝐾𝑡 = ∑ 𝑘𝑐𝑡

𝑎
𝑐∈𝐶 . 

Based on the discretization procedure and given 𝑥𝑡 ∈ 𝑅𝑚   or 𝑦𝑡 ∈ 𝑅𝑚,  then  

𝑝(𝑥𝑡) 𝑜𝑟 𝑝(𝑦𝑡) = 𝜙(𝑅𝑚
+ ) − 𝜙(𝑅𝑚

− ), where  𝑅𝑚
+  is upper bound of the bin range and 𝑅𝑚

−  is the 

lower bound of the bin range.  

3.3.6 Allocation rules 

Allocation rules correspond to the actions that the decision maker can choose based on 

the state of the system. Allocation rules have been widely used in commercial inventory 

management. An example is the case of ‘one warehouse and multiple retailers’ scenario 

(OWMR). The warehouse orders from an external supplier with unlimited capacity and the 
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retailers order from the warehouse. The warehouse can fill up orders only when stock is 

available. Some of the allocation rules identified under the OWMR system are: 

a. Myopic/ Last minute stock allocation; the warehouse postpones the decision of how 

much to allocate to each retailer until the moment (last minute) of shipment or (last 

minute) of delivery. The decision of how much to distribute is based on the updated 

retailer’s inventory information available at those times (Howard and Marklund, 2011).  

b. Allocate based on the sequence in which retailer orders arrive to the warehouse; 

a. First In First Out (FIFO) /First Come First Served (FCFS); 

b. Last In First Out (LIFO)/ Last Come First Served (LCFS); 

c. Fixed allocation; each retailer receives a predetermined fraction of goods in each period 

(Kempf et al., 2011).  

d. Proportional allocation; each retailer receives proportion of goods based on their share 

of the total demand (Kempf et al., 2011).  

For this model the decision maker uses the Allocation rules to distribute supplies to the 

counties. These decisions are formulated in three unique ways as follows. 

3.3.6.1 Serve largest demand first (SLDF) – Rule 1 

With the SLDF, the decision maker serves the county with the largest demand and 

proceeds down the hierarchy to serve the next larger demand and eventually serves the least 

demand last based on what is left after previous distributions. Thus, using rule 1, the distribution 

to county 𝑐 with deterministic demand, 𝑑𝑐 at time 𝑡 is given by equation (5). 

 

SLDF (𝑟𝑢𝑙𝑒 𝑎1):  𝑘𝑐𝑡
𝑎1 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (𝑣𝑡 + 𝑥𝑡 − ∑ 𝑘𝑖𝑡

𝑖∈𝐹𝑡
∗

, 0) , 𝑑𝑐) 

 

(5) 
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In equation (5), 𝐹𝑡
∗ = {𝑐′ ∈ 𝐶|𝑑𝑐′ > 𝑑𝑐}. In other words, 𝐹𝑡

∗ is a set of all previous deterministic 

demands  𝑑𝑐′  that have been served. It should be noted that at the beginning of the process, there 

are no previously served demands.  

3.3.6.2 Serve smallest demand first (SSDF) – Rule 2 

For SSDF, the decision maker serves the county with the smallest demand and proceeds 

up the hierarchy to serve the next smaller demand and eventually serves the highest demand last 

based on what is left after previous distributions. Thus, using rule 2, the distribution to county 𝑐 

with the deterministic demand, 𝑑𝑐 at time 𝑡 is given by equation (6).  

 

SSDF (𝑟𝑢𝑙𝑒 𝑎2):  𝑘𝑐𝑡
𝑎2 = 𝑚𝑖𝑛 (𝑚𝑎𝑥 (𝑣𝑡 + 𝑥𝑡 − ∑ 𝑘𝑖𝑡

𝑖∈𝐹𝑡
∗

, 0) , 𝑑𝑐) 

 

(6)  

In equation (6), 𝐹𝑡
∗ = {𝑐′ ∈ 𝐶|𝑑𝑐′ < 𝑑𝑐}. In other words, 𝐹𝑡

∗ is a set of all previous deterministic 

demands  𝑑𝑐′   that have been served. It should be noted that at the beginning of the process, there 

are no previously served demands.  

3.3.6.3 Proportional allocation – Rule 3   

Rule 3 uses the proportional allocation approach by (Kempf et al., 2011) to distribute 

supplies to the counties such that each county receives supplies based on the ratio of their 

poverty population to the total poverty population. Using rule 3, the distribution to county 𝑐 with 

deterministic demand, 𝑑𝑐 at time 𝑡 is given by equation (7). 

 Proportional allocation (𝑟𝑢𝑙𝑒 𝑎3):   𝑘𝑐𝑡
𝑎3 = 𝑚𝑖𝑛 (

𝑃𝑐

∑ 𝑃𝑐𝑐∈𝐶
∗ (𝑣𝑡 + 𝑥𝑡), 𝑑𝑐) (7) 
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3.3.6.4 Fixed allocation – Rule 4  

For fixed allocation, the decision maker distributes fixed amount of supplies to each 

county irrespective of their demand sizes. Using rule 4, the distribution to county 𝑐 with 

deterministic demand, 𝑑𝑐 at time 𝑡 is given by equation (8). 

 Fixed allocation  (rule 𝑎4);   𝑘𝑐𝑡
𝑎4 = 𝑚𝑖𝑛(𝑓𝑐(𝑣𝑡 + 𝑥𝑡),      𝑑𝑐) (8) 

The variable, 𝑓𝑐 in equation (8) is the fraction of the total inventory allocated to county, 𝑐 such 

that 0 < ∑ 𝑓𝑐 ≤ 1𝑁
𝑐=1 . These fractions may be obtained from observational records or may be at 

discretion of the decision maker and may or may not reflect the poverty population of the 

counties. 

3.3.7 Reward determination 

The FBCENC desires to equitably distribute the supplies to the aid recipients through the 

warehouses (branches) and potentially achieve a long-term goal of meeting the PPIP target of 75 

pounds over a 12-month period. In other words, equity in distribution is to ensure that each 

person in poverty in the various counties receives equal share of the pounds of food distributed. 

The reward is therefore an objective function that maximizes equity in distribution.  

There are several techniques that are used to measure equity. These include but are not 

limited to difference between the maximum and minimum values, variance, coefficient of 

variation, sum of absolute deviations, maximum deviation, and mean absolute deviation (Marsh 

and Schilling, 1994). Equity is maximized by minimizing these measurements. This research 

rather aims at formulating a measurement (reward) that when maximized, maximizes the equity 

as demonstrated in the subsequent sections. 
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3.3.7.1 Pounds distributed per person in poverty (PPIP) 

The PPIP is the ratio of what has been distributed over a 12-month period to the poverty 

population in that county. Thus, the PPIP associated with each county c for given action 𝑎 ∈ 𝐴, 

can be computed by equation (9). 

 𝑟𝑐(𝑎) =
𝑘𝑐𝑡

𝑎 + 𝐻𝑐 

𝑃𝑐
  (9) 

Let 𝑃𝑃𝐼𝑃𝑡   be the target PPIP as set in accordance with the Feeding America performance 

indicator as the benchmark to measure the performance of the food bank branches. Thus, if the 

𝑟𝑐 < 𝑃𝑃𝐼𝑃𝑡 the county is considered to be under-served. On the contrary if 𝑟𝑐 > 𝑃𝑃𝐼𝑃𝑡, the 

county is said to be over-served. Otherwise, the county is well-served.  

3.3.7.2 Measure of equity 

The mean absolute deviation (∆𝑐) of the pounds per person in poverty for each county’s 

is used as the central piece to measure equity. Generally, the mean absolute deviation is 

calculated as shown in equations (10) and (11).  Let, 

 𝑟̅(𝑎) =
1

|𝐶|
∑ 𝑟𝑐(𝑎)

𝑐∈𝐶
 (10) 

 ∆𝑐(𝑎) = ∑
|𝑟𝑐(𝑎) − 𝑟̅(𝑎)|

𝑟̅(𝑎)
𝑐∈𝐶

 (11) 

Consequently, the greater the value of the mean absolute deviation, the less the equity. On the 

other hand, perfect equity is achieved when ∆𝑐= 0. To ensure that large mean absolute deviation 

corresponds to large equity, equations (11) is rewritten to obtain equations (12). 

  ∆𝑐(𝑎) = 1 − ∑
|𝑟𝑐(𝑎) − 𝑟̅(𝑎)|

𝑟̅(𝑎)
𝑐∈𝐶

 (12) 
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Thus, maximizing equation (12), maximizes the equity. In this case, perfect equity is achieved 

when ∆𝑐(𝑎) = 1. This formulation has the advantage of being able to track whether perfect 

equity is obtained over a given time horizon. 

3.3.7.3 Expected immediate reward 

The immediate reward, which is the expected reward for state 𝑣𝑡 under allocation rule 𝑎 

is shown in equation (13) 

  𝑞(𝑣𝑡, 𝑎) = 𝐸𝑋𝑡,𝑌𝑡
[1 − ∑

|𝑟𝑐(𝑎) − 𝑟̅(𝑎)|

𝑟̅(𝑎)
𝑐∈𝐶

] (13) 

3.3.8 Optimal policy determination 

A policy provides the decision maker with the decisions to make at all decision epochs as 

a function of the state. Bellman (1954) applied the “Principle of Optimality” to Markov Decision 

Processes; to determine the optimal policy that maximizes or minimizes a reward criterion. This 

principle states that; given a current state, an optimal policy for the remaining states is 

independent of the policy adopted in the previous states. The optimal policy and the 

corresponding reward can be determined by three methods: Policy-iteration (Howard, 1960), 

value-iteration (Howard, 1960) and linear programming. For finite horizon problems the value-

iteration which is the same as the Bellman equation is used.  

3.3.8.1 Bellman’s equation 

Let 𝑈𝑡(𝑣𝑡, 𝑎) represent the total expected reward at time 𝑡, starting from state 𝑣𝑡, if 

allocation rule 𝑎 is used. The optimality equation can be formulated as shown in Equation (14). 

 𝑈𝑡(𝑣𝑡, 𝑎) = 𝑚𝑎𝑥𝑎∈𝐴 [𝑞(𝑣𝑡 , 𝑎) + ∑ 𝑝(𝑣𝑡+1|𝑣𝑡)𝑈𝑡+1
∗

𝑣𝑡+1∈𝑉
(𝑣𝑡+1)] (14) 
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3.3.8.2 Backward induction algorithm  

The Backward induction is the process of reasoning backwards in time, thus considering 

the last time a decision might be made and choosing what to do in that time. Using this 

information, the decision maker can then determine what to do at the subsequent times. This 

process continues backwards until the decision maker has determined the best action for every 

possible state at every point in time. The backward induction algorithm(Puterman, 2009) is used 

to determine the optimal policy as shown in the steps below.  

1. Set  𝑡 = 𝜏 and 𝑈(𝑘)(𝑣𝑡+1, 𝜏) = 0  Substitute 𝑡 − 1 for 𝑡 and compute equation (15) show 

below. Equation (16) gives the argument that maximizes 𝑈𝑡(𝑣𝑡, 𝑎). 

 𝑈𝑡(𝑣𝑡, 𝑎) = 𝑚𝑎𝑥𝑎∈𝐴 [𝑞(𝑣𝑡 , 𝑎) + ∑ 𝑝(𝑣𝑡+1|𝑣𝑡)𝑈𝑡+1
∗

𝑣𝑡+1∈𝑉
(𝑣𝑡+1)]  (15) 

 𝑆𝑒𝑡 𝑎∗(𝑣𝑡) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑎∈𝐴 [𝑞(𝑣𝑡, 𝑎) + ∑ 𝑝(𝑣𝑡+1|𝑣𝑡)𝑈𝑡+1
∗

𝑣𝑡+1∈𝑉
(𝑣𝑡+1)] (16) 

2. If  𝑡 = 1, stop. Otherwise return to step 2. 

The use of the Optimality equation will determine the optimal policy, for each state, at each time 

period and the optimal reward associated with this policy. 

3.3.9 Estimation of underserved counties 

Unsatisfied demand is the amount of additional supplies that is needed by the counties to 

meet the target PPIP, 𝑃𝑃𝐼𝑃𝑡. The unsatisfied demand for each county 𝑐  can simply be estimated 

as (𝑃𝑃𝐼𝑃𝑡 − 𝑟𝑐)  × 𝑃𝑐.  
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CHAPTER 4 

Data Analysis and Experimental Design 

 

4.1 Introduction 

This chapter focuses on preprocessing of the Food Bank of Central and Eastern North 

Carolina (FBCENC) data. This is necessary in order to transform the FBCENC data into a format 

that can be used with the Discrete Time, Discrete State (DTDS) Markov Decision Process 

(MDP) model, which was formulated in Chapter 3. This chapter then proceeds to outline an 

experimental setup that attempts to run different real-life or near real-life scenarios to 

demonstrate how the model adapts to variations in the demands in relation to the limited supply 

and examine their impacts on the objectives of the model. These objectives are re-stated as 

follows: 

1. Find optimal supply allocation policy that maximizes equity in the distribution of 

supplies to counties by using the PPIP criterion;  

2. Estimate the number of underserved counties and the unsatisfied demands. 

4.2 Data 

4.2.1 FBCENC data 

The FBCENC data contains records of donation, distribution, and transfer transactions 

from 2006 to 2014.  These records are grouped into fiscal years (FY) and stored in Microsoft 

Access Databases. A fiscal year begins from July to June of two consecutive years. For example, 

fiscal year 2006/2007 (denoted as FY0607) begins from July 2006 and ends on June 2007. The 

database has records of eight fiscal years (from FY0607 to FY1314). 
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4.2.2 FBCENC dataviewer software 

FBCENC daily transaction records grow rapidly and are susceptible to data entry errors. 

As a result, the FBCENC routinely validates the data and makes adjustments whenever necessary 

to entries of perishable items and transfers (in or out). Developing predictive models for daily 

transactions of this nature is difficult if not impossible due to the large amount of noise in the 

data. It is also a challenge to quickly retrieve records for monthly data analyses. To reduce these 

bottlenecks, two design approaches are employed. First, all the FBCENC datasets are converted 

into Microsoft SQL database tables and are hosted on Microsoft SQL Server. Second, an 

interactive software called “FBCENC DataViewer” was developed as part of this thesis to query 

the database on the Microsoft SQL Server. This makes information retrieval from the database 

efficient and practical. Even though, the objectives of this thesis do not include the development 

of information retrieval system, it is worth providing a high-level description of how the 

developed software functions and how it contributes to the success of this thesis.  

The FBCENC DataViewer provides an interface to interact, visualize and analyze the 

FBCENC data in an organized and meaningful format. The software has two major user 

interfaces (UIs). The first UI displays a set of mandatory fields with options from which the user 

must choose and submit a query to the database. There are five categories of records that the user 

can select from. These include, Distribution Records, Donation Records, Transfer Records, 

Waste Records and Custom Queries. The key fields that the user uses to query the databases are 

Fiscal Year, Fiscal Month, Branch Code, Storage Type and Product Type. A detailed description 

of what each of these categories and key fields mean is shown in the Appendix B. The second UI 

is a result page, which displays a table of results based on the query submitted from the first UI. 

The data can also be displayed in a graphical format using visualization options such as time 
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series, bar chart or pie chart. In addition, the data displayed can easily be exported into Microsoft 

Excel for further data analyses. Figures 6 and 7 show examples of the first UI and the second UI 

respectively. 

 

Figure 6. Interface showing how to retrieve data using the developed FBCENC DataViewer. 

 

Figure 7. A user interface showing a sample result using the developed FBCENC DataViewer. 
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In what follows, we discuss how the FBCENC DataViewer is used to acquire the data needed to 

test our developed Discrete Time, Discrete State (DTDS) Markov Decision Process.  

4.3 Data Retrieval using FBCENC DataViewer 

The model formulated in the methodology considers a warehouse with a single item 

inventory system with monthly review. The Durham branch (warehouse) of the food bank is 

investigated with a focus on dry goods (all items classified under dry storage type). The 

developed FBCENC DataViewer described above was used to retrieve the relevant data from all 

the eight fiscal years for the Durham branch. The relevant data for this research are the donation, 

transfer and distribution records. The data is aggregated on a monthly basis showing the pounds 

of items received or distributed. Table 5 summaries the categories and key fields that were 

selected from the FBCENC database using the FBCENC DataViewer. 

Table 5 

 Summarization of data 

Data Fields Description 

FBCENC Records Donations, Transfers and Distribution 

Database All fiscal years 

Fiscal Month All fiscal months 

Branch  Durham 

Storage Type Dry storage 

 

4.3.1 Durham branch 

The Durham branch serves six counties namely Chatham, Durham, Granville, Orange, 

Person and Vance Counties. The poverty populations of these counties is obtained from the 

FBCENC’s fair share program (Food Bank of Central and Eastern North Carolina, 2012). The 

fair share program is designed to ensure that each county receives food in proportion to its 

percentage of the overall need. Figure 8 shows the number of people living in poverty in each 
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county. From Figure 8, Durham County has the largest poverty population, which is 

approximately 44% of the entire poverty population being served by the Durham branch.  

 

Figure 8. Counties poverty population. 

Different counties have different poverty population in the Durham branch. 

4.3.1.1 Donations 

The Durham branch receives donations from various sources such as the Federal 

government through the Emergency Food Assistance Program (TEFAP), individual donors, 

groups, farmers, local manufacturers and retailers. Each fiscal year, the Durham branch receives 

approximately an average of 2,766,000 lb. of supplies as donations of which 56% are dry goods. 

Figure 9 illustrates the average amount of dry goods donated each fiscal year over the eight 

years. 
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Figure 9. Average amount of donation of dry goods for each fiscal year. 

Figure 10 shows a time-series graph of the monthly donations of dry goods over the eight 

fiscal years with average monthly donation of approximately 129,000 lbs. The minimum and the 

maximum donations received over the eight fiscal years are 30,000 lb. and 334,000 lb. 

respectively. 

 

Figure 10. Monthly donation of dry goods for all fiscal years to Durham County. 
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4.3.1.2 Transfer-ins 

The FBCENC branches transfer supplies among themselves. The transferring branch 

gives out items (transfer-out) to the receiving branch (transfer-in). Figure 11 shows a time-series 

graph of the monthly transfer-in of dry goods to the Durham branch over the eight fiscal years 

with monthly sample average transfer-in of approximately 289,000 lb. The minimum and the 

maximum transfer-in received are approximately 31,000 lb. and 646,000 lb. respectively.  

 

Figure 11. Monthly transfer-in of dry goods for all fiscal years to Durham County. 

4.3.1.3 Available inventory 

Available inventory represents the supplies that a branch (Durham in this case) uses to 

satisfy the demands of aid recipients in the various counties. These supplies consist of donations 

and transfer-in data less any transfer-out.  Figure 12 shows a time-series graph of the monthly 

average available inventory of dry goods over the eight fiscal years with monthly average 

available inventory of approximately 418,000 lb. The minimum and the maximum transfer-in 

received are 195,000 lb. and 893,000 lb. respectively. 
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Figure 12. Monthly available inventory of dry goods for all fiscal years in Durham County. 

4.3.1.4 Estimation of county’s monthly demand 

The data from FBCENC does not have records for the demand for each county based on 

the people in poverty. One could hypothesize that there is currently no standard mechanism in 

place to ensure that aid recipients request ahead of time the quantity of food they need. Thus, it is 

difficult for the FBCENC to accurately estimate the actual quantity of food each county might 

need.  However, it is realistic to assume that there exists a correlation between the demand of a 

county and the poverty population of that county (Wight et al., 2014). Subsequently, the demand 

by county can be fairly estimated using the poverty population and a given pounds per person in 

poverty (PPIP) over a 12-month period, which is currently set at 75 pounds by the Feeding 

America. Table 6 shows the number of people living in poverty in each county and what their 

monthly projected demand should be in order to meet the 75 PPIP criterion over a 12-month 

period. It is over a 12-month period because the food bank would like to know how much food it 

distributes over an entire fiscal year. Equation (17) shows how the projected monthly demand is 

calculated for each county with poverty population, 𝑃𝑐. 
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 𝑃𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑑𝑒𝑚𝑎𝑛𝑑 =
(𝑃𝑐 × 75)

12
 (17) 

Table 6  

Counties poverty populations and monthly projected demands 

County Poverty population Projected monthly demand 

Chatham 8,028 50,175 

Durham 36,504 228,150 

Granville 5,770 36,063 

Orange 16,475 102,969 

Person 5,829 36,431 

Vance 10,859 67,869 

 

4.3.1.5 Distribution 

Figure 13 shows the average yearly distribution of dry goods by the Durham branch to 

the counties over the eight fiscal years. The distribution records are very important in this 

research because they provide information on the amount of food distributed over a 12 months 

period to aid recipients through various distribution programs. In addition, the PPIP calculation 

considers the history of previous distributions. Figure 13 shows the average yearly distribution of 

dry goods by Durham branch to the counties it serves. 
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Figure 13. Average amount of distribution of dry goods for each fiscal year. 

Figure 14 shows the average monthly distribution to counties over the eight fiscal years.  

 

Figure 14 Average monthly distributions of dry goods to counties for all eight fiscal years. 

 This indicates on average how much is distributed to the counties on monthly bases.  

 -

 50,000

 100,000

 150,000

 200,000

 250,000

 300,000

 350,000

G
ro

ss
 W

ei
g
h
t 

(I
b
.)

 
Average amount of distribution of dry goods for each fiscal year

FY 0607 FY 0708 FY 0809 FY 0910 FY 1011 FY 1112 FY 1213 FY 1314

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

Chatham Durham Granville Orange Person Vance

G
ro

ss
W

ei
g
h
t 

(l
b
.)

Average monthly distribution to counties



52 

 

 

 

4.4. Data Transformation  

4.4.1 Discretization 

The available inventory, donations and transfer-in datasets could assume any value 

between their minimum and maximum values.  Thus, they could be considered to be continuous 

data. Consequently, these datasets need to be discretized in order to use them with the Discrete 

Time, Discrete State (DTDS) Markov Decision Process model. To do this, the percentage 

deviation of each monthly record from the average for each dataset is computed over the eight 

fiscal years. This transforms the original data from pounds into percentages above or below the 

mean for a given dataset. The binning technique, which was described in Chapter 3 is then used 

to group the transformed data into bins of equal width. The bin width used in this thesis is 10% 

for each dataset. The bins are associated with distinct discrete values using a one-to-one mapping 

as described in the Chapter 3. The sections below show the discretized values for available 

inventory, donation and transfer-in datasets. 

4.4.1.1 Discretized available inventory 

Figure 15 shows the mean percentage deviations for the available inventory dataset.  

 

Figure 15. Percentages deviations from the available inventory mean for all eight fiscal years. 
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Table 7 shows the mean percentage values grouped into bins with their discretized 

equivalents and the number of data points in each bin for the available inventory dataset. 

Table 7 

Discretization of available inventory data 

Bin Range Discretized form Frequency 

< -50 1 1 

-50 to -40 2 4 

-40 to -30 3 7 

-30 to -20 4 5 

-20 to -10 5 16 

-10 to 0 6 13 

0 to 10 7 26 

10 to 20 8 7 

20 to 30 9 7 

30 to 40 10 4 

40 to 50 11 2 

50 to 60 12 1 

60 to 70 13 1 

70 to 80 14 1 

80 to 90 15 0 

> 90 16 1 

 

The discretized values are used to represent the discrete space for the discrete Markov 

model. Once the percentage deviation is calculated for any given available inventory, the result is 

mapped into one of the bins and the discretized form is obtained as the state of the system.  
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4.4.1.2 Discretized donations 

Figure 16 shows the mean percentage deviations calculated for the donations dataset.  

 

Figure 16. Percentages deviations from the donation mean over the eight fiscal years. 

In Figure 16 the minimum and maximum values are approximately -77% and 159% respectively. 

Table 8 shows the mean percentage deviations grouped into bins with their discretized 

equivalents and the number of data points in each bin for the donation dataset. 
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0 to 10 9 8 

10 to 20 10 8 
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80 to 90 17 1 

> 90 18 3 
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The median value of each bin range is used to calculate the incoming donation with 

exception of the extreme values. For the extreme bins, the actual values are used. 

4.4.1.3 Discretized transfer-in 

Figure 17 shows the mean percentage deviations calculated for the transfer-in data. From 

Figure 17 the minimum and maximum values are approximately -89% and 124% respectively. 

 

Figure 17. Percentages deviations from the mean of transfer-in dataset over the 8 fiscal years. 

Table 9 shows the percentage mean deviations grouped into bins with their discretized 

equivalents and the number of data points in each bin.  
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Table 9 

Cont. 

40 to 50 14 1 

50 to 60 15 3 

60 to 70 16 0 

70 to 80 17 3 

80 to 90 18 0 

> 90 19 2 

 The median value of each bin range is used to calculate the incoming transfer-in with 

exception of the extreme values. For the extreme bins, the actual values are used. 

4.5 Probability Distributions 

In probability theory, the Gaussian distribution is a continuous probability distribution 

that can be used to estimate the probability that any real observation will fall between any two 

real limits. Gaussian distributions are extremely important in statistics and are often used in the 

natural and social sciences for real-valued random variables. The Gaussian distribution is 

immensely useful because of the central limit theorem (CLT). The CLT states that, “the 

arithmetic mean of a sufficiently large number of iterates of independent random variables, each 

with a well-defined expected value and variance, will be normally distributed”. 

Equation (18) shows a Gaussian probability distribution function of a random variable 𝑥, 

having  mean of 𝜇 and standard deviation of 𝜎. 

 𝑝(𝑥, 𝜇, 𝜎) =
1

𝜎√2𝜋
𝑒−(𝑥−𝜇)2 2𝜎2⁄  (18) 

The normal probability distribution is also often denoted by 𝒩(𝜇, 𝜎2). Thus when a 

random variable 𝑋 is distributed normally with mean 𝜇 and variance 𝜎2, one can write it as 

𝑋~𝒩(𝜇, 𝜎2). 

 The corresponding cumulative density function is given by equation (19). 
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 Φ(𝑥, 𝜇, 𝜎) =
1

2
[1 +

𝐞𝐫𝐟(𝑥 − 𝜇)

𝜎√2
] (19) 

The 𝒆𝒓𝒇(•) is an error function term, which is given as: 𝐞𝐫𝐟(𝑥) =
1

√𝜋
∫ 𝑒−𝑡2𝑥

−𝑥
𝑑𝑡.  

With the cumulative probability function given, the probability that a random 𝑥 will fall between 

𝑥1 and 𝑥2 can be calculated using equation (20). 

 𝑝(𝑥1 < 𝑥 < 𝑥2, 𝜇, 𝜎) = Φ(𝑥2, 𝜇, 𝜎) − Φ(𝑥1, 𝜇, 𝜎) (20) 

The donations and transfers are the two the events that cause the available inventory to 

transition from one state to another state. These events have probability distributions associated 

with them. Using advanced statistical tools such JMP (by Statistical Analysis System 

Incorporation) or Matlab (by Mathworks Incorporation) one can model a probability distribution 

that best fits a given dataset. Using these tools, both the donation and transfer-in datasets follow 

Gaussian probability distributions with their respective mean and standard deviations as shown 

in Figure 18a and 18b respectively. 

 

Figure 18. Normal probability distributions for the percentage deviations of donation and the 

transfer from their respective average values. 



58 

 

 

 

It should be noted from Figure 18 that the transformed donation dataset is normally 

distributed with mean, -4.51 and standard deviation, 35.30 while the transformed transfer-in 

dataset is normally distributed with mean, -2.56 and standard deviation, 31.98.  

In order to confirm that the donation dataset is from a normal distribution, a goodness of 

fit test was conducted using the Shapiro-Wilk W Test and 5% significance level.  From the 

results, the test statistic, W = 0.9812 and the p-value = 0.20. Since the p-value is greater than the 

significance value, it can be concluded that at the 5 % significant level, there is enough evidence 

to conclude that the donations data is from a normal distribution. Similarly, a goodness of fit test 

is also conducted to confirm that the transfer-in data is from a normal distribution a using the 

Shapiro-Wilk W Test. The significant level is 5%.  From the results, the test statistic W = 0.9874 

and the p-value = 0.51. Once again, since the p-value is greater than the significance value, it can 

be concluded that at the 5 % significant level, there is enough evidence to conclude that the 

transfer-in data is from a normal distribution 

In what follows, we describe the various experiments that are run to test the developed 

discrete time, discrete space, Markov decision model.  

4.6 Experimental Design 

Various experimental designs are set up to analyze the optimal distribution policies for 

the FBCENC inventory system under investigation. The model is tested using varieties of inputs 

in order to answer the following research questions:  

1. Should a fixed allocation policy be used at all time?  

2. Can an allocation policy be defined generically based on different demand cases? 

3. How does the large influx of supplies influence the allocation policy? 



59 

 

 

 

4.6.1 Base scenario 

A base condition is established to gain insight into the optimal policy structure as well as 

the best reward.  The base is tested with ideal monthly county demands. These demands are 

projected monthly demand that the county needs in order to meet the objective of distributing 75 

pounds of food per person over a 12-month period. Thus, the results from this specific base 

scenario form the gold-standard to which all other scenarios are compared against. Table 10 

shows the projected monthly demand for each county. 

Table 10 

County Poverty population and projected demand  

County Poverty population Projected monthly demand (lb.) 

Chatham 8,028 50,175 

Durham 36,504 228,150 

Granville 5,770 36,063 

Orange 16,475 102,969 

Person 5,829 36,431 

Vance 10,859 67,869 

These are ideal monthly demands that the food bank has to distribute to the counties in 

order to meet the 75 PPIP target over a 12-month period for each county. 

Table 11 shows the approximated average monthly quantity of each historical dataset that 

is used in the model.  

Table 11 

Average monthly value of each historical dataset is used in the model 

Dataset Average value (Ib.) 

Available inventory 418,000 

Donations 129,000 

Transfer-in 289,000 
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These values are essential as the inputs of the various scenarios that would be seen in this 

thesis are calculated relative to these values. More specifically, any given actual value is 

calculated as a percentage relative to the respective average values.  

To compute the PPIP, the previous distribution to each county over eleven months needs 

to be known. These values are obtained by summing the monthly average distributions to each 

county over eight fiscal years.  Table 12 shows these average monthly distributions for each 

county over all the fiscal years and their sum totals, which are represented as 𝐻𝑐.  

Table 12 

Average monthly distributions in pounds 

Fiscal Month Chatham Durham Granville Orange Person Vance 

08 18,272 103,118 20,164 30,193 12,931 28,544 

09 17,691 100,273 22,762 34,038 12,272 27,282 

10 19,102 115,151 22,520 39,918 15,931 29,447 

11 21,733 124,864 21,865 44,370 13,941 34,106 

12 26,213 126,460 21,409 39,567 13,681 33,326 

01 24,397 139,616 27,086 40,689 19,677 33,172 

02 23,176 138,804 26,345 44,339 18,494 35,238 

03 24,618 142,957 25,074 47,917 16,525 37,396 

04 21,712 125,203 22,977 43,834 18,450 36,730 

05 20,385 109,634 22,195 33,427 17,729 29,980 

06 20,136 110,619 22,143 29,984 17,469 30,206 

Total (𝑯𝒄) 237,435 1,336,699 254,540 428,276 177,100 355,427 

 

Table 13 shows additional input parameters and their values used in the model. 

Table 13 

Summary of input parameters and their values 

Parameter Name Notation Value 

State space containing all possible states 𝑉 {1, 2, .., 16} 

Number of counties 𝐶 6 

Target PPIP 𝑃𝑃𝐼𝑃𝑡 75 
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Table 13 

Cont. 

 

These parameter definitions and representations are general and extend to additional 

scenarios in the following experiments as well. 

4.6.2 Sensitivity analyses 

The model is built based on limited historical data from eight fiscal years, which may or 

may not be sufficient to accurately and robustly represent how the model would respond to 

unseen data. Since the actual county demands are unknown, the county demands become the 

major random variable that has great impact on the model. Consequently, a sensitivity analyses 

are performed to observe the optimal policy structure as a function of the variations in the county 

demands by varying the demand for each county relative to the projected monthly county 

demands. Also, variations in the donation and transfer-in are investigated. These variations are 

formulated in the next section. 

4.6.2.1 Experiment 1: Evaluates the effect of changes in county demand 

A county’s demand is assumed to be proportional to the county’s poverty population. 

However, the poverty population changes since families and individuals enter or leave this 

population for reasons such as relocation, job loss or new employment. To illustrate this 

changing demand as an outcome of the fluctuating poverty populations, different cases are 

developed with percentage variations as shown in Table 14.  

Percentage of 𝑣 allocated to county  𝑐 for fixed policy 𝑓𝑐 1/𝐶 

A set of allocation decisions 𝐴 {1,2,3,4} 

Time horizon (months) 𝜏 12 
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Table 14 shows the various counties and their percentage variations relative to the base 

poverty population and projected monthly demands. 

Table 14 

Projected county demands 

County Poverty 

population 

Projected 

monthly 

demand 

(lb.) 

Percentage Variations (%) in the poverty population 

and projected monthly demand 

Chatham 8,028 50,175 {-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90,100} 

Durham 36,504 228,150 {-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90,100} 

Granville 5,770 36,063 {-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90,100} 

Orange 16,475 102,969 {-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90,100} 

Person 5,829 36,431 {-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90,100} 

Vance 10,859 67,869 {-50,-40,-30,-20,-10,0,10,20,30,40,50,60,70,80,90,100} 

For this experiment, it is assumed that each county has the same percentage increase or 

decrease relative to the reference.  Thus, the experiment runs 16 different demand cases by 

adjusting each poverty population and projected monthly demand by the indicated percentages as 

shown on Table 14 for each county from -50% to 100% in increment of 10%. For each case, the 

optimal policy structure, and the expected quantity of food by which each county is underserved 

are compared to the base scenario (i.e. the results for the ideal projected monthly demands). In 

other words, the results corresponding to the combination, [0%, 0%, 0%, 0%, 0%, 0%], which 

represents, the percentage variation of the demand for Chatham, Durham, Granville, Orange, 

Person and Vance respectively.  
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4.6.2.2 Experiment 2: Evaluates the effect of changing supply  

 This experiment considers both the donation and transfer-in to fluctuate by the following 

percentages around their respective values and standard deviation as shown on Table 15.  

Table 15 

Percentage values of donation and transfer-in for changing supply 

Parameter Value (Ib.) Percentage Variation (%) 

Donation mean 129,000 {-50,-40,-30,-20,-10,0,10,20,30,40,50} 

Donation Standard Deviation 35.30 {-50,-40,-30,-20,-10,0,10,20,30,40,50} 

Transfer-in mean 289,000 {-50,-40,-30,-20,-10,0,10,20,30,40,50} 

Transfer-in Standard Deviation 31.98 {-50,-40,-30,-20,-10,0,10,20,30,40,50} 

 

There are 4 variables that are changing in this experiment as shown on Table 15; 

donation sample mean, donation standard deviation, transfer-in sample mean and transfer-in 

standard deviation. All these variables are considered to vary by -50% to 50% in increment of 

10%. It should be noted that each of the 4 variables is varied one at a time, thus as one variable 

changes from -50% to 50% whiles the other three are kept at 0%. 

4.6.2.3 Experiment 3: Evaluates the effect of non-stationary demand  

 The discrete state, discrete time MDP model formulated in this research assumes demand 

to be stationary over the entire 12 months period. This experiment examines the situation where 

the county demands are changing every 6 months. Once again, the monthly projected county 

demands are used as the reference for this sensitivity analysis. To start with, each county demand 

assumes the projected demand and remains unchanged for the first six months and then 

fluctuates for the next six months by a specified percentage as shown in Table 16.  
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Table 16 shows the various counties and their percentage variations for non-stationary 

demand cases. 

Table 16  

Percentage adjustments of county demands for non-stationary demand cases 

Case Demand 

Growth (%) 

Monthly County Demand (lb.) 

Chatham Durham Granville Orange Person Vance 

1 -50 25,088 114,075 18,032 51,485 18,216 33,935 

2 -40 30,105 136,890 21,638 61,781 21,859 40,721 

3 -30 35,123 159,705 25,244 72,078 25,502 47,508 

4 -20 40,140 182,520 28,850 82,375 29,145 54,295 

5 -10 45,158 205,335 32,457 92,672 32,788 61,082 

6 0 50,175 228,150 36,063 102,969 36,431 67,869 

7 10 55,193 250,965 39,669 113,266 40,074 74,656 

8 20 60,210 273,780 43,276 123,563 43,717 81,443 

9 30 65,228 296,595 46,882 133,860 47,360 88,230 

10 40 70,245 319,410 50,488 144,157 51,003 95,017 

11 50 75,263 342,225 54,095 154,454 54,647 101,804 

12 60 80,280 365,040 57,701 164,750 58,290 108,590 

13 70 85,298 387,855 61,307 175,047 61,933 115,377 

14 80 90,315 410,670 64,913 185,344 65,576 122,164 

15 90 95,333 433,485 68,520 195,641 69,219 128,951 

16 100 100,350 456,300 72,126 205,938 72,862 135,738 

For this analysis also, it is assumed that each county has the same percentage increase or 

decrease relative to the reference.  Specifically, the percentage adjustments for each county’s 

demand varies from -50% to 100% increment of 10% for all counties.  This generated a total of 

16 demand cases. In each case, the system begins with 0% demand growth for the first six 

months and takes on different demand growth for the next six months. 
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CHAPTER 5 

Results and Discussion 

5.1 Overview 

5.1.1 Optimal policies 

This chapter provides and discusses the results of all the three experiments that were 

described in Chapter 4. The optimal policy is displayed as a matrix, the rows are the pseudo 

states of the available inventory and the columns represent the time remaining until the end of 

the time horizon. Figure 19 illustrates a sample policy structure.  

 

Figure 19. Illustration of sample policy structure. 

In Figure 19, state 1 and state 16 are the minimum and maximum available inventory 

state respectively. The maximum time period is 12 months, which indicates the end of the time 

horizon. There are 16 states as shown on Figure 19. The set of numbers shown under each time 

period represents a policy, each one of which corresponds to a given state that tells a decision-

maker, an allocation that should be adopted at that state. For instance, under time period 1, one 

sees {3, 3, 3, 3, 3, 3, 3, 3, 123, 123, 123, 123, 1234, 1234, 1234, 1234} corresponding to state 1 

States 1 2 3 4 5 6 7 8 9 10 11 12

1 3 3 3 3 3 3 3 3 3 3 3 3

2 3 3 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3 3

4 3 3 3 3 3 3 3 3 3 3 3 3

5 3 3 3 3 3 3 3 3 3 3 3 3

6 3 3 3 3 3 3 3 3 3 3 3 3

7 3 3 3 3 3 3 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3 3 3 3 3

9 123 123 123 123 123 123 123 123 123 123 123 123

10 123 123 123 123 123 123 123 123 123 123 123 123

11 123 123 123 123 123 123 123 123 123 123 123 123

12 123 123 123 123 123 123 123 123 123 123 123 123

13 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

14 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

15 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

16 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234 1234

Best Policy

Time period (month)
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through 16 respectively.  In this case from state 1 through state 8, allocation rule, 3 is to be 

adopted by the decision-maker. There are only four allocation rules, which are represented as 1, 

2, 3 and 4 respectively.  In a situation where two or more allocation rules could be adopted, these 

values are concatenated together. For instance, from state 9 through state 12, one sees allocation 

rule 123. This means the decision-maker could either use allocation rule 1, or 2 or 3. Similarly, 

from state 13 through states 16, one sees allocation rule 1234, which means that allocation rule, 1 

or 2 or 3 or 4 could be used as all give the same optimal solution.  

It should be noted that there are 15 possible combinations of allocation rules (1, 2, 3, 4, 

12, 13, 14, 23, 24, 34, 123, 124, 134, 234, 1234) that may be optimal for a given available 

inventory state at a specific time period.  

 

5.1.2 Equity 

The reward associated with the optimal policy is equity. This is also displayed as a 

matrix; the rows are the pseudo states of the available inventory and the columns represent the 

time remaining until the end of the time horizon. Perfect equity equals 1 and this is achieved 

when each person in poverty in the various counties receives equal share of the pounds of food 

distributed. Figure 20 illustrates a sample reward (equity) structure. In Figure 20, the supplies are 

equitably distributed for each state at each time horizon hence the equity at the end of the time 

horizon is 12 for all states. This is an ideal scenario, which is what the food bank wants.  
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Figure 20. Illustration of sample reward structure. 

5.1.3 Unsatisfied demand per person 

Based on the criterion set by Feeding America, the unsatisfied demand is the amount of 

additional supplies needed by each person in poverty in each county in order to meet the target 

PPIP of 75 pounds of food. The amount of unsatisfied demand is calculated for each county 

using the optimal policy. Figure 21 shows the unsatisfied demand for a given county.  A zero 

value at any given state under any time period is an indication that the person in poverty received 

at least 75 pounds of supplies and hence needs no extra supply. On the contrary, non-zero value 

indicates the extra amount of supply that each person in poverty needs in order to meet the 75 

pounds target.   

States 1 2 3 4 5 6 7 8 9 10 11 12

1 12 11 10 9 8 7 6 5 4 3 2 1

2 12 11 10 9 8 7 6 5 4 3 2 1

3 12 11 10 9 8 7 6 5 4 3 2 1

4 12 11 10 9 8 7 6 5 4 3 2 1

5 12 11 10 9 8 7 6 5 4 3 2 1

6 12 11 10 9 8 7 6 5 4 3 2 1

7 12 11 10 9 8 7 6 5 4 3 2 1

8 12 11 10 9 8 7 6 5 4 3 2 1

9 12 11 10 9 8 7 6 5 4 3 2 1

10 12 11 10 9 8 7 6 5 4 3 2 1

11 12 11 10 9 8 7 6 5 4 3 2 1

12 12 11 10 9 8 7 6 5 4 3 2 1

13 12 11 10 9 8 7 6 5 4 3 2 1

14 12 11 10 9 8 7 6 5 4 3 2 1

15 12 11 10 9 8 7 6 5 4 3 2 1

16 12 11 10 9 8 7 6 5 4 3 2 1

Time period (month)

Equity
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Figure 21. Illustration of sample unsatisfied demand for Chatham. 

5.1.4 Number of counties underserved 

After calculating the unsatisfied demand, further analysis is performed to identify the 

number of counties that are underserved as a result of the state of the available inventory and all 

the possible donations that can occur. The underserved counties are those counties whose PPIPs 

fall below the target PPIP of 75 pounds. There are 16 states that the available inventory could 

assume. For each state, there are 18 different ways donation could come in and this determines 

the amount of supply each county could receive. Consequently, the number of counties 

underserved depending on the available inventory and the donation that comes in prior to the 

distribution of the supply to the counties is calculated as an expected value.   

5.2 Base scenario 

The main variables that are considered in the experimental analyses are the donation, 

transfer-in and the demand. For the base scenario, these parameters remain within their expected 

States 1 2 3 4 5 6 7 8 9 10 11 12

1 23 21 19 17 15 14 12 10 8 6 5 3

2 22 21 19 17 15 13 12 10 8 6 4 3

3 22 20 18 16 15 13 11 9 7 6 4 2

4 21 20 18 16 14 12 11 9 7 5 3 2

5 21 19 17 15 14 12 10 8 6 5 3 1

6 20 19 17 15 13 11 10 8 6 4 2 1

7 20 18 16 15 13 11 9 7 6 4 2 0

8 20 18 16 15 13 11 9 7 5 4 2 0

9 20 18 16 14 13 11 9 7 5 4 2 0

10 20 18 16 14 13 11 9 7 5 4 2 0

11 20 18 16 14 13 11 9 7 5 4 2 0

12 20 18 16 14 13 11 9 7 5 4 2 0

13 20 18 16 14 12 11 9 7 5 3 1 0

14 19 17 16 14 12 10 8 7 5 3 1 0

15 19 17 15 13 12 10 8 6 4 3 1 0

16 19 17 15 13 12 10 8 6 4 2 1 0

Unsatisfied Demand

Time period (month)
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values, which are determined based on historical data of eight fiscal years from the FBCENC.  

These values are shown in Table 17 and 18 below. 

Table 17  

Sample mean and the standard deviation values for the donation and transfer-in 

Dataset Sample Mean (lb.) Standard Deviation 

Donation 129,000 35.30 

Transfer-in 289,000 31.98 

Available Inventory 418,000 N/A 

 

The standard deviation of the available inventory is not included as the available 

inventory is not modeled as a normal distribution. In order words, the available inventory is not 

an event that causes a transition. Donation and transfer-in cause the available inventory to 

change states.  

Table 18  

County demands 

County Projected monthly demand (lb.) 

Chatham 50,175 

Durham 228,150 

Granville 36,063 

Orange 102,969 

Person 36,431 

Vance 67,869 

Total 521,657 

 

Once again the values shown on Table 18 are ideal county demands that would guarantee 

a PPIP of 75 pounds for each county at the end of the 12-month period. 
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5.2.1 Optimal policies for base scenario 

Figure 22, shows the optimal policy for the base scenario. 

 

Figure 22. Optimal policy for base scenario. 

From Figure 22, the optimal policy structure is stationary for the base scenario because 

irrespective of the time horizon, the policy structure is the same. The interpretation of the 

optimal policy structure is as follows:  

1. From states 1 through to 8, irrespective of the time horizon, allocation rule 3 is optimal;  

2. From states 9 through to 16, irrespective of the time horizon, allocation rules 1 or 2 or 3 

are optimal; 

3. Rule 3 is the best among all the rules since it is optimal for each time period irrespective 

of the state. 

These results are realistic because the total demand for all the counties is approximately 

521,700 lb. In state 1, the available inventory corresponds to 208,900 lb. of supplies (50% below 

the mean), and at state 8, the available inventory corresponds 480,470 lb. (15% above the mean). 

Base Scenario

1 2 3 4 5 6 7 8 9 10 11 12

< -50% 1 3 3 3 3 3 3 3 3 3 3 3 3

-45% 2 3 3 3 3 3 3 3 3 3 3 3 3

-35% 3 3 3 3 3 3 3 3 3 3 3 3 3

-25% 4 3 3 3 3 3 3 3 3 3 3 3 3

-15% 5 3 3 3 3 3 3 3 3 3 3 3 3

-5% 6 3 3 3 3 3 3 3 3 3 3 3 3

5% 7 3 3 3 3 3 3 3 3 3 3 3 3

15% 8 3 3 3 3 3 3 3 3 3 3 3 3

25% 9 123 123 123 123 123 123 123 123 123 123 123 123

35% 10 123 123 123 123 123 123 123 123 123 123 123 123

45% 11 123 123 123 123 123 123 123 123 123 123 123 123

55% 12 123 123 123 123 123 123 123 123 123 123 123 123

65% 13 123 123 123 123 123 123 123 123 123 123 123 123

75% 14 123 123 123 123 123 123 123 123 123 123 123 123

85% 15 123 123 123 123 123 123 123 123 123 123 123 123

> 90% 16 123 123 123 123 123 123 123 123 123 123 123 123

Time period (month)

States

Best Policy
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These available inventory states are highly constrained because the inventories in these states are 

not sufficient to satisfy all the demands from the various counties. In addition, there are only 

some occurrences of donations that the total supply available for distribution is able to satisfy all 

the demands. Hence, allocation rule in which each county receives a portion of the supply based 

on the county’s poverty population (i.e. rule 3) maximizes equity. Further analyses, indicate that, 

at state 9, the available inventory corresponds to approximately 552,250 lb. (25% above the 

mean) and that of state 16 corresponds to approximately 793,800 lb. (90% above the mean). 

Accordingly, from state 9 through state 16, there is enough supply to satisfy all the county 

demands irrespective of the incoming donation. Thus, allocation rule 1, 2 or 3 is optimal. In other 

words, whether the largest demand is served first; or the smallest demand is served first; or 

supply is distributed according to poverty population, equity is maximized. 

It is observed that rule 3 is dominant in the optimal policy structure for each time period 

irrespective of the states. Accordingly, allocation rule 3 is the best amongst all the rules because 

rule 3 maximizes equity irrespective of the state of the available inventory and time period. Rules 

1 and 2 are optimal only when there are sufficient supplies to satisfy all the demand for each 

county.  
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5.2.2 Equity for base scenario 

Figure 23 shows the reward (equity) for the base scenario. 

 

Figure 23. Equity for base scenario. 

In Figure 23, the supply is equitably distributed in each state at each time horizon. This is 

seen in the last time horizon where equity is 12 for all states. This implies that using the optimal 

policy results in an equitable distribution of supplies irrespective of the state in which the 

available inventory is.  

5.2.3 Unsatisfied demand for base scenario 

The unsatisfied demand is calculated using the optimal policy for each state at each time 

period. Thus, for a state and time period, the rule that immerges as optimal is used to calculate 

what the unsatisfied demands for that state and time period are. Accordingly, based on the 

optimal policy structure irrespective of the time period, from states 1 through to state 8, 

allocation rule 3 is used to calculate the unsatisfied demand for each county. From states 9 

through 16, rules 1, 2 or 3 are used to calculate the unsatisfied demand for each county. 

However, since rule 3 is optimal irrespective of the state and time period, the unsatisfied demand 

Base Scenario

1 2 3 4 5 6 7 8 9 10 11 12

< -50% 1 12 11 10 9 8 7 6 5 4 3 2 1

-45% 2 12 11 10 9 8 7 6 5 4 3 2 1

-35% 3 12 11 10 9 8 7 6 5 4 3 2 1

-25% 4 12 11 10 9 8 7 6 5 4 3 2 1

-15% 5 12 11 10 9 8 7 6 5 4 3 2 1

-5% 6 12 11 10 9 8 7 6 5 4 3 2 1

5% 7 12 11 10 9 8 7 6 5 4 3 2 1

15% 8 12 11 10 9 8 7 6 5 4 3 2 1

25% 9 12 11 10 9 8 7 6 5 4 3 2 1

35% 10 12 11 10 9 8 7 6 5 4 3 2 1

45% 11 12 11 10 9 8 7 6 5 4 3 2 1

55% 12 12 11 10 9 8 7 6 5 4 3 2 1

65% 13 12 11 10 9 8 7 6 5 4 3 2 1

75% 14 12 11 10 9 8 7 6 5 4 3 2 1

85% 15 12 11 10 9 8 7 6 5 4 3 2 1

> 90 16 12 11 10 9 8 7 6 5 4 3 2 1

Equity

Time period (month)

States
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for rule 3 is displayed for each state at each time period for each county. Using rule 3, the 

unsatisfied demand for each state at each time period is the same for all the counties. Thus, only 

one result is displayed. From Figure 24, at the end of the time horizon for state 1 the unsatisfied 

demand is 21.81 pounds per person in poverty; in state 2 the unsatisfied demand is 21.61 pounds 

per person in poverty; and in state 3 the unsatisfied demand is 21.05 pounds per person in 

poverty. There is a decreasing trend in the unsatisfied demand moving from state 1 to 16 as 

shown in figure 24.  

 

Figure 24. Showing the counties’ expected unsatisfied demands for base scenario. 

At the end of the time horizon, the maximum expected unsatisfied demand is 

approximately 22 pounds per person in poverty, which is recorded in state 1 and the minimum 

expected unsatisfied demand is approximately 14 pounds per person in poverty, which is 

recorded in state 16.   

Base Scenario

1 2 3 4 5 6 7 8 9 10 11 12

< -50% 1 21.81 20.09 18.37 16.65 14.92 13.20 11.48 9.76 8.03 6.30 4.56 2.75

-45% 2 21.61 19.89 18.17 16.45 14.72 13.00 11.28 9.56 7.83 6.10 4.36 2.55

-35% 3 21.05 19.33 17.61 15.89 14.17 12.45 10.72 9.00 7.28 5.55 3.80 1.99

-25% 4 20.60 18.88 17.16 15.44 13.72 12.00 10.27 8.55 6.83 5.10 3.35 1.55

-15% 5 20.00 18.28 16.56 14.84 13.12 11.39 9.67 7.95 6.23 4.50 2.76 0.99

-5% 6 19.43 17.71 15.99 14.27 12.55 10.83 9.10 7.38 5.66 3.94 2.22 0.58

5% 7 18.68 16.96 15.23 13.51 11.79 10.07 8.35 6.63 4.91 3.21 1.55 0.16

15% 8 18.07 16.34 14.62 12.90 11.18 9.46 7.74 6.03 4.32 2.65 1.10 0.03

25% 9 17.46 15.74 14.02 12.30 10.58 8.86 7.15 5.44 3.76 2.15 0.75 0

35% 10 16.87 15.14 13.42 11.70 9.98 8.27 6.56 4.87 3.22 1.69 0.48 0

45% 11 16.25 14.53 12.81 11.09 9.37 7.66 5.96 4.29 2.70 1.28 0.28 0

55% 12 15.64 13.92 12.20 10.48 8.76 7.06 5.37 3.74 2.21 0.93 0.15 0

65% 13 15.03 13.31 11.59 9.87 8.16 6.47 4.80 3.21 1.77 0.65 0.07 0

75% 14 14.44 12.72 11.00 9.29 7.58 5.90 4.26 2.72 1.38 0.43 0.03 0

85% 15 13.88 12.16 10.44 8.73 7.03 5.36 3.75 2.28 1.06 0.27 0.01 0

> 90 16 13.59 11.87 10.15 8.44 6.75 5.08 3.50 2.06 0.91 0.21 0.01 0

Unsatisfied Demand

Time period (month)

States
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5.2.4 Number of counties underserved for base scenario 

Underserved counties are those counties whose PPIPs fall below the target PPIP of 75 

pounds. The available inventory and the donation have great impacts on the number of counties 

that are underserved or well-served. As explained earlier, there are 16 states and for each of those 

states, there are 18 possible donations that can occur (refer to Chapter 4 section 4.4.1 for the 

details of the 18 possible donations). At each state (available inventory) and at specific donation, 

a minimum of 0 counties could be underserved and a maximum of all 6 counties could be 

underserved. This is directly attributable to the optimal policy structure.  Accordingly, the 

optimal policy structure is used to estimate the expected number of counties that are underserved 

for each state. Figure 25 shows the expected number of counties underserved in each state at the 

end of the time horizon. 

 

Figure 25. Illustrating the expected number of counties underserved for the base scenario. 

In Figure 25, if the available inventory is -50% to 5% (states 1 to 7) relative to the sample 

mean at least one of the 6 counties is underserved. However, if the available inventory is kept at 
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least 15% (from state 8) above the sample mean, no counties are underserved. In other words, all 

the counties would be well-served so far as the base scenario is concerned.  

5.3 Sensitivity Analyses 

The sensitivity analyses are performed to observe the changes in the optimal policy, 

unsatisfied demand and the number of counties underserved compared to that of the base 

scenario. In this case, the demands and the supply are varied to generate different cases to test 

the behavior of the model. Using the results from the base scenario as the gold-standard, the error 

(deviation) for each case is estimated using equation 21.  

  𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑟𝑒𝑠𝑢𝑙𝑡 − 𝐵𝑎𝑠𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 (21) 

From equation (21), the error is the difference between a specific measured result of a 

specific case and that of the base scenario result.  

It should be noted that the unsatisfied demand and the number of counties underserved at 

the end of the time horizon are investigated by comparing them to that of base scenario at the last 

time horizon. This is crucial as the food bank measures these parameters at the end of a 12-

month period. 

5.3.1 Effects of changing demand 

5.3.1.1 Optimal policy for demand cases 

This experiment generated 16 demand cases by varying the demand for each of the six 

counties from -50% to 100% in increment of 10%.  Figure 26 shows how the optimal policy 

structure changes as a result of the variations in the county demands. For the optimal policy 

structure, only the constrained states are investigated since these are the states where the supply 

is not enough to satisfy all the demand. 
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Figure 26. Optimal policy for demand cases. 

Figure 26 is interpreted as follows: when the demand percentage change is -50% (50% 

below the projected demand) only available inventory state 1 is constrained. However, when the 

demand is 60% to 100% above the projected demand all the 16 available inventory states are 

constrained. In general, it can be observed that as the county demand increases from -50% to 

100% the number of constrained available states also increases from 1 to 16.  

5.3.1.2 Unsatisfied demand for all counties for demand cases 

The unsatisfied demand at the end of the time horizon is calculated based on the optimal 

policy structure. Because rule 3 is the best amongst all the rules as seen in the optimal policy 

structure, rule 3 is used to calculate the unsatisfied demand. Using rule 3, it was observed that, 

the expected unsatisfied demand for each state at each time period is the same for all the counties 

hence, only one of such results is displayed to represent all the counties. The result for the 

unsatisfied demand is displayed for states 1, 8 and 16 in Figure 26.  

1

3
4

5
6

8
9

10
11

13
14

16 16 16 16 16

C
o
n

st
ra

in
ed

 S
ta

te
s

Demand percentage adjustment

Constrained States



77 

 

 

 

 

Figure 27. Expected unsatisfied demand for all demand cases. 

From Figure 27, irrespective of the state, -50 to -10% demand percentage adjustment 

showed negative deviations from the base. Negative deviations indicate smaller unsatisfied 

demand compared to that of the base. However, as the demand percentage adjustments increased 

from 10% to 100% the deviations are positive. Positive deviations indicate unsatisfied demand 

compared to that of the base becomes larger. In general, it can be observed that the deviation in 

the unsatisfied demand at the end of the time horizon from the base increases monotonically as 

the demand percentage adjustment increases. 

5.3.1.3 Number of counties underserved for demand cases 

The result for the number of counties underserved is as shown in Figure 28. 

 

Figure 28. Expected deviation of the number of counties underserved in states 1, 8 and 16. 
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From Figure 28, -50 to -20% demand percentage adjustment showed negative deviations 

from that of the base for state 1. Negative deviations indicate smaller number of counties 

underserved compared to that of the base. However, as the demand percentage adjustments 

increased from -20% to 100% the deviations are zero for state 1. Zero deviations indicate no 

change in the number of counties underserved compared to that of the base. 

In state 8, -50% to 0% demand percentage adjustment showed no deviations from the 

base. However, as the demand percentage adjustments increased from 0% to 100% the 

deviations are positive. Positive deviations indicate bigger number of counties underserved 

compared to the base.  

In state 16, -50 to 60% demand percentage adjustments showed no deviations from the 

base. However, as the demand percentage adjustments increased from 60% to 100% the 

deviations are positive. 

In general it can be observed that the deviation from the base for the number of counties 

underserved at the end of the time horizon increases monotonically as the demand percentage 

adjustment increases.  

5.3.2 Effects of changing supply 

There are 4 variables that are changing in this experiment; the donation sample mean, the 

donation standard deviation, the transfer-in sample mean and the transfer-in standard deviation. 

A total of 4 different scenario are generated based on the 4 variables. A scenario corresponds to 

the situation where one variable changes from -50% to 50% while the other 3 variables remain 

the same at 0% above their base values. The result of each of the 4 scenarios at the end of the 

time horizon is compared to that of the base scenario and the error analyzed.   
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5.3.2.1 Optimal policies for supply cases 

The result for changes in the optimal policy structure for each of the four variables is 

shown below. For the optimal policy structure for each of the 4 scenarios only the constrained 

states are investigated since these are the states where the supply is not enough to satisfy all the 

demand. Figure 29 shows the scenario where the donation sample mean varies from -50% to 

50% while all the other three parameters remain unchanged. 

 

Figure 29. Optimal policy structure for scenario1. 

Figure 29 is interpreted as follows: when the donation sample mean percentage 

adjustment increases -50% to 0%, 8 available inventory states are constrained. The 8 constrained 

states are state 1 through to state 8. However, when the donation sample mean increase from 0% 

to 50% only 7 available inventory states are constrained (states 1 through to 7).  

Figure 30 shows the scenario where the donation standard deviation varies from -50% to 

50% while all the other three parameters remain unchanged. 
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Figure 30. Optimal policy structure for scenario 2. 

From Figure 30, when the donation standard deviation percentage adjustment increases 

from -50% to 100%, 8 available inventory states are constrained. The 8 constrained sates are 

state 1 through to state 8. It should be noted this policy structure is the same as that of the base 

scenario. This implies that when the standard deviation of the donation increases from -50% to 

50%, the optimal policy does not change. 

Figure 31 shows the scenario where the transfer-in sample mean varies from -50% to 

50% while all the other three parameters remain unchanged. 
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Figure 31. Optimal policy structure for scenario 3. 

From Figure 31, when the transfer-in sample mean percentage adjustment increases from 

-50% to 100%, 8 available inventory states are constrained. The 8 constrained sates are state 1 

through to state 8. This policy structure is also the same as that of the base scenario. This implies 

that when the transfer-in sample mean increases from -50% to 50%, the optimal policy does not 

change. 

Figure 32 shows the scenario where the transfer-in standard deviation varies from -50% 

to 50% while all the other three parameters remain unchanged. 
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Figure 32. Optimal policy structure for scenario 4. 

From Figure 32 when the transfer-in standard deviation percentage adjustment increases 

from -50% to 100%, 8 available inventory states are constrained. The 8 constrained sates are 

state 1 through to state 8. This policy structure is also the same as that of the base scenario. This 

implies that when the standard deviation of transfer-in increases from -50% to 50%, the optimal 

policy does not change. 

In general, from the optimal policy structure of the 4 scenarios investigated under this 

experiment, only changes in the donation sample mean has an effect on the optimal policy 

structure. 

5.3.2.2 Unsatisfied demand for supply cases 

The result of unsatisfied demand for each state at the end of the time horizon for all the 

supply scenarios is calculated and compared to that of the base scenario. However, the results are 

displayed for only state 1 (lowest inventory level), state 8 (average inventory level) and state 16 

(highest inventory level). The error is calculated to see how far the results of these scenarios 

deviate from that of the base scenario.  
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Figure 33 shows the unsatisfied demand for state 1 at the end of the time horizon for all 

the supply cases compared to that of the base scenario. 

 

Figure 33. Deviation of unsatisfied demand for state 1. 

From Figure 32, -50% to 0% percentage adjustment showed positive deviations from the 

base for all the 4 scenarios investigated. Positive deviations indicate higher unsatisfied demand 

compared to the base.  However, as the supply percentage adjustments increased from 0% to 

50% the deviations are negative. Negative deviations indicate lower unsatisfied demand 

compared to that of the base scenario. 

Figure 34 shows the unsatisfied demand for state 8 at the end of the time horizon for all 

the supply cases compared to that of the base scenario. 
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Figure 34. Deviation of unsatisfied demand for state 8. 

From Figure 34, -50% to 0% percentage adjustments showed positive deviations from the 

base for all the 4 scenarios investigated. Positive deviations indicate higher unsatisfied demand 

compared to the base. As the supply percentage adjustments increased from 0% to 50% the 

deviations are negative. Negative deviations indicate lower unsatisfied demand compared to the 

base.  

Figure 35 shows the unsatisfied demand for state 16 at the end of the time horizon for all 

the supply cases compared to that of the base scenario. 

 

Figure 35. Deviation of unsatisfied demand for state 8. 
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From Figure 35, -50 to 0% percentage adjustments showed positive deviations from the 

base for all the 4 scenarios investigated. Positive deviations indicate higher unsatisfied demand 

compared to the base. As the demand percentage adjustments increased from 0% to 50% the 

deviations are negative. Once again, negative deviations indicate lower unsatisfied demand 

compared to the base. 

In general, it can be observed that the deviation in the unsatisfied demand at the end of 

the time horizon from the base for each state investigated decreases monotonically as the 

percentage adjustment of the all the 4 variables for the supply increases. 

5.3.2.3 Number of underserved counties for supply cases 

Figures 36, 37 and 38, shows the underserved counties for state 1, 8 and 16 at the end of 

the time horizon for all the supply scenarios compared to that of the base scenario. 

 

Figure 36. Deviation of underserved counties for donation sample mean. 

From Figure 36, in state 8, when the donation sample mean percentage adjustment is 

from -50%, to -30%, the expected number of counties underserved from the base is 1. However, 

when the donation sample mean increases from -20% to 50%, the deviation from the base is 

zero, thus no county will be underserved in state 8. States 1 and 16 shows no deviation from the 

base. 
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Figure 37. Deviation of underserved counties for donation standard deviation.  

From Figure 37, in state 8, when the donation standard deviation increases from -50% to 

30% the deviation from the base is zero. Thus, no county is underserved in state 8. However, 

when the donation standard deviation varies from 40% to 50%, the deviation from the base is 1. 

This implies that when the donation standard deviation increases from 40% to 50% above the 

actual value, then 1 county is underserved in state 8. Again, states 1 and 16 show no deviation 

from the base. 

 

Figure 38. Deviation of underserved counties for transfer-in sample mean. 
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Figure 39. Deviation of underserved counties for transfer-in standard deviation. 

From Figures 38 and 39, states 1, 8 and 16 show no deviation from the base. From the 

results of the base scenario the number of counties underserved in state 1 is six, state 8 is zero 

and in state 16 its zero. This implies that the changes in the transfer-in sample mean and standard 

deviation does not affect the number of counties underserved in states 1, 8 or 16. This is logical 

as the transfer-in comes after the distributions to the various counties. 

 5.3.3 Effects of non-stationary demand 

5.3.3.1 Optimal policies for non-stationary demand 

This experiment examines the situation where the county demands are non-stationary 

over the 12-month period. Each county demand assumes the projected demand and remains 

unchanged for the first six months and then fluctuates for the next six months by -50% to 100% 

in an increment of 10%.  Figure 40 shows how the optimal policy structure changes as a result of 

the variations in the county demands. Once again, for the optimal policy structure only the 

constrained states are investigated. 
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Figure 40. Optimal policy structure for non-stationary demand. 

Figure 40, is interpreted as follows: when the demand percentage change for the last 6 

months increases from -50% to 0% above the projected demand, the constrained states also 

increases from 1 to 8. However, when the demand is 0% to 100% above the projected demand 

constrained states remain at 8. In general, it can be observed that as the county demand increases 

from -50% to 100% the number of constrained available states also increases from 1 to 8.  

5.3.3.2 Unsatisfied demand for non-stationary demand 

The result for the unsatisfied demand for the non-stationary demand cases is displayed in 

Figure 41.  

 

Figure 41. Unsatisfied demand for non-stationary demand. 
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From Figure 41, -50% to 0% demand percentage adjustment showed negative deviations 

from the base for all the states. Negative deviations indicate lower unsatisfied demand compared 

to that of the base. As the demand percentage adjustments increased from 0% to 50%, the 

deviations are positive. Positive deviations indicate higher unsatisfied demand compared to the 

base.  

5.3.3.3 Number of counties underserved for non-stationary demand 

Figure 42 shows the deviation from the base for the non-stationary demand cases.  

 

Figure 42. Relative percentage error of underserved counties. 

From Figure 42, in state 1, -50% to -20% demand percentage adjustment showed 

negative deviations from the base. However, as the demand percentage adjustments increased 

from -20% to 100% the deviations are zero. Zero deviations indicate no change in the number of 

counties underserved compared to the base. 

In state 8, -50 to 0% demand percentage adjustment showed no deviations from the base. 

However, as the demand percentage adjustments increased from 0% to 100% the deviations are 

positive. Positive deviations indicate bigger number of counties underserved compared to the 

base. 
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In state 16, -50 to 60% demand percentage adjustment showed no deviations from the 

base. However, as the demand percentage adjustments increased from 60% to 100% the 

deviations are positive. Positive deviations indicate higher number of counties underserved 

compared to the base. 

In general, it can be observed that the deviation from the base for the number of counties 

underserved at the end of the time horizon increases monotonically as the demand percentage 

adjustment increases.  
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CHAPTER 6 

Concluding Remarks and Future Work 

6.1 Introduction 

In 2012, the Economic Research Service (ERS) reported that approximately 15 % of 

households in the United States were food insecure. Food banks are non-profitable hunger-relief 

organizations that help in the fight against food insecurity by providing food and other services 

to people who are food insecure. Feeding America (FA) is the nation's leading domestic hunger-

relief organization whose mission is to end hunger by feeding the hungry through a nationwide 

network of other food banks. The FA's benchmark is to distribute at least 75 pounds of products 

for each person in poverty over a 12-month period.  A food bank is successful if its PPIP is 75 or 

more.  

The Food bank of Central & Eastern North Carolina (FBCENC), a member of Feeding 

America network has six branches located in the Wilmington, Durham, Raleigh, Sandhills, 

Greenville, and New Bern areas in North Carolina. The FBCENC wants to use the performance 

indicator (PPIP) proposed by FA to measure the performance of its branches irrespective of the 

uncertainties in the supplies they receive. The main objective of this research is to develop a 

Discrete Time, Discrete Space Markov Decision Process to achieve the following objectives: 

1. Find an optimal allocation policy that maximizes equity in the distribution of supplies 

using the PPIP; 

2. Estimate the amount of unsatisfied demand for the counties whose PPIP are below 75; 

3. Estimate the number of counties whose PPIPs may fall below the 75 target. 

In this research we investigated 4 different allocations rules namely;  
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1. Serve the Largest Demand First: - the decision maker serves the county with the 

largest demand and proceeds down the hierarchy to serve the next larger demand and 

eventually serves the least demand last based on what is left after previous 

distributions; 

2. Serve the Smallest First: - the decision maker serves the county with the smallest 

demand and proceeds up the hierarchy to serve the next smaller demand and 

eventually serves the highest demand last based on what is left after previous 

distributions; 

3. Proportional Allocation: - the decision maker distribute supplies to the counties such 

that each county receives supplies based on the ratio of their poverty population to the 

total poverty population; 

4. Fixed allocation: - the decision maker distributes fixed amount of supplies to each 

county irrespective of their demand sizes. 

We used Puterman’s backward induction algorithm to find the optimal allocation policy 

that maximizes equity in the distribution of supplies using the PPIP. Three major experiments are 

conducted to see how the optimal policy changes. These includes, changes in demand; changes 

in supply and non-stationary demand. 

6.2 Conclusion 

From this research, we found that the optimal supply allocation policy that maximizes 

equity in the distribution of supplies to counties using the PPIP criterion in general is as follows:  

1. Allocation rule 3 should be used if the available inventory falls by at most 15%  below 

the average available inventory irrespective of the time period  
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2. Allocation rules, 1 or 2 could be used in addition to allocation rule 3 if the available 

inventory is at least 15% above the sample mean irrespective of the time period 

3. Exception: Allocation rule 3 should be used throughout the time period if the total county 

demand exceeds the available inventory to ensure equity 

4. Allocation rule 3 is dominant in all the optimal policy structures for each time period 

irrespective of the states for all the cases considered in the sensitivity analyses.   

5. Allocation rule 4 is only optimal when the available inventory is very large such that 

when equal amounts of supplies are distributed to all the counties, even the county with 

the largest demand is satisfied. 

6.3 Recommendation for Durham Branch 

Based on these experiments, we make the following recommendations to the Durham 

branch to assist the Durham branch distribute its supplies equitably and also to be able to meet 

there 75 pounds per person in poverty criterion: 

1. The Durham branch should ensure that their available inventory is 15 % above the 

mean available inventory (i.e. 480,470 lb.) all the time. This will ensure that the 

branch can distribute supplies to meet the target PPIP of 75 pounds over a 12-month 

period irrespective of the incoming donations. 

2. For available inventory states that are highly constrained, supplies should be 

distributed such that each county receives a proportion of supplies based on their 

share of the total poverty population  

3. When adopted, the model’s input parameters (sample means and standard deviations) 

should be updated from time to time as when more data becomes available. 
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6.4 Future Work 

Irrespective of the work that has been done in this thesis, there is still room for 

improvement. The list below provides possible improvements that could be made to the model 

discussed in this thesis for an added advantage:   

1. This model could be extended to all other branches in the FBCENC network to study 

branch to branch variability 

2. One may model the donation and transfer-in with other probability distributions and 

analyze the associated prediction errors 

3. Additional parameter such as transfer-out can also be added and modeled 

4. Continuous state Markov Decision Process can be investigated to avoid discretization and 

the errors that may be associated with it.  

5. Perishable items can be considered since this research only investigated the case of dry 

goods. 

6. The warehouse capacity constraints can also be investigated to see how that may affect 

the optimal policy. 

The model discussed in this thesis has laid a strong foundation for equitable distribution 

of supplies under uncertainty. Any additional effort including those outlined above as 

possible improvements to the model described in this thesis will go a long way to help 

develop mathematical models to equitably distribute limited food supplies to individuals 

at risk of hunger and its consequences.  
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Appendix A 

Sample Matlab Script for Discrete Time, Discrete Space Markov Decision Process 

% Name of function: DTDSMDP.m 

% Description: This script computes the Transition and Reward Matrices for a 

%set of four policies and determines the best policy at a given state 

% Assumptions: 

% 1) Gaussian probability distribution is assumed for donations and transfer-in, which 

% cause a transition from one state to the next. 

% 2) Transfer comes in after the current demand (distributions) are served 

% Note: Outputs are written to excel files in same folder one saves this script 

% Subroutines 

% FindState(PercentileRanges, PercentageValue) 

% NormCDFTransitionProb(XPercentile, muX, SigX, XPercentileRange) 

% ComputeActualValue(PercentileRanges, PercentageValue, ActualMean) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function DTDSMDP() 

ExperimentNumber = 1; 

format long; 

% Inputs 

scenario = 0; 

ChathamDemand_PercGrowth   = [0]; % no adjustment 

DurhamDemand_PercGrowth    = [0]; 
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GranvilleDemand_PercGrowth  = [0]; 

OrangeDemand_PercGrowth     = [0]; 

PersonDemand_PercGrowth      = [0]; 

VanceDemand_PercGrowth       = [0]; 

NumOfPercAdjustments = length(ChathamDemand_PercGrowth); 

  

TargetCountyPPIP = 75; % 75 pounds of food per person over 12 months 

TargetPPIPMonthPeriod = 12; % number of months over which the target PPIP is computed 

CountyPIPsOrig = [8028,36504,5770, 16475, 5829, 10859]; 

% Projected monthly demands for  Chatham, Durham, Granville, Orange, Person, Vance 

ProjectedMonthlyCountyDemandsOrig = 

TargetCountyPPIP.*CountyPIPsOrig/TargetPPIPMonthPeriod; 

  

AvailableSampleMean = 418000; % in pounds 

  

TransferSampleMean = 289000; % in pounds 

TransferSampleSigma  = 31.98;% in percentage 

TransferSampleMu = -2.5; % in percentage 

TransSigPerDelta = 0;  % adjustment 

TransMeanPercDelta =0; % adjustment 

  

DonationSampleMean = 129000; % in pounds 

DonationSampleSigma = 35.3; % in percentage 
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DonationSampleMu = -4.515; % in percentage 

DonMeanPercDelta = 0; % adjustment 

DonSigPerDelta = 0;   % adjustment 

  

NumberOfCounties = 6; 

NumberOfDecisions = 4; 

EquityPercentageError = []; 

UniqueBestAlternatives = []; 

LossPercentageError{NumberOfCounties} = []; 

UnderservedCountyPercentageError{NumberOfDecisions} = []; 

UnderservedStatePercentageError{NumberOfDecisions}  = []; 

  

AllExp1Scenarios = zeros(1, NumberOfCounties + 1); 

for D=1:NumOfPercAdjustments 

    scenario =  scenario + 1; 

    CDemandGrowth = ChathamDemand_PercGrowth(D); 

    DDemandGrowth = DurhamDemand_PercGrowth(D); 

    GDemandGrowth = GranvilleDemand_PercGrowth(D); 

    ODemandGrowth = OrangeDemand_PercGrowth(D); 

    PDemandGrowth = PersonDemand_PercGrowth(D); 

    VDemandGrowth = VanceDemand_PercGrowth(D); 

     

    CountyDemandPercentageGrowth = [CDemandGrowth, DDemandGrowth, GDemandGrowth, 



108 

 

 

 

ODemandGrowth, PDemandGrowth, VDemandGrowth]; 

    AllExp1Scenarios(scenario,:) = [scenario, CountyDemandPercentageGrowth]; 

     

    ActualMeanDonation = (1+DonMeanPercDelta/100)*DonationSampleMean;  

    sigmaDonation  = (1+DonSigPerDelta/100)*DonationSampleSigma;  

    muDonation = DonationSampleMu; 

     

    DonationPercentiles = [-Inf, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 

90, Inf]; % Donation percentages relative to its mean 

     

    ActualMeanAvailInv = AvailableSampleMean; 

    AvailInvPercentiles = [-Inf, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, Inf]; % 

Available inventory upperbound percentages relative to its mean 

     

    ActualMeanTransfer = (1+TransMeanPercDelta/100)*TransferSampleMean; 

    sigmaTransf = (1+TransSigPerDelta/100)*TransferSampleSigma; 

    muTransf = TransferSampleMu;  % Gaussian distribution parameter in percentage 

    TransferPercentiles = [-Inf, -80, -70, -60, -50, -40, -30, -20, -10, 0, 10, 20, 30, 40, 50, 60, 70, 

80, 90, Inf]; 

     

     

    %Calculate the actual demands based on poverty population growth 

% for Chatham, Durham, Granville, Orange, Person, Vance Counties 
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    CountyDemands = ceil(max(0, (1 + 

CountyDemandPercentageGrowth./100).*ProjectedMonthlyCountyDemandsOrig));  

    CountyPIPs = floor(CountyDemands*TargetPPIPMonthPeriod./TargetCountyPPIP);  

 

% Project previous 11 months 

    Previous11MonthsDistToCounties = CountyDemands.*(TargetPPIPMonthPeriod-1);  

     

    MaxTimeHorizon = 12; % time horizon in months 

    NumberOfStates = length(AvailInvPercentiles) - 1; % number of intervals 

    NumberOfDonationStates = length(DonationPercentiles) - 1; % number of intervals 

    NumberOfTransferStates = length(TransferPercentiles) -1;  % number of intervals 

    NumberOfEventsCausingTransitions = 2; 

    NumberOfCounties = length(CountyDemands); 

    AllDecisions = [1 2 3 4]; %All policies put together so one can run the policy iteration 

    CountyPIPToTotalPIPs = zeros(1, NumberOfCounties) + CountyPIPs./sum(CountyPIPs); % 

used for policy #3 

    fixedAllocations = zeros(1, NumberOfCounties) + 1/NumberOfCounties; % default  

    % Sanity Check against policies 3 and 4 being the same 

    if(length(find(CountyPIPToTotalPIPs-fixedAllocations==0))==NumberOfCounties) 

        AllDecisions(end) = []; % delete policy 4 if it is the same as 3 

    end 

     

    NumberOfDecisions = length(AllDecisions); 
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    AllP{NumberOfDecisions} = []; 

    Q{NumberOfDecisions} = []; 

    AllDistributionSequence{NumberOfDecisions} = []; 

     

    CountyPPIPsHistory{NumberOfDecisions} = []; 

    UnderservedRecord{NumberOfDecisions} = []; 

    ImmediateExpectedDeviationFromTargetPPIP{NumberOfDecisions} = []; 

    TotalUnderservedForEachState{NumberOfDecisions} = []; 

     

    for action =1:NumberOfDecisions 

        Decision = AllDecisions(action); 

        P = zeros(NumberOfStates,NumberOfStates); % transition matrix 

        Q{action} = zeros(NumberOfStates, 1); % Initial Immediate Expected Reward Expected 

        AllDistributionSequence{action} = 

zeros(NumberOfStates*NumberOfDonationStates*NumberOfTransferStates, 

NumberOfEventsCausingTransitions+2+NumberOfCounties); 

        CountyPPIPsHistory{action} = zeros(NumberOfStates*NumberOfDonationStates, 

NumberOfCounties + 5); 

        UnderservedRecord{action} = zeros(NumberOfStates*NumberOfDonationStates, 

NumberOfCounties + 2); 

        ImmediateExpectedDeviationFromTargetPPIP{action} = zeros(NumberOfStates, 

NumberOfCounties); 

        seqCount = 0; 
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        count = 0; 

        TotalUnderservedForEachState{Decision} = zeros(1, NumberOfStates); 

        for i=1:NumberOfStates  

            CurrentState = i; 

            TempDeviationFromTargetPPIP = zeros(1, NumberOfCounties); 

            TempUnderservedStateTotal = 0; 

            for x=1:NumberOfDonationStates 

                 

                ActualAvailInv = ComputeActualValue(AvailInvPercentiles, AvailInvPercentiles(i+1), 

ActualMeanAvailInv); 

                [ActualDonation, IntervalMedianDonPer] = 

ComputeActualValue(DonationPercentiles, DonationPercentiles(x+1), ActualMeanDonation); 

                CurrentAvailInv = ActualAvailInv + ActualDonation; % currently available  

                 

                % Distribute Goods To Counties 

                TempCurrentAvailInv = CurrentAvailInv; 

                switch Decision 

                    case 1 %Decision #1 Evaluation: Serve the neediest first 

                        TempCountyDemands = CountyDemands; 

                        QntyRecievedByCounty = zeros(1, NumberOfCounties); 

                        for k=1:NumberOfCounties 

                            [MaxD,Winner] = max(TempCountyDemands); % determines the max  

                            QntyRecievedByCounty(Winner)  = floor(min(MaxD,TempCurrentAvailInv)); 
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                            TempCountyDemands(Winner) = -Inf; % prevents the previous winner 

                            TempCurrentAvailInv = max(0,TempCurrentAvailInv-MaxD);%surplus 

                        end 

                         

                    case 2 %Decision #2 Evaluation: Serve the smallest demand first 

                        TempCountyDemands = CountyDemands; 

                        QntyRecievedByCounty = zeros(1, NumberOfCounties); 

                         

                        for k=1:NumberOfCounties 

                            [MinD,Winner] = min(TempCountyDemands); 

                            QntyRecievedByCounty(Winner)  = floor(min(MinD,TempCurrentAvailInv)); 

                            TempCountyDemands(Winner) = Inf; % prevents it from winning again 

                            TempCurrentAvailInv = max(0,TempCurrentAvailInv-MinD);%surplus 

                        end 

                         

                    case 3 %Decision #3 Evaluation: Distribute According to Counties' PIPs 

                        QntyRecievedByCounty = zeros(1, NumberOfCounties); 

                        QntyRecievedByCounty(:,:) = 

floor(min(TempCurrentAvailInv.*CountyPIPToTotalPIPs, CountyDemands)); 

                         

                    case 4 %Decision #4 Evaluation: Distribute According to Fixed Allocations 

                        QntyRecievedByCounty = zeros(1, NumberOfCounties); 

                        QntyRecievedByCounty(1,:) = 
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floor(min(TempCurrentAvailInv.*fixedAllocations, CountyDemands)); 

                         

                end 

                % Done Distributions 

                 

               AvailInvAfterDistribution  =  CurrentAvailInv - sum( QntyRecievedByCounty);  

                DonationProb = NormCDFTransitionProb(DonationPercentiles(x+1), muDonation, 

sigmaDonation, DonationPercentiles); 

                 

                for tf=1:NumberOfTransferStates 

                    % Compute The Next State And Transition Probability 

                    [ActualCurrentTransfer, IntervalMedianTransfPer] = 

ComputeActualValue(TransferPercentiles, TransferPercentiles(tf+1), ActualMeanTransfer); 

                    NextAvailableInv = AvailInvAfterDistribution + ActualCurrentTransfer; 

                     

                    NextAvailInvPercentile = 100*(NextAvailableInv-

ActualMeanAvailInv)/ActualMeanAvailInv; % in percentage 

                    NextState = FindState(AvailInvPercentiles, NextAvailInvPercentile); 

                    TransferProb = NormCDFTransitionProb(TransferPercentiles(tf+1), muTransf, 

sigmaTransf, TransferPercentiles); 

                    P(CurrentState,NextState) = P(CurrentState,NextState) + 

DonationProb*TransferProb; 
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                    %Compute Immediate Expected Reward 

                    CurrentCountyPPIPs = floor((QntyRecievedByCounty + 

Previous11MonthsDistToCounties)./CountyPIPs); 

                    Reward = 1 - sum(abs( (CurrentCountyPPIPs - 

mean(CurrentCountyPPIPs))/mean(CurrentCountyPPIPs ))); % preferred 

                    Q{Decision}(CurrentState) = Q{Decision}(CurrentState) + 

Reward*DonationProb*TransferProb; 

                    TempDeviationFromTargetPPIP = TempDeviationFromTargetPPIP + 

(TargetCountyPPIP - min(CurrentCountyPPIPs, 

TargetCountyPPIP))*DonationProb*TransferProb; 

                     

                    %Keep history of the distribution records 

                    seqCount =  seqCount + 1; 

                    AllDistributionSequence{action}(seqCount,:) = [CurrentState, 

IntervalMedianDonPer,  IntervalMedianTransfPer,  NextState, QntyRecievedByCounty]; 

                end 

                 

                count = count + 1; 

                NumberOfCountiesUnderserved = length(find(CurrentCountyPPIPs < 

TargetCountyPPIP)); 

                NumberOfCountiesWellServed = length(find(CurrentCountyPPIPs >= 

TargetCountyPPIP)); 

                TempUnderserved = zeros(1, NumberOfCounties); 
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                TempUnderserved(CurrentCountyPPIPs < TargetCountyPPIP) = 1; 

                TempUnderserved = TempUnderserved*DonationProb; % expected 

                UnderservedRecord{action}(count,:) = [CurrentState,TempUnderserved, 

NumberOfCountiesUnderserved]; 

                CountyPPIPsHistory{action}(count,:) = [CurrentState, IntervalMedianDonPer, 

TargetCountyPPIP, CurrentCountyPPIPs, NumberOfCountiesWellServed, 

NumberOfCountiesUnderserved]; 

                TempUnderservedStateTotal = TempUnderservedStateTotal +  

DonationProb*NumberOfCountiesUnderserved; %expected 

            end 

             

            % Compute The Expected Deviations From TargetPPIP 

            ImmediateExpectedDeviationFromTargetPPIP{Decision}(CurrentState, :) = 

TempDeviationFromTargetPPIP; 

        TotalUnderservedForEachState{Decision}(i) = round(TempUnderservedStateTotal); 

        end 

         

        AllP{Decision} = P; % A structure containing all P matrices 

    end 

     

    %Policy Iteration. 

     

    % Best Reward and Alternatives 
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    BestReward = zeros(NumberOfStates, MaxTimeHorizon + 1); 

    BestAlternative = zeros(NumberOfStates, MaxTimeHorizon + 1); 

    OptimalEqn_Reward{MaxTimeHorizon + 1} = []; 

    OptimalEqn_Reward{MaxTimeHorizon+1} = zeros(NumberOfStates, NumberOfDecisions); 

    BestExpectedLoss{MaxTimeHorizon + 1} = []; 

     

    UniquePolicies = []; 

    for n = MaxTimeHorizon:-1:1 

        BestExpectedLoss{MaxTimeHorizon+1} = zeros(NumberOfStates, NumberOfCounties); 

        for action =1:NumberOfDecisions 

            Decision = AllDecisions(action); 

            OptimalEqn_Reward{n}(:,action) = AllP{Decision}*BestReward(:,n+1) + Q{Decision}; 

        end 

        [BestReward(:,n), BestAlternative(:,n)] = max(OptimalEqn_Reward{n},[],2); % max along 

the rows 

         

        %Detect multiple decisions giving the same best reward. And also the best 

        %expected loss associated withe the best policy 

        LossPMatrix = zeros(NumberOfStates,NumberOfStates); 

        ImmediateLossMatrix = zeros(NumberOfStates, NumberOfCounties); 

        [ignore, PreviousStateDecision] = max(OptimalEqn_Reward{n}(1,:)); 

        for st=1:NumberOfStates 

            TempOptimalEqn = OptimalEqn_Reward{n}(st,:); 
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            maxReward = max(TempOptimalEqn); % max along the row 

            BestPolicies = find(TempOptimalEqn==maxReward); 

            UniquePolicies = unique([UniquePolicies, BestPolicies]); 

            strBestPolicy = ''; 

            for bp=1:length(BestPolicies) 

                strBestPolicy = strcat(strBestPolicy, num2str(BestPolicies(bp))); 

            end 

            BestAlternative(st,n) = str2num(strBestPolicy); % each digit represents a decision 

             

            %Construct a loss and immediate expected matrices associated with 

            %the best policy 

            StateDecisionPos = find( PreviousStateDecision==BestPolicies); 

            if(isempty(StateDecisionPos)) 

                StateDecision =  BestPolicies(1); % first in list 

                PreviousStateDecision = StateDecision; % keep history 

            else 

                StateDecision = PreviousStateDecision; 

            end 

            LossPMatrix(st, :)  = AllP{StateDecision}(st,:); % a row from the P matrix for the best 

reward at that state 

            ImmediateLossMatrix(st, :) = 

ImmediateExpectedDeviationFromTargetPPIP{StateDecision}(st,:); % a row from immediate 

loss 
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            % 

        end 

        BestExpectedLoss{n} = LossPMatrix*BestExpectedLoss{n+1} + ImmediateLossMatrix; 

%% best loss 

        % Done 

    end 

     

     

    % Compute equity error from the base 

    format short; 

    if scenario==1 

        EquityPercentageError(scenario, :) = BestReward(:,1)'; % base model 

    else 

        EquityPercentageError(scenario, :) = (BestReward(:,1)' - EquityPercentageError(1, :)); 

    end 

     

     

    %Find stable best alternative 

    TransposeBA = BestAlternative'; 

    [ignore, rIndx] = unique(TransposeBA,'rows', 'last'); 

    timeHorizon = MaxTimeHorizon - rIndx(end) + 1; 

    UniqueBestAlternatives(scenario, :) = [timeHorizon, fliplr(TransposeBA(rIndx(end),:))]; 
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    % Compute the expected deviations from the base target PPIP 

    format bank; 

    if scenario==1 

        for cnty=1:NumberOfCounties 

            LossPercentageError{cnty}(scenario,:) = BestExpectedLoss{Jia,  #27}(:,cnty)'; % base 

model at last time step 

        end 

    else 

        for cnty=1:NumberOfCounties 

            LossPercentageError{cnty}(scenario,:) = (BestExpectedLoss{Jia,  #27}(:,cnty)' - 

LossPercentageError{cnty}(1,:)); 

        end 

    end 

     

     

    % Computeunderserved counts by county and by state for each action 

    % relative to the base 

    format short; 

    Title = {'State', 'Lower Limit Don%', 'Upper Limit Don%',  'Chatham', 'Durham', 'Granville', 

'Orange', 'Person', 'Vance',  '#Underserved'}; 

    for action=1:NumberOfDecisions 

        DecisionName = action; 
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        if scenario==1 

            UnderservedCountyPercentageError{DecisionName}(scenario,:) = 

round(sum(UnderservedRecord{DecisionName})); % base model 

            UnderservedStatePercentageError{DecisionName}(scenario,:) = 

TotalUnderservedForEachState{DecisionName}; % base model 

        else 

            UnderservedCountyPercentageError{DecisionName}(scenario,:) = 

(round(sum(UnderservedRecord{DecisionName}))-

UnderservedCountyPercentageError{DecisionName}(1,:)); 

            UnderservedStatePercentageError{DecisionName}(scenario,:) = 

(TotalUnderservedForEachState{DecisionName}-

UnderservedStatePercentageError{DecisionName}(1,:)); 

        end 

    end 

end 

  

%Save the summary results in excel 

warning('off','MATLAB:xlswrite:AddSheet'); 

WorkBookName = strcat('Experiment', num2str(ExperimentNumber), 'Summary', '.xlsx'); 

WorkSheetName = 'Exp1Scenarious'; 

Title = {'Scenario','Chatham Demand Variation(%)','Durham Demand Variation(%)', 'Granville 

Demand Variation(%)','Orange Demand Variation(%)', 'Person Demand Variation(%)', 'Vance 

Demand Variation(%)'}; 
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xlswrite(WorkBookName, Title, WorkSheetName, 'A1'); 

xlswrite(WorkBookName, AllExp1Scenarios, WorkSheetName, 'A2'); 

  

WorkSheetName = 'EquityError'; 

xlswrite(WorkBookName, EquityPercentageError, WorkSheetName, 'B2'); 

  

WorkSheetName = 'UniqueBestAlternative'; 

xlswrite(WorkBookName, UniqueBestAlternatives, WorkSheetName, 'B2'); 

  

Counties = {'Chatham', 'Durham', 'Granville', 'Orange', 'Person', 'Vance'}; 

for cnty=1:NumberOfCounties 

    CountyName = char(Counties(cnty)); 

    WorkSheetName = strcat(CountyName, 'PercentageErrorLoss'); 

    xlswrite(WorkBookName, LossPercentageError{cnty}, WorkSheetName, 'B2') 

end 

  

Title = {'NumberOfState', 'Chatham', 'Durham', 'Granville', 'Orange', 'Person', 'Vance',  

'#TotalUnderserved'}; 

for action=1:NumberOfDecisions 

    DecisionName = action; 

     

    WorkSheetName1 = strcat('Decision', num2str(DecisionName), 'UnderservedByCounty'); 

    xlswrite(WorkBookName, Title, WorkSheetName1, 'B1') 
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    xlswrite(WorkBookName,  UnderservedCountyPercentageError{DecisionName}, 

WorkSheetName1, 'B2'); 

     

    WorkSheetName2 = strcat('Decision', num2str(DecisionName), 'UnderservedByState'); 

    xlswrite(WorkBookName,  UnderservedStatePercentageError{DecisionName}, 

WorkSheetName2, 'B2'); 

end 

  

warning('on','MATLAB:xlswrite:AddSheet'); 

  

end 

  

  

%Name of subroutine: ComputeActualValue.m 

%Description: This subroutine computes the actual value of a given 

%percentage by using the median percentage of the range in which that given percentage falls. 

%Inputs: PercentileRanges, PercentageValue 

%Output: ActualValue 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

function [ActualValue, MedianPer] = ComputeActualValue(PercentileRanges, PercentageValue, 

ActualMean) 

if( isnumeric(PercentileRanges)  && isnumeric(PercentageValue) && isnumeric(ActualMean)) 
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    if(PercentageValue<=PercentileRanges(2)) %finite lower bound 

        MedianPer = PercentileRanges(2); 

        ActualValue = max(0, (1 + PercentileRanges(2)/100)*ActualMean); 

    elseif (PercentageValue>PercentileRanges(end-1)) % finite upper bound 

        MedianPer = PercentileRanges(end-1); 

        ActualValue = max(0, (1 + PercentileRanges(end-1)/100)*ActualMean); 

    else 

        PerPosition = find(PercentileRanges>=PercentageValue, 1, 'first'); % returns only the first 

occurrence 

        MedianPer = (PercentileRanges(PerPosition) + PercentileRanges(PerPosition-1))/2; 

        ActualValue = max(0, (1 + MedianPer/100)*ActualMean); 

    end 

else 

    ActualValue = -1; % error: cannot compute the ActualValue 

end 

end 

 

%Name of subroutine: FindState.m 

%Description: This subroutine finds the state a specific value belongs depending on which 

interval it falls into 

%Inputs: PercentileRanges, PercentageValue 

%Output: State 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function State = FindState(PercentileRanges, PercentageValue) 

if( isnumeric(PercentileRanges) && isnumeric(PercentageValue) ) 

    for rp=2:length(PercentileRanges)-1 % to take of Inf 

        if PercentageValue<=PercentileRanges(rp) 

            State = rp-1; 

            break; 

        elseif PercentageValue>PercentileRanges(end-1) 

            State = length(PercentileRanges)-1; % greater than upper limit is also considered the last 

interval 

            break; 

        end 

    end 

else 

    State = -1; % error: cannot compute the state 

end 

end 

  

%Name of subroutine: NormCDFTransitionProb.m 

%Description: This subroutine calculates the probability of a given value falling 

%between an interval a given interval using normal cumulative probability distribution 

%Inputs: XPercentile, muX, SigX, XPercentileRange 

%Output: px 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function px = NormCDFTransitionProb(XPercentile, muX, SigX, XPercentileRange) 

if ( isnumeric(XPercentile) && isnumeric(muX) && isnumeric(SigX) && 

isnumeric(XPercentileRange) ) 

    if(XPercentile<=XPercentileRange(2)) 

        px = normcdf(XPercentileRange(2), muX, SigX); % Lower interval and downdards 

    elseif(XPercentile>XPercentileRange(end-1)) 

        px = 1 - normcdf(XPercentileRange(end-1), muX, SigX); % Upper interval and upwards 

    elseif(XPercentile>XPercentileRange(2) && XPercentile<=XPercentileRange(end-1)); 

        pos = FindState(XPercentileRange,XPercentile); 

        px = normcdf(XPercentileRange(pos+1), muX, SigX) - normcdf(XPercentileRange(pos), 

muX, SigX); 

    end 

else 

    px = -1; % error: cannot compute the probability 

end 

end  
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Appendix B 

Categories of records in the “FBCENC DataViewer” and their description 

Database Record  Description 

Distribution  Provide information about the amount of food items that the food bank 

branches distribute to agencies in the counties to give to aid recipients. 

Donation Provides information on all donations received by the food bank from 

Donor partners. 

Transfer Provides information on all transfer of supplies between the food bank 

branches. Transferring branch gives out items to the receiving branch. 

Waste Provides information on all food items that were lost as a result of food 

spoilage. 

Custom Queries These are standard queries that a user can select from a drop-down menu. 

 

The key fields in the “FBCENC DataViewer” and their description 

Key Fields Description 

Database Contains all the fiscal years (FY). A fiscal year starts from July of one year 

to June of the next year. 

Fiscal Month The records in a fiscal year are aggregated by month to show all the 

transactions that occurred in a specific month of that fiscal year. 

Branch Code The food bank branch involved in a given transaction The branches are 

labelled by letters as follows: “D” for Durham, “G” for Greenville, “N” for 

New Bern, “R” for Raleigh, “S” Sandhills and “W” for Wilmington. 

Product Type This is used to identify the type of item involved in the transaction. 

Storage Type  How the items are stored in the warehouses once received is one of the 

ways the food bank categories its supplies. The storage types include; dry, 

frozen, prepared, produce, refrigerate and salvage. 
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Appendix C 

Detail experimental design and results of the sensitivity analysis 

Experiment 1: Experimental design 

Poverty population and demand percentage adjustment (%) 

CASES Chatham   Durham  Granville  Orange  Person  Vance  

-50% -50 -50 -50 -50 -50 -50 

-40% -40 -40 -40 -40 -40 -40 

-30% -30 -30 -30 -30 -30 -30 

-20% -20 -20 -20 -20 -20 -20 

-10% -10 -10 -10 -10 -10 -10 

0% 0 0 0 0 0 0 

10% 10 10 10 10 10 10 

20% 20 20 20 20 20 20 

30% 30 30 30 30 30 30 

40% 40 40 40 40 40 40 

50% 50 50 50 50 50 50 

60% 60 60 60 60 60 60 

70% 70 70 70 70 70 70 

80% 80 80 80 80 80 80 

90% 90 90 90 90 90 90 

100% 100 100 100 100 100 100 
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Experiment 1: Optimal stationary policy structure 

 

 

 

 

 

 

 

 

 

Percentage State16 State15 State14 State13 State12 State11 State10 State9 State8 State7 State6 State5 State4 State3 State2 State1

-50% 1234 1234 1234 1234 1234 123 123 123 123 123 123 123 123 123 123 3

-40% 1234 123 123 123 123 123 123 123 123 123 123 123 123 3 3 3

-30% 123 123 123 123 123 123 123 123 123 123 123 123 3 3 3 3

-20% 123 123 123 123 123 123 123 123 123 123 123 3 3 3 3 3

-10% 123 123 123 123 123 123 123 123 123 123 3 3 3 3 3 3

0% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

10% 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3 3

20% 123 123 123 123 123 123 3 3 3 3 3 3 3 3 3 3

30% 123 123 123 123 123 3 3 3 3 3 3 3 3 3 3 3

40% 123 123 123 3 3 3 3 3 3 3 3 3 3 3 3 3

50% 123 123 3 3 3 3 3 3 3 3 3 3 3 3 3 3

60% 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

70% 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

80% 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

90% 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

100% 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
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Experiment 1: Deviation of unsatisfied demand (lb.) from the base scenario for each county 
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-50% -21.7 -21.6 -21.1 -20.6 -20.0 -19.4 -18.7 -18.1 -17.5 -16.9 -16.3 -15.6 -15.0 -14.4 -13.9 -13.6 

-40% -21.3 -21.3 -20.9 -20.6 -20.0 -19.4 -18.7 -18.1 -17.5 -16.9 -16.3 -15.6 -15.0 -14.4 -13.9 -13.6 

-30% -19.4 -19.7 -19.8 -19.7 -19.4 -19.0 -18.4 -17.9 -17.3 -16.8 -16.2 -15.6 -15.0 -14.4 -13.9 -13.6 

-20% -14.7 -14.9 -15.0 -15.4 -15.5 -15.6 -15.4 -15.3 -15.1 -14.9 -14.6 -14.3 -13.9 -13.5 -13.1 -12.8 

-10% -7.2 -7.2 -7.3 -7.5 -7.6 -7.8 -7.8 -7.8 -7.9 -8.0 -8.0 -8.0 -8.0 -8.0 -7.9 -7.8 

0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10% 5.4 5.4 5.5 5.5 5.6 5.8 5.9 5.9 5.9 6.0 6.1 6.2 6.2 6.3 6.3 6.3 

20% 10.0 10.0 10.2 10.2 10.4 10.5 10.9 11.0 11.0 11.1 11.2 11.3 11.5 11.6 11.6 11.7 

30% 13.6 13.6 13.8 13.8 14.1 14.3 14.6 14.9 15.0 15.1 15.2 15.3 15.5 15.7 15.9 15.9 

40% 17.2 17.2 17.3 17.5 17.7 18.0 18.4 18.6 18.8 19.1 19.2 19.3 19.4 19.7 19.9 19.9 

50% 19.9 19.9 20.1 20.2 20.6 20.7 21.1 21.5 21.7 21.9 22.3 22.4 22.5 22.7 22.9 23.0 

60% 22.2 22.2 22.5 22.6 22.9 23.2 23.6 23.9 24.2 24.5 24.7 25.1 25.3 25.4 25.5 25.6 

70% 24.6 24.6 24.9 25.1 25.3 25.6 26.2 26.4 26.7 27.0 27.4 27.6 28.0 28.3 28.4 28.4 

80% 26.5 26.4 26.7 27.0 27.3 27.5 28.0 28.4 28.7 29.0 29.4 29.7 30.0 30.3 30.7 30.7 

90% 28.3 28.4 28.6 28.8 29.2 29.4 29.9 30.3 30.7 30.9 31.3 31.7 32.1 32.3 32.6 32.8 

100% 30.0 30.0 30.2 30.4 30.9 31.2 31.6 32.0 32.4 32.7 33.0 33.4 33.8 34.2 34.4 34.5 
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Experiment 1: Deviation of the number of counties underserved from the base scenario 
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-50% -6 -6 -6 -6 -5 -3 -1 0 0 0 0 0 0 0 0 0 

-40% -4 -5 -6 -6 -5 -3 -1 0 0 0 0 0 0 0 0 0 

-30% -1 -3 -5 -6 -5 -3 -1 0 0 0 0 0 0 0 0 0 

-20% 0 0 -2 -4 -4 -3 -1 0 0 0 0 0 0 0 0 0 

-10% 0 0 0 -1 -2 -2 -1 0 0 0 0 0 0 0 0 0 

0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10% 0 0 0 0 1 2 2 1 0 0 0 0 0 0 0 0 

20% 0 0 0 0 1 3 4 4 2 1 0 0 0 0 0 0 

30% 0 0 0 0 1 3 5 6 5 3 1 0 0 0 0 0 

40% 0 0 0 0 1 3 5 6 6 5 3 1 0 0 0 0 

50% 0 0 0 0 1 3 5 6 6 6 5 3 1 0 0 0 

60% 0 0 0 0 1 3 5 6 6 6 6 5 4 2 1 0 

70% 0 0 0 0 1 3 5 6 6 6 6 6 6 5 3 1 

80% 0 0 0 0 1 3 5 6 6 6 6 6 6 6 5 4 

90% 0 0 0 0 1 3 5 6 6 6 6 6 6 6 6 6 

100% 0 0 0 0 1 3 5 6 6 6 6 6 6 6 6 6 
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Experiment 2: Experimental design 

Scenario 1 

 Percentage adjustment (%) 

CASES Donation sample mean   Donation standard deviation Transfer-in sample mean  Transfer-in standard deviation 

-50% -50 0 0 0 

-40% -40 0 0 0 

-30% -30 0 0 0 

-20% -20 0 0 0 

-10% -10 0 0 0 

0% 0 0 0 0 

10% 10 0 0 0 

20% 20 0 0 0 

30% 30 0 0 0 

40% 40 0 0 0 

50% 50 0 0 0 
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Scenario 2 

 Percentage adjustment (%) 

CASES Donation sample mean   Donation standard deviation Transfer-in sample mean  Transfer-in standard deviation 

-50% 0 -50 0 0 

-40% 0 -40 0 0 

-30% 0 -30 0 0 

-20% 0 -20 0 0 

-10% 0 -10 0 0 

0% 0 0 0 0 

10% 0 10 0 0 

20% 0 20 0 0 

30% 0 30 0 0 

40% 0 40 0 0 

50% 0 50 0 0 
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Scenario 3 

 Percentage adjustment (%) 

CASES Donation sample mean   Donation standard deviation Transfer-in sample mean  Transfer-in standard deviation 

-50% 0 0 -50 0 

-40% 0 0 -40 0 

-30% 0 0 -30 0 

-20% 0 0 -20 0 

-10% 0 0 -10 0 

0% 0 0 0 0 

10% 0 0 10 0 

20% 0 0 20 0 

30% 0 0 30 0 

40% 0 0 40 0 

50% 0 0 50 0 
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Scenario 4 

 Percentage adjustment (%) 

CASES Donation sample mean   Donation standard deviation Transfer-in sample mean  Transfer-in standard deviation 

-50% 0 0 0 -50 

-40% 0 0 0 -40 

-30% 0 0 0 -30 

-20% 0 0 0 -20 

-10% 0 0 0 -10 

0% 0 0 0 0 

10% 0 0 0 10 

20% 0 0 0 20 

30% 0 0 0 30 

40% 0 0 0 40 

50% 0 0 0 50 

 

Experiment 2: Optimal stationary policy structure 

 

Donation sample mean

Percentage adjustmentState16 State15 State14 State13 State12 State11 State10 State9 State8 State7 State6 State5 State4 State3 State2 State1

-50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

0% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

10% 123 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3

20% 123 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3

30% 123 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3

40% 123 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3

50% 123 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3
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Donation standard deviation

Percentage adjustmentState16 State15 State14 State13 State12 State11 State10 State9 State8 State7 State6 State5 State4 State3 State2 State1

-50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

0% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

Transfer sample mean

Percentage adjustmentState16 State15 State14 State13 State12 State11 State10 State9 State8 State7 State6 State5 State4 State3 State2 State1

-50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

0% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3
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Experiment 2: Deviation of the unsatisfied demand (lb.) from the base scenario for each county 

Donation sample mean 
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-50% 9.0 8.9 9.1 8.9 9.1 9.0 9.4 9.2 9.2 9.2 9.3 9.3 9.4 9.4 9.4 9.3 

-40% 7.2 7.1 7.3 7.2 7.3 7.3 7.6 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.5 7.5 

-30% 5.6 5.6 5.6 5.6 5.7 5.8 5.8 5.7 5.7 5.8 5.8 5.8 5.8 5.8 5.8 5.8 

-20% 3.6 3.6 3.6 3.6 3.7 3.7 3.8 3.7 3.7 3.7 3.8 3.8 3.8 3.8 3.8 3.8 

-10% 2.0 2.0 2.0 2.0 2.0 2.1 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10% -1.9 -1.9 -1.9 -2.0 -1.9 -2.0 -1.9 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 

20% -4.2 -4.3 -4.2 -4.3 -4.3 -4.4 -4.3 -4.3 -4.3 -4.3 -4.3 -4.3 -4.3 -4.2 -4.2 -4.1 

30% -6.0 -6.2 -6.1 -6.3 -6.2 -6.4 -6.2 -6.2 -6.2 -6.2 -6.2 -6.2 -6.2 -6.1 -6.0 -5.9 

40% -7.5 -7.5 -7.6 -7.6 -7.7 -7.8 -7.7 -7.8 -7.8 -7.8 -7.8 -7.8 -7.7 -7.6 -7.5 -7.4 

50% -9.4 -9.5 -9.4 -9.6 -9.6 -9.8 -9.7 -9.7 -9.7 -9.6 -9.6 -9.5 -9.4 -9.2 -9.0 -8.9 

Transfer standard deviation

Percentage adjustmentState16 State15 State14 State13 State12 State11 State10 State9 State8 State7 State6 State5 State4 State3 State2 State1

-50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

-10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

0% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3
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Donation Standard Deviation 
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-50% 0.5 0.5 0.4 0.5 0.5 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 

-40% 0.3 0.3 0.3 0.3 0.3 0.4 0.2 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 

-30% 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 

-20% 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

-10% 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10% 0.0 0.0 0.0 0.0 -0.1 -0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

20% -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

30% -0.1 -0.1 -0.1 -0.1 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 

40% -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 

50% -0.2 -0.2 -0.2 -0.2 -0.3 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2 
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Transfer-in sample mean 
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-50% 10.9 10.9 10.9 10.9 11.0 11.1 11.3 11.6 11.8 12.0 12.1 12.2 12.4 12.5 12.7 12.7 

-40% 10.0 10.0 10.0 10.0 10.1 10.2 10.3 10.5 10.7 10.8 10.9 11.0 11.2 11.3 11.4 11.4 

-30% 8.1 8.1 8.1 8.1 8.2 8.2 8.4 8.5 8.6 8.7 8.8 8.9 9.0 9.1 9.1 9.1 

-20% 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.4 6.5 6.5 6.6 6.6 6.7 6.7 6.7 6.8 

-10% 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4 3.4 3.4 3.4 3.5 3.5 3.5 3.5 3.5 

0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10% -3.7 -3.7 -3.7 -3.7 -3.7 -3.7 -3.8 -3.8 -3.8 -3.9 -3.9 -3.9 -3.9 -3.9 -3.8 -3.8 

20% -7.8 -7.8 -7.8 -7.8 -7.8 -7.8 -7.9 -7.9 -7.9 -7.9 -7.9 -7.8 -7.7 -7.6 -7.5 -7.3 

30% -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.2 -11.1 -11.0 -10.8 -10.6 -10.4 -10.1 -9.9 

40% -14.3 -14.3 -14.3 -14.3 -14.3 -14.3 -14.2 -14.1 -13.9 -13.7 -13.4 -13.1 -12.7 -12.3 -11.9 -11.7 

50% -15.3 -15.3 -15.3 -15.4 -15.4 -15.4 -15.4 -15.3 -15.1 -14.8 -14.4 -14.0 -13.6 -13.2 -12.7 -12.4 

 

 

 

 

 

 

 



139 

 

 

 

Transfer-in standard deviation 
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-50% 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.9 1.8 1.7 1.7 1.6 1.5 1.4 1.3 1.2 

-40% 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.6 1.5 1.5 1.4 1.4 1.3 1.2 1.1 1.0 

-30% 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.1 1.1 1.0 1.0 0.9 0.9 0.8 

-20% 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.5 

-10% 0.5 0.5 0.5 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 

0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10% -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.3 -0.3 -0.3 -0.3 -0.3 

20% -0.9 -0.9 -0.9 -0.9 -0.9 -0.9 -0.8 -0.8 -0.8 -0.7 -0.7 -0.7 -0.6 -0.6 -0.5 -0.5 

30% -1.3 -1.3 -1.3 -1.3 -1.3 -1.3 -1.2 -1.2 -1.1 -1.1 -1.0 -1.0 -0.9 -0.8 -0.8 -0.7 

40% -1.7 -1.7 -1.7 -1.7 -1.7 -1.6 -1.6 -1.5 -1.5 -1.4 -1.3 -1.3 -1.2 -1.1 -1.0 -0.9 

50% -2.0 -2.0 -2.0 -2.0 -2.0 -2.0 -1.9 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 
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Experiment 2: Deviation of the number of counties under served from the base 

Donation sample mean 
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-50% 0 0 0 0 1 3 4 1 0 0 0 0 0 0 0 0 

-40% 0 0 0 0 1 3 3 1 0 0 0 0 0 0 0 0 

-30% 0 0 0 0 1 2 2 1 0 0 0 0 0 0 0 0 

-20% 0 0 0 0 1 2 1 0 0 0 0 0 0 0 0 0 

-10% 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20% 0 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 

30% 0 0 0 -1 -2 -2 0 0 0 0 0 0 0 0 0 0 

40% 0 0 -1 -1 -2 -2 0 0 0 0 0 0 0 0 0 0 

50% 0 0 -1 -2 -2 -2 -1 0 0 0 0 0 0 0 0 0 
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Donation Standard Deviation 
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-50% 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 

-40% 0 0 0 0 1 1 -1 0 0 0 0 0 0 0 0 0 

-30% 0 0 0 0 1 0 -1 0 0 0 0 0 0 0 0 0 

-20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40% 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 

50% 0 0 0 -1 -1 0 1 1 0 0 0 0 0 0 0 0 
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Transfer-in sample mean 
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-50% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-40% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

50% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Transfer-in standard deviation 
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-50% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-40% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

50% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Experiment 3: Experimental design 

Poverty population and demand percentage adjustment (%) 

CASES Chatham   Durham  Granville  Orange  Person  Vance  

-50% -50 -50 -50 -50 -50 -50 

-40% -40 -40 -40 -40 -40 -40 

-30% -30 -30 -30 -30 -30 -30 

-20% -20 -20 -20 -20 -20 -20 

-10% -10 -10 -10 -10 -10 -10 

0% 0 0 0 0 0 0 

10% 10 10 10 10 10 10 

20% 20 20 20 20 20 20 

30% 30 30 30 30 30 30 

40% 40 40 40 40 40 40 

50% 50 50 50 50 50 50 

60% 60 60 60 60 60 60 

70% 70 70 70 70 70 70 

80% 80 80 80 80 80 80 

90% 90 90 90 90 90 90 

100% 100 100 100 100 100 100 
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Experiment 3: Optimal policy structure 

 

 

 

 

 

 

 

 

 

Percentage State16 State15 State14 State13 State12 State11 State10 State9 State8 State7 State6 State5 State4 State3 State2 State1

-50% 1234 1234 1234 1234 1234 123 123 123 123 123 123 123 123 123 123 3

-40% 1234 123 123 123 123 123 123 123 123 123 123 123 123 3 3 3

-30% 123 123 123 123 123 123 123 123 123 123 123 123 3 3 3 3

-20% 123 123 123 123 123 123 123 123 123 123 123 3 3 3 3 3

-10% 123 123 123 123 123 123 123 123 123 123 3 3 3 3 3 3

0% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

10% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

20% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

30% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

40% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

50% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

60% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

70% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

80% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

90% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3

100% 123 123 123 123 123 123 123 123 3 3 3 3 3 3 3 3
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Experiment 3: Deviation of the unsatisfied demand (lb.) from the base scenario for each county 
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-50% -18.0 -17.9 -17.4 -17.0 -16.4 -15.9 -15.1 -14.5 -13.9 -13.3 -12.7 -12.1 -11.5 -10.9 -10.3 -10.0 

-40% -16.4 -16.6 -16.3 -16.1 -15.7 -15.3 -14.7 -14.2 -13.6 -13.1 -12.5 -11.9 -11.3 -10.7 -10.2 -9.9 

-30% -12.6 -12.9 -13.1 -13.3 -13.2 -13.1 -12.8 -12.5 -12.2 -11.9 -11.5 -11.0 -10.6 -10.1 -9.6 -9.3 

-20% -8.0 -8.2 -8.4 -8.7 -8.9 -9.0 -8.9 -9.0 -9.0 -8.9 -8.8 -8.6 -8.4 -8.1 -7.8 -7.6 

-10% -3.6 -3.7 -3.8 -3.9 -4.0 -4.2 -4.2 -4.3 -4.3 -4.4 -4.5 -4.5 -4.5 -4.4 -4.3 -4.2 

0% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10% 2.7 2.6 2.7 2.8 2.9 3.1 3.2 3.2 3.2 3.3 3.4 3.5 3.5 3.6 3.6 3.6 

20% 5.0 4.9 5.1 5.2 5.3 5.5 5.8 5.9 6.0 6.0 6.1 6.3 6.4 6.5 6.6 6.6 

30% 6.7 6.7 6.9 7.0 7.2 7.4 7.8 8.0 8.2 8.3 8.3 8.4 8.7 8.9 9.0 9.1 

40% 8.5 8.5 8.7 8.8 9.1 9.3 9.7 9.9 10.1 10.4 10.6 10.6 10.8 11.0 11.2 11.3 

50% 9.8 9.9 10.0 10.2 10.5 10.7 11.1 11.4 11.6 11.9 12.2 12.4 12.5 12.6 12.8 12.9 

60% 10.9 11.0 11.3 11.4 11.6 11.9 12.4 12.7 13.0 13.3 13.5 13.8 14.1 14.2 14.3 14.4 

70% 12.2 12.2 12.5 12.6 12.9 13.2 13.7 13.9 14.2 14.6 15.0 15.1 15.5 15.8 16.0 16.0 

80% 13.1 13.0 13.4 13.6 13.9 14.1 14.6 15.0 15.3 15.6 16.0 16.3 16.6 16.9 17.3 17.3 

90% 14.0 14.0 14.3 14.5 14.9 15.1 15.6 16.0 16.4 16.6 16.9 17.4 17.7 18.0 18.3 18.5 

100% 14.8 14.8 15.1 15.3 15.7 16.0 16.4 16.8 17.2 17.6 17.9 18.2 18.7 19.0 19.2 19.4 
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Experiment 3: Deviation of the number of counties under served from the base scenario 
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-50% -6 -6 -6 -6 -5 -3 -1 0 0 0 0 0 0 0 0 0 

-40% -4 -5 -6 -6 -5 -3 -1 0 0 0 0 0 0 0 0 0 

-30% -1 -3 -5 -6 -5 -3 -1 0 0 0 0 0 0 0 0 0 

-20% 0 0 -2 -4 -4 -3 -1 0 0 0 0 0 0 0 0 0 

-10% 0 0 0 -1 -2 -2 -1 0 0 0 0 0 0 0 0 0 

0% 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10% 0 0 0 0 1 2 2 1 0 0 0 0 0 0 0 0 

20% 0 0 0 0 1 3 4 4 2 1 0 0 0 0 0 0 

30% 0 0 0 0 1 3 5 6 5 3 1 0 0 0 0 0 

40% 0 0 0 0 1 3 5 6 6 5 3 1 0 0 0 0 

50% 0 0 0 0 1 3 5 6 6 6 5 3 1 0 0 0 

60% 0 0 0 0 1 3 5 6 6 6 6 5 4 2 1 0 

70% 0 0 0 0 1 3 5 6 6 6 6 6 6 5 3 1 

80% 0 0 0 0 1 3 5 6 6 6 6 6 6 6 5 4 

90% 0 0 0 0 1 3 5 6 6 6 6 6 6 6 6 6 

100% 0 0 0 0 1 3 5 6 6 6 6 6 6 6 6 6 
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