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Abstract 

Canola in the past and present has been evaluated as a domestic fuel source and a means to 

stimulate rural economic development. In order to ease the transition of the economy in North 

Carolina new rotational crops can be looked upon as sources of additional revenue. Canola 

Brassica napus (L.) production was evaluated for cultivation in a Piedmont soil (Mecklenburg 

Sandy Clay Loam) at NC A&T State University research farm located in Greensboro, NC 

(Guilford County). The experiment was conducted using a split plot design with main plot factor 

cultivar (Virginia and DKW 46-15) and subplot factor fertilizer: (N-P2O5-K2O) in (kgha
-1

) 0-0-0, 

70-28-84, 70-28-864 + Soysoap, 140-56-168 and 140-56-168 + Soysoap. Soysoap™ was applied 

as a foliar spray to evaluate its effectiveness in enhanced nutrient absorption. Canola was planted 

in October and harvested in May in all three years (2009-2012). Analysis from 3 consecutive 

years revealed that plots that received the 140-56-168 (kgha
-1

) fertilizer treatment produced 

significantly higher seed yields than the control. Canola seed was mechanically extracted in 2011 

and 2012. Neither canola cultivar nor fertilizer treatment affected mechanically extracted oil 

percentages in 2011 or 2012. Cultivar selection in 2010 had a significant effect (p < 0.001) on 

hexane extracted oil percentages in which the Virginia cultivar produced a significantly higher 

oil percentage than DKW 46-15. After evaluating cultivars oil yield potential, the Virginia 

cultivar would be more suitable towards biofuel production in NC versus DKW 46-15.  
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Chapter 1 

Introduction 

Mass biodiesel production requires a stable availability of fat and oil resources. Almost 

65% of the world’s available rapeseed oil is dedicated to biodiesel production. Theoretically, 

biofuel can replace up to 13% of petroleum-based fuels (Best, 2006). Both rural and urban areas 

in North Carolina have experienced tobacco-related job loss and income, for which there are few 

economic alternatives (Gale Jr, Foreman, & Capehart Jr, 2000). Competition from foreign textile 

producers caused an estimated loss of 82,000 jobs from 1977-1997 in North Carolina (Conway, 

Connolly, Field, & Longman, 2003).  

Alternative crops provide supplemental income for farmers and novel opportunities for 

the expansion of NC’s rural economy. Annual energy crops promote farm diversification and 

renewable energy production. Canola production provides a domestic and renewable source of 

energy as well as additional income, improving rural economic development. Canola yields 

double the amount of oil per acre as compared to soybeans; therefore, canola is a good 

alternative for local oil production (Atkinson et al., 2011). Biodiesel produced from canola oil 

also creates lower CO2 emission levels, as compared to biodiesel produced from soybeans (Kim, 

Kim, Kim, & Lee, 2013). Canola is an ideal feedstock for biodiesel because of its combustion 

characteristics, cold temperature behavior, and oxidative stability (González-García, García-Rey, 

& Hospido, 2012). 

The sustainable production of biofuel feedstock relies on efficient use of initial inputs (or 

fertilizer nutrients) during cultivation. There are 16 essential nutrients required for canola’s 

growth and development. Of these nutrients, canola yield potential is most affected by the supply 

of Nitrogen (N), Phosphorus (P), and Sulfur (S) (Ahmad, et al., 2006; Franzaring, et al., 2012; 
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Siddiqui, et al., 2008). The supply and mobility of nutrients are dependent on several 

environmental factors, such as temperature, precipitation, and soil chemical characteristics (CEC, 

pH, organic matter). Plant and soil analysis can help estimate the efficiency of fertilizer usage. 

Lacking knowledge about how to optimize nutrient efficiency can lead to the misuse of 

agricultural chemicals. A misappropriation of fertilizers and pesticides can pollute the 

environment, increase carbon emissions and contaminate the food supply (Mousavi-Avval, 

Rafiee, Jafari, & Mohammadi, 2011). 

1.1 Objectives 

This study was conducted to elucidate the following objectives: 

 

1. Evaluate yield potential of two winter canola cultivars grown in NC Piedmont soil 

and climatic conditions.  

2. Determine if optimization of nutrient management could be achieved through the use 

of varying (N-P-K) rates with soysoap application.  
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CHAPTER 2 

Literature Review 

2.1 Biofuel & Energy Expenditures 

The world has depended on fossil fuels (coal, oil and natural gas) as a primary energy 

source since the Industrial Revolution. In 1973, about 71% of global energy sources were from 

fossil fuels; and in 2009 fossil fuels contributed to 60% of total energy use (Zellou & 

Cuddington, 2012). In 2012 both the United States and Europe spent around $1 billion per day 

on oil imports (Murray & King, 2012). Heavy duty diesel vehicles consume (30%) (11 Mbpd 

worldwide of the liquid transportation fuel with an expected 2.5% annual increase until 2020 

(Radinko & Jeremija, 2012). United States oil production is steadily decreasing. In 1980, crude 

oil reserve-to-production ratio was estimated at 9%, but are now reduced to 6%, while worldwide 

production has declined at rates of 4.5% to 6.7% per year (Murray & King, 2012). 

Crude oil is limited and difficult to obtain, which creates an unpredictable market with 

fluctuating prices. In 2007 the spot price of West Texas intermediate crude oil was $50 per 

barrel, in July 2008 it rose to $145 per barrel, and within only 5 months it dropped to $30 per 

barrel (Casassus, Liu, & Tang, 2012). The price of petrol from 2010-2011 in the United States 

experienced an increase of 77 cents per gallon (Murray & King, 2012). 

Energy security, or the availability of resources for energy consumption in a given period 

of time, is gaining worldwide attention. It involves elements such as: availability of energy to an 

economy, spatial distance of resources between production and point of consumption, cost of 

research and exploration, geopolitical implications, and environmental sustainability (Kruyt, Van 

Vuuren, De Vries, & Groenenberg, 2009). Globally, governments are seeking alternative sources 
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of energy, such as bioenergy (hydroelectric, solar photovoltaic, geothermal, wind etc.) and bio-

fuels (bioethanol and biodiesel), to help alleviate fossil fuel dependency.  

Theoretically global energy consumption is estimated around 15 x 10
12 

Watts (W). The 

Earth receives 120 x10
15

 W of light energy from the sun; only 6% is used for biomass production 

(Radinko & Jeremija, 2012). There is an abundance of untapped energy potential supplied 

through solar radiation; therefore, it is resourceful to use energy sources derived from 

photosynthesis and other such processes. 

In 2008 only 2% (1,200 billion liters of gasoline equivalents) of the global annual energy 

consumption was supplied by biodiesel and bioethanol (De Fraiture, Giordano, & Liao, 2008). 

U.S. Department of Agriculture and Department of Energy has estimated that close to 30% of 

fossil fuel displacement (80 billon gal) is achievable by utilizing biomass crops to supplement 

our energy needs (Gray, Zhao, & Emptage, 2006). 

Biodiesel is a non-petroleum-based diesel fuel derived from a renewable feedstock, such 

as vegetable oils or animal fats. It can function (alone, or blended with conventional petro-diesel) 

in unmodified diesel-engine vehicles. In 1938, Chavanne obtained the first patent for biodiesel 

production, which utilized palm oil and ethanol (Guzatto, Defferrari, Reiznautt, Cadore, & 

Samios, 2012).  

Biodiesel is produced through a transesterification reaction in which oils or fats react 

with an alcohol (chiefly methanol) in the presence of a catalyst (acid, base or lipase). This 

reaction produces monoalkyl esters of long chain fatty acids and a glycerol byproduct (Meher, 

Vidya Sagar, & Naik, 2006). Mass transfer, kinetic, and equilibrium reactions are the three main 

mechanisms that facilitate the transesterification process (Nigam & Singh, 2011). Other methods 

for the production of biodiesel include: direct use (straight vegetable oil), blending, 
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microemulsions, and pyrolysis (thermal cracking) (Ma & Hanna, 1999). During the refinement 

of oil for the production of biodiesel, free fatty acids are separated to produce an acid value of 

less than 0.2 mg KOH/g (Borugadda & Goud, 2012). 

The two primary expenses in biodiesel production are the cost of processing and the raw 

materials used for production. Acquiring raw feedstock makes up an estimated 60–75% of the 

total cost of biodiesel fuel (Barua, 2011). During the production of biodiesel from oilseed crops 

there are several byproducts, including straw, protein meal, and glycerine, that have added value 

for on- and off- farm practices (Smith, Janzen, & Newlands, 2007). Byproducts, such as glycerol, 

could help offset the costs of biodiesel production and conversion. It has been estimated that 

9,071 kilograms of biodiesel produces an estimated 907 kilograms of glycerol (Lin, Gaustad, & 

Trabold, 2013). Glycerol is used in cosmetics and pharmaceuticals, as well as in several 

biotechnological applications.  

A byproduct of biodiesel production with canola is the meal produced from pressing, 

which contains about 37-38% crude protein after oil extraction. By comparison, soybean meal 

contains around 44% crude protein. It takes 110,000-140,000 seeds to make 0.45 kg of canola 

seed meal. Canola seed meal is used as livestock fodder supplement due to the balanced amino-

acid composition. However, canola is not a complete source of protein.  

Energy efficiency is an important consideration in all aspects of biofuel production. 

Conversion of biomass to liquid fuel is 2-3 times less efficient than conversion of crude oil to 

liquid fuel (Howarth et al., 2008). However, when biofuels are utilized for heat and electricity, 

their efficiency almost equals that of crude oil. Compared with petro-diesels, biodiesel has 

several advantages, including: the reduction of carcinogenic emissions by 94%, up to 4 times 
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greater degradability, extended engine life, higher lubricity, and improved fuel economy 

(González-García, García-Rey, & Hospido, 2012). 

Biodiesel has a lower toxicity, and reduced sulfur dioxide (SO2) emissions compared 

with conventional diesel fuel (Romano & Scandurra, 2011). However, biodiesel has greater 

nitrous oxide emissions (NOx) and a lower calorific capacity; this leads to higher fuel 

consumption, lower freezing point, and decreased shelf life. In external combustors (boilers or 

heating devices) that use biodiesel blends, there is an estimated 1% reduction in NOx emissions 

for every 1% of biodiesel added (Lin, 2013).  

Worldwide, governments are showing interest in biofuels for several reasons including: 

energy security, trade balance, GHG emission reduction, and rural income generation (De 

Fraiture, et al., 2008). Brazil was the first to adopt policies regarding the production of biofuels, 

followed by the US and the EU (Firbank, 2012). In 1975, Brazil's Proálcool promoted the 

production of ethanol from sugarcane (Cavalcanti & Jalles, 2013). In 2007, the United States 

Energy Independence and Security Act mandated the annual production of 36 billion gallons by 

2022 (Lin, et al., 2013). The American Taxpayer Relief Act of 2012 (ATRA) made permanent 

energy tax extenders, including: credits for non-business energy property and renewable 

electricity production, and tax credits for alternative fuels produced in the US (Nunns, Rohaly, & 

Center, 2013). Table 1 shows international interest in renewable fuels for use in the 

transportation sector (Murphy, Woods, Black, & McManus, 2011). 

The global production of biofuels such as biodiesel, accounted for 2 billion liters in 2005, 

whereas bioethanol accounted for 32 billion liters in 2006 (De Fraiture, et al., 2008). Coyle 

(2007) provided a summary of the different feedstock’s utilized for global biofuel production. 

Corn is the primary feedstock used in the US; wheat and sugar beets are used in the European 
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Union. Sugarcane, soybeans and palm oil serve Brazil’s bioethanol production needs. Animal 

fats, recycled oil and soybeans are used for biodiesel in the US, while soybean and sunflower oil 

are used in the European Union. Castor seed oil is the dominant feedstock for biodiesel used in 

Brazil.  

Table 1. 

Examples of Recent Policies Influencing the Use and Production of Biofuels 

 

There are some issues that need to be addressed in order to promote sustainable biofuel 

production systems. These include: food vs. fuel paradigm pollution from agricultural activities, 

and fuel consumption during the cultivation and conversion of biofuel crops (Langeveld, Dixon, 

& Jaworski, 2010). In the fuel vs. food paradigm, arable land that is used for edible crop 

production transitions into use for fuel production (Hao, Colson, Karali, & Wetzstein, 2013). 

Land requirement projections estimate an additional 100 Mha land is needed for biofuel 

feedstocks in order to produce substantial reductions in greenhouse gases (GHG) by 2050 

(Murphy, et al., 2011). The change in land use dynamic is also monetarily driven, due to 

institutional level tax incentives and subsidies for using oilseed crops in biofuel production 

(Rathmann, Szklo, & Schaeffer, 2010). 

Year Policy Summary

2006 Biofuels Research Advisory Council EU Vision 25% of transport fuel in EU by 2030

2009 EC – Renewable Energy Directive 10% of transport energy as renewable by 2020

2009 EC – Fuel Quality Directive Increases biofuel to 15% of transport energy by 2020

2007 Energy Independence & Security Act 2007 7% gasoline & diesel consumption in USA in 2022

2008 Gallagher Review 5 to 8% of transport energy recommended

2009 UK Renewable Energy Strategy 10% transport energy by 2020a

2008 IEA, 2008 Energy Technology Perspective 26% of total transport fuel demand in 2050

2010 IEA, 2010 Energy Technology Perspective 20% of total liquid fuel demand in 2050
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In North America from 2005-2007, there was an increase of 8.11% of land used for 

biofuel production, including an increase of 2.43% in oil seed crop production, with an increase 

of 212.79% in oil seed crops focused towards biodiesel production (Rathmann, et al., 2010). 

Comparatively, other countries are dedicating more land toward the production of oilseed crops. 

Land percentage changes for oilseed crops used as biodiesel feedstocks are as follows: Africa 

(+112.32%), Asia (+423.32%), Europe (+75.89%) and South America (+978.42%) (Rathmann, 

et al., 2010).  

Dedicating more land towards biofuel crop production places a higher demand on 

resources, such as water and fertilizer that are also used by edible crops. The increased demand 

for water in biofuel feedstock production could affect water supply and decrease water quality. 

There is also the risk of water pollution from agricultural chemical runoff and salinization from 

fertilizer application.  

There is also a higher demand in energy required for the production of biofuels. Biodiesel 

life cycle energy use includes agricultural production, oil extraction, and transesterification 

reactions (Janulis, 2004). During the production of biofuel there is a high demand on inputs, 

including energy requirements and fuel consumption (Mousavi-Avval, Rafiee, Jafari, & 

Mohammadi, 2011).  

A sustainable energy sector would have: low resource (land and water) requirements, 

high adaptability, high energy output per hour of labor, and negligible environmental damage 

(Giampietro & Ulgiati, 2005). Some ways to reduce environmental damage during the 

production of biofuel crops involve: using livestock manure as organic fertilizer, using non-

arable degraded grassland, and using non-edible forest residues to aid in the production of 

biofuels (Iriarte, Rieradevall, & Gabarrell, 2012). 
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2.2 Canola Benefits and Fertilizer Requirements 

Oil seed crops are of particular interest due to their valued use in a variety of products 

and by-products. Global oil seed Brassica production has increased from 2.7 million hm
2 

to over 

30 million hm
2
 since the 20

th
 century (Zhu, Liu, Shao, & He, 2011). Advancements in breeding 

have increased Brassica oilseed crop production. Fifty years of plant breeding techniques have 

altered fatty acid composition of Brassica napus (L.), Brassica campestris (L.) and Brassica 

rapa (L.) to create the canola "Canadian Oil, Low Acid" cultivar. Alterations in fatty acid 

composition changes the nutritional quality of canola, yielding one of the healthiest edible oils 

on the market (McInnis, Larson, & Miller, 1993). Canola produces seed oil with less than 2% 

erucic acid and cake meals with less than 30 μmol of aliphatic glucosinolates per gram (Raymer, 

2002). 

Canola belongs to the Brassicacae (mustard) family which includes Brassica rapa (L.), 

Brassica napus (L.) and Brassica juncea (L.) species. Around 1,000 years ago Brassica oleracea 

(L.) (Chromosomes n=9) and Brassica rapa (L.) (n=10) cross-pollinated and produced Brassica 

napus (L.) (n=19), one of the largest oil producing species of the Brassica family (Thomas, 

2003). Thirteen percent of the world’s edible oil supply comes from Brassica related species, 

primarily Brassica napus (L.) and Brassica rapa (L.), which typically contain (40%) or more oil 

with 35-40% protein in the cake press. 

The disadvantages of monoculture include soil degradation, intense use of agricultural 

chemicals, nutrient loss through leaching, and loss of biodiversity (Zegada-Lizarazu & Monti, 

2011). Crop rotation helps reduce the pressure from pests and diseases, improves water use 

efficiency (WUE) and provides market flexibility (Paulitz, Schroeder, & Schillinger, 2010). 

Including canola into crop rotations has several benefits over monoculture systems. 
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Another benefit of canola crop rotation is the use of canola crop to combat crop-specific 

pathogens (Kirkegaard, Christen, Krupinsky, & Layzell, 2008). Canola can serve as a break crop 

for such disease cycles as Rhizoctonia solani (L.) (Paulitz, et al., 2010). Soil-borne and leaf 

diseases are reduced when canola is included in wheat cropping systems. Reports indicate up to 

an 85% increase in wheat yield when canola was included in the rotation, compared to 

continuous wheat rotation systems (Angus et al., 2011). 

Canola production can affect several aspects of soil structure by releasing chemicals 

through root exudation, thereby producing stable biopores (Kirkegaard, et al., 2008). Brassica 

root tissues can promote the immobilization and release of mineral nitrogen into the soil (Ryan, 

Kirkegaard, & Angus, 2006). 

Brassicas are a well-known biofumagant, able to eliminate harmful pathogenic 

microflora.  Biofumagants are plants that, when damaged, produce volatile chemicals that hinder 

pest growth and development (Karavina & Mandumbu, 2012). Brassica tissue contains high 

levels of glucosinolates, which, when hydrolyzed, release isothiocyanates, nitriles, 

oxazolidinethione ionic thiocyanate (SCN−) and organic cyanides. These products have 

biocideal properties to several plant species (Morra & Kirkegaard, 2002). Brassica root tissues 

also suppress mycorrhizal fungi (Mozafar, Anken, Ruh, & Frossard, 2000). 

Annual Brassica napus (L.) production in the United States is estimated at over 499,787 

ha, with most in North Dakota for spring canola (George, Tungate, Beeck, & Stamm, 2012). As 

with most crops, canola yields vary year to year. During 2010 winter canola trials conducted in 

Williamsdale, NC using a split fertilizer application of (46-0-0 N-P-K fall: 80-0-0-26 N-P-K-S 

spring) for the following cultivars in the same location (Hybristar, Kadore and Dimension) 
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produced the respective crop seed yields: (1701, 1636, 2295 lbs/ac). In 2011 the same cultivars 

experienced a percentage difference of (+113.22), (+90.71) and (-6.06%) (Stamm, 2011).  

FAO (2008) stated that global demands for fertilizer nitrogen increased 1.4% (7.3 million 

tons), potassium increased 2% (4.2 million tons) and phosphorus increased 2.4% (3.6 million 

tons) in 2008. These increases will directly impact environmental health. To lessen 

environmental consequences, there is a need to optimize nutrient use efficiency and prevent 

fertilizer leeching and run-off. Nutrient efficiency of plants can be characterized by production 

response per unit of nutrient applied and absorbed, under similar environmental conditions 

(Fageria, Baligar, & Li, 2008).  

Breeding highly efficient cultivars and using management practices will maximize crop 

N use efficiency (Barraclough et al., 2010). Management practices focusing on fertilizer type and 

rate, seeding depth, tillage system, and irrigation practices all influence canola seed yield and 

quality (Hamzei, 2011; Mohammadi, Eskandari, Rokhzadi, & Heidari, 2012; Rathke, Christen, & 

Diepenbrock, 2005).  

An important consideration is fertilizer consumption that will be required to produce a 

crop such as B. napus (L.). Agronomic practices can reduce cultivation cost, and optimize 

production through improvement of seed yield, oil content, and nitrogen use efficiency (NUE). 

Canola yield potential is directly proportional to nutrient availability. Nitrogen (N), Phosphorus 

(P), and Sulfur (S) are the most influential nutrients for canola seed and oil yields (Ahmad, Jan, 

& Arif, 2006; Franzaring, Gensheimer, Weller, Schmid, & Fangmeier, 2012; Siddiqui, 

Mohammad, Khan, & Khan, 2008). Various physiological processes affect the movement of 

plant nutrients via absorption and translocation. Nitrogen is considered one of the most crucial 

nutrients for oilseed crop production. Nitrogen serves as a component for enzymes and provides 
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the structural framework to amino acids, proteins, nucleotides, chlorophyll, chromosomes, genes, 

and ribosomes (Anjum et al., 2012). 

During the vegetative stage (between germination and flowering), inorganic N is 

collected in leaves for use in the nitrate assimilation pathway, and amino acids are synthesized 

and stored. Amino acids are later used for proteins and enzymes that are responsible for 

facilitating biochemical pathways, influencing plant growth and development. As canola pod 

development occurs, N is translocated from vegetative (leaf, stem and root) into the generative 

organs (pod and seed) (Anjum, et al., 2012). During the late flowering stage through the ripening 

phase, the majority of N is translocated and partitioned from canola leaves into seeds. Previous 

researchers have estimated N uptake when planting and harvesting canola. This data can 

elucidate nutrient cycling processes and help estimate field residuals left after canola harvest. For 

every 90 kg of seed produced, there should be at least 6 kg N ha
-1 

supplied as fertilizer (Rathke, 

Christen, & Diepenbrock, 2005). Scientific studies concluded, that from 1,960 kgha
-1

 of canola 

seed yield produced; 76 kg N ha
-1 

grain and 49 kg N ha
-1

 straw while K2O occurred in the above 

ground portion (grain, straw etc.) around 93 kg K2O ha
-1

 (Holzapfel, 2007). 

Nitrogen applications of (75, 150, and 225 kgha
-1

) produced the respective values of seed 

N (50.7%), (44.5%) and (41%) (Franzaring, et al., 2012). The maximum canola seed yields for 

winter canola occur with fertilizer applications in the range of 180-220 kg N ha
-1 

(Jackson, 

2000). Increasing N levels reduces oil percentage in canola seeds (Ahmad & Abdin, 2000). 

When treatments included a combination of both S and N fertilizers, the oleic and linoleic fatty 

acids increased the nutritional value of canola oil. Increasing fertilizer rates from 20 kg N ha
-1

 to 

70 kg N ha
-1

 increased seeds per pod and pods per plant, while reducing oil percentages in 

Brassica crop (Siddiqui, et al., 2008). 
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Nitrogen fertilizer management practices can enhance economical and environmental 

outcomes. Improved N fertilizer efficiency is achieved with split applications of fertilizer 

throughout the growing season (Garnett, Conn, & Kaiser, 2009). It is an unrealistic expectation 

to reach (100%) efficiency in N use, which striving to do so is problematic for fertilizer 

application (Miller, 2010). The rate and extent to which N losses occur depends on many factors 

such as: amount and formulation of N, pH of the soil , soil moisture, soil temperature, and soil 

texture (Balasubramanian et al., 2004; Ghobadi et al., 2006; Pregitzer & King, 2005; Singh, 

Sanabria, Austin, & Agyin-Birikorang, 2012).  

Methods for improving N use efficiency include utilizing precision agriculture focusing 

on the amount and placement of N, using slow release fertilizers, and proper timing of fertilizer 

application (Samborski, Tremblay, & Fallon, 2009). For example, solid fertilizer should be 

applied earlier in the season for optimal nitrogen uptake and utilization, which influences crop 

yield (Gianquinto et al., 2004). When nitrogen fertilizers are misused they can contribute to 

point- and non- point sources of pollution. Nonpoint source pollution from agricultural practices 

contributes significantly to water pollution in the United States (Rabotyagov, Valcu, & Kling, 

2012). Within the last century agricultural and cultural activity has increased N emissions to such 

levels that many ecosystems experienced a shift, reflected by alterations of N cycling and 

biodiversity in diatom, lichen, mycorrhizal fungi, and terrestrial plant communities (Pardo et al., 

2011). 

Other nutrients important for a productive canola crop include phosphorus (P), potassium 

(K) and calcium (Ca). Phosphorus, found in nucleic acids and phospholipids of plant organs, is 

crucial for energy metabolism (Grant & Bailey, 1993). Phosphorus affects plant processes such 
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as root development, flowering, and ripening (Thomas, 2003). Grant & Bailey (1993) estimated 

that canola seed yields of 2,000 kgha
-1 

contained 22 kg P ha
-1

 in the seed and straw. 

Potassium is not quite as important for canola yield but still needed in large amounts to 

ensure proper physiological and morphological growth. Canola physiological functions impacted 

by potassium supply are: respiration for carbohydrate metabolism, formation of chlorophyll and 

proteins, water use efficiency, and assimilatory production and translocation mechanisms 

(Orlovius, 2003). After harvest, canola plots that were applied with 60 kg K ha
-1

 contained 5.8-

7.7 g of K per kg of seed, and control plots contained between 5.5-7.3 g of K per kg of seed 

(Brennan & Bolland, 2005). This demonstrates how the addition of K fertilizer can alter seed 

composition. Canola plants that are deficient in K exhibit stunted growth, shorter internodes, leaf 

scorch, wilting, and necrosis (Orlovius, 2003).  

Calcium is another important nutrient that helps maintain plant fertility. There is a 

relatively high demand for calcium in dicots such as canola. They depend on calcium for 

physiological processes such as cell elongation , cell division and detoxification of metal cations 

including Al
3+

, Fe
2+

 and Mn
2+

 (Grant & Bailey, 1993). 

The second most important nutrient for canola is sulfur (S). Sulphate is absorbed by plant 

roots and enters the leaf tissue through the xylem (Orlovius, 2003). Once absorbed, sulfur is 

assimilated into amino acids such as cysteine, which produces methionine or cysteine proteins 

(peptide and glutathione) (Rausch & Wachter, 2005). Sulfur is involved in chlorophyll synthesis, 

as well as oil synthesis, for members of the Brassicacae family. Proper S availability is vital for 

fatty acids synthesis and for metabolites, such as: coenzyme A, vitamin B, biotin, lipoic acid and 

sulpholipids (Malik, Aziz, & Wahid, 2004; Meher, et al., 2006). Sulfur is a critical component 

for nitrate-reductase, an enzyme responsible for the formation of amino acids and proteins from 
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nitrate (Ahmad & Abdin, 2000). Grant & Bailey (1993) recommended that, during flowering, 

canola leaf tissue concentration of S are normal at (.2-.25%), with suboptimal (≤.2%) and 

excessive (≥1.0%).  

2.3 Water logging  

Canola’s physiological and morphological characteristics are disrupted when soil is 

exposed to prolonged periods of saturation. Water logging of soil causes: increased ethylene 

production, decreased superoxide dismutase enzymes (SOD) and Catalase (CAT), and 

accumulation of malondialdehyde (MDA). These factors decrease pod and leaf photosynthetic 

rates, which decreases yields of pods per plant and seeds per pod (Zhou & Lin, 1995). Reactive 

oxygen species (ROS) damage cells and organelles, contributing to enzyme inactivation, while 

degrading pigments, proteins, lipids, and nucleic acids (Habibzadeh, Sorooshzadeh, Pirdashti, & 

Modarres Sanavy, 2012; Karuppanapandian, Moon, Kim, Manoharan, & Kim, 2011). Water 

logged soil degrades plant’s chlorophyll production by reducing stomata conductance, which 

limits water uptake and contributes to early leaf senescence (Parent, Capelli, Berger, Crèvecoeur, 

& Dat, 2008).  

Plants use oxygen as a primary electron acceptor in aerobic respiration. Under 

waterlogged conditions, oxygen is limited and plants switch to anaerobic respiration, as microbes 

use Nitrate (NO3
- 
), Iron (Fe), Manganese (Mn) and Sulfate (SO4

-
)
 
for energy production 

(Hartman, 2011). Anaerobic respiration decreases stomata conductance, net CO2 assimilation 

rate and root hydrolytic conductivity (Ashraf, 2012). These reductions deplete carbohydrate 

reserves and hinder translocations, which affects plant physiological and morphological 

functions (Parent, et al., 2008). Nutrient deficiency is common in water logging situations.  
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During spring water logging, there is a decrease in the uptake of N, P, K and Ca, which 

contributes to a reduced seed yield in B. napus (L.) (Boem, Lavado, & Porcelli, 1996). 

2.4 Chlorophyll Sensor Based Technology 

Leaf chlorophyll is in the visible electromagnetic radiation (EMR) spectrum 400-700 nm 

wavelength. The photosynthetic reactions that take place in plants only convert 8-10% of 

sunlight energy into sugars to drive metabolic functions (Kirschbaum, 2011). A plant’s 

photosynthetic potential is directly proportional to the quantity of chlorophyll present in the leaf 

tissue. Plant sensor-based chlorophyll readings help determine the N status of a crop before 

symptoms of nutritional deficiencies manifest. Sensor-based technology could improve NUE by 

allowing for more timely and accurate fertilizer recommendations (Samborski, et al., 2009).  

Plant species, leaf variegation, leaf thickness and leaf age affect the accuracy of 

chlorophyll meters. There is not always a strong correlation between photosynthetic activity and 

leaf N. This is due to the different allocation of leaf soluble proteins, such as those involved in 

the Calvin cycle, and the pigments, which are the protein/reaction centers for thylakoid 

complexes (Jifon, Syvertsen, & Whaley, 2005). Applying N fertilizer increases chlorophyll 

meter readings (Gianquinto, et al., 2004). With increasing N supply, the contents of leaf 

chlorophyll A, chlorophyll B, as well as the total chlorophyll increased, but there was only a 

slight reduction to chlorophyll A/B ratios (Anjum, et al., 2012). 

Advanced calibration of sensor-based meters is limited by several factors, including: 

environmental conditions, soil properties, plant genotype, leaf structure variations, and plant 

developmental stage. An important consideration when using optical sensors are plant 

morphological and physiological characteristics which influence absorption and reflectance of 

light beams (Araus, Casadesus et al. 2001). Estimating N need with sensor-based meters, it is 
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crucial that readings are taken during the developmental stage that accurately reflects the crop’s 

yield potential. Holzapfel (2007) suggests that this critical period for canola falls between the 

five-leaf and early flowering stage.  

2.5 Oil Production, Extraction and Storage  

Globally, 79% of the available vegetable oil comes from palm, soybean, rapeseed and 

sunflower seeds (Dyer, Stymne, Green, & Carlsson, 2008). The most critical factor in optimizing 

Brassica napus (L.) yield is the balance between crude protein synthesis and oil accumulation 

(Rathke, et al., 2005). When the availability of soil N increases, protein synthesis increases, 

thereby reducing carbon availability for fatty acid synthesis (Ghasemnezhad & Honermeier, 

2008). Increasing the availability of N increases seed yield, energy production, CO2 storage, and 

crude protein; however, the oil content of canola decreases (Rathke, et al., 2005).  

Prior to flowering, up to 76% of the plant’s N is located in the leaves, while the 

remaining N is partitioned in the stems. During pod formation, plants reallocate N from leaves to 

pod walls, where N will mobilize into the seed (Holzapfel, 2007). Canola seed experiences rapid 

lipid accumulation 7-35 days after flowering (Anjum, et al., 2012). 

After flowering canola begins three stages of pod development. The first stage occurs 0-

20 days after anthesis (DAA), when siliques reach their maximum length; the second occurs 20-

50 DAA, when the replum becomes lignified; the third occurs 50–70 DAA, when lignified cells 

undergo senescence (Roberts, Elliott, & Gonzalez-Carranza, 2002). The most sensitive stage of 

canola development is during seed filling, which high temperatures and drought stress can affect 

the chlorophyll content of the seeds, leading to poor seed quality (Onyilagha, Elliott, Buckner, 

Okiror, & Raney, 2011). During seed processing, seeds are crushed and the chlorophyll is 
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extracted. Untreated seed “green seed”, (excessive amounts of chlorophyll) is less marketable 

due to the resulting oil’s dark coloration.  

After harvesting there are several energy-intensive steps required for processing and 

storing canola seed, including: seed cleaning, seed coat removal, chaff separation, cracking 

(heating) extraction, oil purification, and purified oil storage (Anitescu & Bruno, 2011). 

Different oil extraction techniques yield different quantities and qualities of oil. There is a trade-

off in quantity and quality of oil produced during solvent extraction versus mechanical extraction 

(Santori, Di Nicola, Moglie, & Polonara, 2012). Solvent extraction leaves around 2% of oil in the 

meal. Mechanical extraction method leaves more oil in the meal, around 7-8%, but produces a 

higher quality meal, with a higher available energy content and increased palatability (Landero, 

Beltranena, Cervantes, Araiza, & Zijlstra, 2012; Seneviratne, Beltranena, Goonewardene, & 

Zijlstra, 2011).  

Whether the goal is edible food oil or biofuel, several steps in post-oil extraction 

techniques improve storage stability and the oil’s taste, smell and appearance. Oil is refined by:  

degumming (removes substances that would separate during storage), neutralization (reduces 

FFA and oxidation products), and deodorization (reduces FFA, removes odors and volatile 

compounds) (McKevith, 2005). Canola possesses a few undesirable compounds, such as lignin, 

cellulose, and glucosinolate, which are difficult for animals to digest. Additional refinement is 

needed, which is another step that produces a high amount of energy during the processing and 

refinement of canola oil.  

2.6 Canola Yield Potential Factors 

Canola seed is released when the pod’s two silique valves split, separating the replum 

from the pericarp edge. This process is known as dehiscence, or “pod shatter” (Wang, Ripley, & 
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Rakow, 2007). Pod shatter, influenced by cultivar selection and environmental conditions (such 

as dry conditions during growth and heavy snowfall after maturity), causes significant seed loss 

in canola (Lewis, Leslie, & Liljegren, 2006; Wang, et al., 2007). 

Pod shatter increases with insect infestation from Dasineura brassicae (L.), bacterial 

infection from Alternaria, and adverse weather conditions (Child & Evans, 1989; Roberts, et al., 

2002; Thomas, 2003). Manual harvest operations are linked to an increased persistence of feral 

canola and increased seed loss (Zhu et al., 2012). Manual harvesting results in an estimated yield 

loss of 50% (Zhang et al., 2012). Conventional agricultural practices, using combines, results in 

a yield loss averaging only 5.9% (Gulden, Shirtliffe, & Thomas, 2009). Using combines instead 

of manual harvesting also reduces costs up to 30% (Zhang et al., 2012). In order to obtain a 

higher seed yield, harvest operations should occur during early morning or evening times, when 

moisture levels of seed are between 10-15%. The same researcher recommended storing seeds at 

a moisture level of 8.3% (Hall 2011). 

2.7 Seed Storage and Moisture Content 

Canola seed is highly susceptible to mold, micoflora and mite infestation when seed 

moisture is above 10% (Sathya, Jayas, & White, 2009). Seeds should be dried at no more than 

43
o
C, and stored at 10

o
C with 10% or less moisture and 65% relative humidity (Thomas, 2003). 

Canola stored at a temperature of -5
o
C can experience fungal infestations when seed moisture 

content is as low as 7% (Humboldt, 2012). Surprisingly, pockets of high temperature and 

moisture occur and spoil seed quality even when seeds are stored in cool and dry conditions, at a 

temperature of 18
o
C (Applewhite, 1993). 

Field fungi such as Cladosporium, Alternaria, Rhizoctonia solani, Fusarium spp., and 

Pythium spp. contribute to Brassica seed spoilage (Garg, Li, Sivasithamparam, Kuo, & Barbetti, 
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2010; Meena, Awasthi, Chattopadhyay, Kolte, & Kumar, 2010; Saharan & Mehta, 2006).  

During storage, fungi such as Penicillium spp. and Aspergillus spp. also cause disease (Tańska, 

Konopka, Korzeniewska, & Rotkiewicz, 2011; Wallace & Sinha, 1962). Fungal infestations can 

lead to slow seed deterioration and mycotoxin production (Arora, 2003). 

High seed moisture content and the presence of fungal and bacterial infections contribute 

to fermentation, oil oxidation, and grain germination (Humboldt, 2012). These factors affect the 

overall value, quality and viability of the canola seed (Tańska, Konopka, Korzeniewska, & 

Rotkiewicz, 2011). Improperly stored seeds show increased lipolytic enzymatic activity, which 

increases levels of mono- and diacylglycerols (Scrimgeour, 2005). Mono- and diacylglycerols 

are considered impurities in biodiesel (Pauls, 2011). Typically, lipolytic activity is inhibited in 

non-germinated seeds (Barros, Fleuri, & Macedo, 2010).  

2.8 Fatty Acids 

After oilseeds are harvested and oil is extracted, the most important factor affecting oil 

quality is fatty acid composition. Fatty acid composition determines the end use (edible or 

industrial) for the oil (Thomas, 2003). Genetic factors have the strongest influence on fatty acids 

for members of the Brassica family. The most common fatty acids in plants are palmitic, stearic, 

oleic, linoleic and linolenic acids; these account for 95-98% of the plant’s fatty acids (Sheikh, 

Shahnawaz, & Baloch, 2010). The saturated fatty acids in canola are palmitic and stearic acids; 

the unsaturated fatty acids include palmitoleic, oleic, linoleic, and linolenic acids. The quality of 

oil is determined by oleic, linoleic and erucic acid contents and is highly affected by the cultivar 

selection (Aslam et al., 2009; Rad & Zandi, 2012; Schierholt & Becker, 2011). 

In both corn and canola oil, oleic acid concentrations are typically greater than 60% (Shin 

et al., 2012). Linoleic and linolenic acids are desirable fatty acids, while palmitic and erucic are 
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undesirable fatty acids in terms of edibility (Joshi, Mali, & Saxena, 1998). Commodity canola oil 

has a fatty acid composition of 5-8% erucic acid, 60- 65% monounsaturated fats and 30- 35% 

polyunsaturated fats (Raymer, 2002). Fatty acid compositions reported for winter and spring 

rapeseed cultivars contain ranges of: 63.62-67.38% oleic, 18.87-19.06% linoleic, and 7.55-9.76% 

linolenic, with concentrations less than 1% for erucic, and palmitic acid (Rad & Zandi, 2012). 

The human body can’t independently produce linoleic acid, which is one of the most 

nutritionally important unsaturated fatty acids, attributed to reducing cholesterol and preventing 

arteriosclerosis (Rad & Zandi, 2012). 

Fatty acids behave inconsistently, due to a wide array of molecular species possessing 

various melting points (Scrimgeour, 2005). Oils with similar fatty acid composition may have 

different polymorphic forms and differences in solid fat content (crystal amount) (Karabulut & 

Turan, 2006; Ribeiro et al., 2009; Scrimgeour, 2005). The differences between the various fatty 

acids physical properties are attributed to structural differences, such as actyl chain length and 

the number of double bonds (Durrett, Benning, & Ohlrogge, 2008). Triacylglycerols (TAG) 

containing a long chain with saturated acids, possess higher melting points due to increasing 

chain length. However, melting points decrease with increasing unsaturation, such as with 

polyunsaturated fatty acids (Scrimgeour, 2005).  

Environmental conditions, including heat and salinity, as well as management practices, 

including planting date and fertilizer application, affect fatty acid metabolism. When sowing 

times were delayed researchers noted that palmitic, stearic, and linoleic acids increased (Turhan, 

Gul, Egesel, & Kahriman, 2011). Nitrogen significantly influences biochemical reactions that 

affect plant physiological development of fatty acids (DeBonte, Iassonova, Liu, & Loh, 2012).  
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Fatty acid composition undergoes different effects, depending on fertilizer combination. 

When S and N are applied together, oleic acid and linoleic acid increased, while eicosenoic acid 

and erucic acid decreased. However, when S and N are applied separately, this result does not 

occur (Ahmad & Abdin, 2000). 

Compared to a control, an application of 100 or 150 kg N ha
-1

 increases concentrations of 

palmitic, stearic, oleic, linoleic, linolenic, arachidic, eicosenoic, behenic, erucic and nervonic 

acid (Zheljazkov, Vick, Ebelhar, Buehring, & Astatkie, 2012). Application of a combination of 

soil- and foliar- applied fertilizer (90-30-30-2 N-P-K-S) encouraged fatty acid unsaturation in 

erucic acid-free rapeseed genotypes (Siddiqui, et al., 2008). 

An important consideration in cultivating canola is variability of seasonal weather, which 

affects the quality of the end product. Temperatures during crop production affect free fatty acid 

composition (Aksouh-Harradj, Campbell, & Mailer, 2006; Aslam, et al., 2009; Sheikh, et al., 

2010). The canola flowering period lasts 2-5 weeks and is the most critical and sensitive time. 

During this period, the seed’s cotyledons experience changes in fatty acid composition, 

accompanied by rapid oil accumulation (Aksouh-Harradj, et al., 2006). 

Day duration and temperature during critical times such as flowering have a significant 

effect on seed weight and fatty acid composition. Researchers evaluated temperature changes 10 

days after flowering using day time temperatures of 28°C and nighttime temperatures of 23°C 

for a duration period of either 5 or 10 days. Regardless of the duration of days , they reported an 

increase of 7.5-11% in oleic acid, a decrease of 15-13% in linoleic acid, and a decrease of 16-

41% in linolenic acid (Aksouh-Harradj, et al., 2006). Increased temperature delays seed 

maturation and inhibits oleic acid desaturation (Deng & Scarth, 1998). Increasing temperature 

during canola growth has also been linked to increased oleic acid biosynthesis (Aslam, et al., 
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2009). Salinity also causes alterations in canola’s fatty acid composition. When NaCl is applied 

at 200 mM to B. napus (L.) seed, there is an increase in Peroxidase and Indole-3-Acetic Acid 

(IAA) oxidase, which affects physiological mechanisms (Bybordi, Tabatabaei, & Ahmadev, 

2010).  

Oil storage conditions, including duration of storage, affect oil quality standards such as 

oxidation stability. Storing canola for 90 days at a temperature of 25
o
C resulted in an oil 

reduction of 2.3-3.1% and a peroxide increase of 60-70% (Suriyong, 2007). Oxidation stability 

depends on the amount and position of double bonds, which influence both nutritional and 

industrial applications (Knothe & Dunn, 2003). Oxidation stability increases with increasing 

concentrations of oleic acid. The stability of fatty acid compounds is affected when exposed to 

air, heat, light, and peroxides. High oleic fatty acid canola oils used for industrial operations 

require a long shelf life (9-12 months), which can be accomplished by reducing linolenic and 

linoleic acids, under ambient temperature (DeBonte, et al., 2012).   

The structural properties of fatty acids determine the quality and quantity of biodiesel. 

Fatty acid composition impacts several characteristics of biodiesel production such as: 

flashpoint, viscosity, cetane number, cloud point, pour point, calorific value, acid value, ash 

content, and cold flow properties. Longer fatty acid carbon chains and an increasing molecular 

saturation generate a higher cetane number. A higher cetane number produces better fuel ignition 

characteristics. With increasing cetane number, cold flow properties of biodiesel improve and 

white smoke formation is minimized (Ramos, Fernández, Casas, Rodríguez, & Pérez, 2009). 

However, biodiesel with a higher cetane number is more likely to cause obstructions in fuel 

injectors (Knothe, 2008). A fatty acid composition of branched and aromatic compounds 

generates a lower cetane number. For example, methyl linolenate has a lower cetane number 
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compared to methyl palmitate and methyl stearate. In colder climates, crystallization, gelling, 

and increased viscosity limit biodiesel usage. If biofuel feedstock has a high percentage of 

unsaturated fatty acids, the cold flow properties (pour point, cloud point) will improve.  
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CHAPTER 3 

Methodology 

 North Carolina Agricultural and Technical State University Research Farm is located 

223m above sea level at coordinates: latitude: 36.06733°, longitude: -79.73447. The current 

climate hardiness zone is classified as zone 7A. The experimental site was conducted on a soil 

type classified as a Mecklenburg Sandy Clay Loam (Taxonomic class: Fine, mixed, active, 

Thermic Ultic Hapludalfs). The soil is well drained with 6-10% slopes, and moderately eroded.  

3.1 Experimental Design 

A three year long experiment was conducted from 2009-2012 in the piedmont region of 

North Carolina. Two cultivars of winter canola (Virginia and DKW 46-15) were grown during 

the three year study period. The experimental design was a split plot randomized complete block, 

with cultivar (2) as main plots and fertilizer rates (4) as sub plot, in 4 replications. 

 

P 16 P 15 P 14 P 13 P 12 P 11 P 10 P 09 P 08 P 07 P 06 P 05 P 04 P 03 P 02 P 01 
 4 m  

T-B-1 T-B-4 T-B-3 T-B-2 T-A-1 T-A-3 T-A-2 T-A-4 T-B-2 T-B-1 T-B-3 T-B-4 T-A-1 T-A-4 T-A-3 T-A-2 

 1 m  1 m 21 m 

P 32 P 31 P 30 P 29 P 28 P 27 P 26 P 25 P 24 P 23 P 22 P 21 P 20 P 19 P 18 P 17 

T-B-4 T-B-1 T-B-2 T-B-3 T-A-2 T-A-4 T-A-1 T-A-3 T-B-3 T-B-4 T-B-1 T-B-2 T-A-4 T-A-1 T-A-2 T-A-3 

 4 m  

66 m 

1 - No  
Fert 

2 -  
100% 
RDF 

3 -  
50%  
RDF +  
SS 

4 -  
100%  
RDF +  
SS 

31 m 31 m 

Fert : Fertilizer,  RDF : Recommended  
Dose of Fertilizer,  SS : Soysoap 

T : Treatment,  A : Variety -1,  
B : Variety - 2 

 

Figure 1. Canola plot randomization and experimental design during 2010-2011. 
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Fertilizer rates were calculated and adjusted from preplant soil analysis. The 100% 

recommended fertilizer rates were based on (N-P-K) rates suggested for B. napus (L.) cultivated 

in North Carolina. The 50% fertilizer rates were based on half of the full fertilizer rate 

recommendation. Fertilizer rates included: 140-56-168 (N-P-K) kgha
-1 

(100% fertilizer 

recommendation +Soysoap), 140-56-168 (N-P-K) kgha
-1 

(100% fertilizer recommendation), 70-

28-84 kgha
-1 

(N-P-K) + Soysoap (50% fertilizer recommendation + Soysoap) and 0-0-0 kgha
-1 

(N-P-K) (control). In 2012 70-28-84 kgha
-1 

(50% fertilizer recommendation) treatment was 

added. This treatment addition was presumed to help differentiate the effectives of soysoap 

application on plots that received lower fertilizer rates.  

3.1.1 Soysoap. Soysoap is an agricultural surfactant made from biodegradable food 

waste. Surfactants in agricultural applications can help spread spray solutions, reduce retention 

and crystallization of spray droplets, and maximize penetration through leaf surface structures, 

such as trichomes and bud scales (Baseeth & Sebree, 2010). Surfactants may potentially aid in 

nutrient delivery to plant tissue by affecting absorption on stomata openings, cuticle hydrophilic 

pores, and through plasmodesmata (Li, Li, Xiao, Zhao, & Wang, 2009). This could potentially 

help minimize nutrient loss and increase crop oil and seed yields. 

3.2 Land Preparation and Fertilizer Application 

Plots were prepared at the beginning of planting by plowing then disking the field. The 

field was divided into (4) blocks with (8) plots per block. Each block represents a replication 

consisting of (4) plots for each of the (2) canola cultivars. Each subplot was 6.2 x 10m
2
. Seed 

planting was completed using a push seeder, which dug a furrow as it was pushed from one end 

of the plot to the other, allowing seeds to drop along the way. Eight rows of canola were planted 

with 15cm row spacing.  
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Fertilizer treatments were applied in split applications: pre-planting fertilizer was applied 

by broadcasting, and then at the 4-5 leaf stage fertilizer was banded. Banding was completed by 

using a warren hoe to dig furrows 1 inch away from the crop row with fertilizer placed by hand 

in the furrow which was then covered. Sources of fertilizer used in this study were 14-14-14 (N-

P2O-K2O), NH4NO3 and K2O Cl. Soysoap was mixed with water in a (0.12:30.28 soysoap:water 

ratio) and then applied using a backpack sprayer. Soysoap application was applied at the 

beginning of 50% flowering for 4 weeks. The planting dates for 2010, 2011 and 2012 were 

October 3, 2009, October 1, 2010, and October 7, 2011. Harvesting was done on May 30
th

 in 

2010, May 21
st
 in 2011 and May 31

st
 in 2012. After harvest in 2010 and 2011 a summer 

rotational crop was planted. In 2010 Cucurbita pepo (L.) was planted and in 2011 Cucumis 

sativus (L.). 

3.3 Soil and Plant Sampling  

Soil samples were collected using a soil auger from the top 6-8 inches of the soil. 

Samples were air dried for 24 hours then crushed using a wood mallet and sieved through a 2 

mm sieve. Soil samples were analyzed for plant nutrients Ca, Cu, Fe, K, Mg, Mn, P, Zn using a 

modified Mehlich-3 procedure described by Sparks et al., (1996). Soil was measured 5 g of soil 

was measured into a 100mL plastic bottle. 25 mL of Mehlich extractant was added. Samples 

were then placed in a mechanical shaker for 5 minutes. Mixture was then filtered in Buchner 

funnels fitted with Whatman no. 42 porosity paper. Filtrate was analyzed on a Flow Injection 

Analyzer. 

For the analysis of Ammonium and Nitrate, a 2M KCl modified method described by 

Sparks et al., (1996) was followed: Four grams of soil was placed with 40 mL 2M KCl extract 

into a centrifuge tube. Samples were disturbed using a mechanical shaker for 30 minutes. The 
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samples were removed and then centrifuged for 10 minutes at 2,500 RPM. Buchner funnels were 

fitted with Whatman no. 42 porosity paper. Supernatant was then poured into the prepared 

funnels into a 50ml plastic bottle. Samples were analyzed using Inductively Coupled Plasma 

Mass Spectrometry. 

3.4 Chlorophyll Meter Readings 

In 2012, chlorophyll meter readings were recorded a day after the canola crop was 

sprayed with soysoap. Using a Field Scout CM-1000 chlorophyll meter, (10) leafs from mature 

undamaged plants was selected. For each leaf the chlorophyll meter laser was focused in the 

middle of the leaf lamina between the midrib and edge recording (5) readings, which were 

averaged. Once readings were recorded the leaves were collected and removed from the field, 

washed, dried, and prepared in a grinder until particulate material was of a fine particle size.  

3.5 Total Nitrogen of Leaf Tissue through Combustion  

Total Leaf N was analyzed through a modified method described by Plank (1992), which 

used combustion analysis. A Leco (C-H-N Analyzer) was utilized for total leaf N analysis. Leaf 

material was weighed (2.5g) into a tin capsule which was folded and placed in the combustion 

machine. The samples were then oxidized with O2 at 975
o
C for 2 minutes and carbon, hydrogen, 

and nitrogen was calculated and recorded.  

3.6 Canola Harvest 

During 2010 and 2011 canola plots were harvested using hand loppers. Cut plots were 

then placed onto a tarp and manually threshed to extract seed. Seed was then sieved to remove 

excess particulate matter and then air dried. In 2012 canola harvest methods were changed in 

order to enhance harvesting of plots. Canola plants were harvested by cutting the plants at the 

base with a Stihl weed eater fitted with a trimmer attachment. Canola plants were placed onto a 
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plastic tarp and manually threshed. Seeds were cleaned with a canola sieve to remove chaff and 

air dried.  

3.7 Oil Extraction 

Oil was extracted from the seeds via two methods: Samples were taken from each plot 

and extracted in triplicate by hexane lipid extraction during 2010, 2011 and 2012. Mechanical 

seed oil extraction was completed in 2011 and 2012 due to the acquisition of an Okeotec CA 

5963 seed press. 

3.7.1 Soxhlet extraction. Lipid extraction was completed following a modification of 

AOAC Official Method 948.22 (Venkatachalam & Sathe, 2006). Forty grams of seed was 

weighed and then pulverized using a coffee grinder for 15 seconds. Prepared ground seed was 

then placed into a cellulose extraction thimble (43mm x 123mm). 400 ml of hexane was poured 

into the still pot of the soxhlet apparatus. The temperature was brought to 69ºC (boiling point of 

hexane). Once the proper temperature was achieved the extraction tube was inserted along with 

the condenser tube. The thimble was then placed into the condenser tube. Reflux took place for 6 

hours. The still pot was removed, and contents poured into a 500ml beaker which was then air 

dried for 1 day under a fume hood to remove residual hexane. Samples were then weighed and 

lipid content was calculated.  

3.7.2 Mechanical seed press. An Okeotec CA 5963 seed press was used to mechanically 

extract canola oil from seed. Seed from each plot was collected, weighed (2.2kg), and crushed. 

Samples were weighed and lipid percentage was calculated.  

3.8 Fatty Acid Analysis  

In 2011 and 2012 oil that was extracted through soxhlet lipid extraction had free fatty 

acid concentration calculated. Free fatty acids are considered impurities and affect the shelf life 
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of oil. During 2012 total fatty acid concentration was calculated for mechanically extracted oil. 

Fatty acid concentration helps define the overall quality of the biofuel feedstock (Van Gerpen 

2005). To produce biodiesel from virgin feedstock it is important to determine if any differences 

exist between cultivars produced or from the fertilizer rates applied. Free- and total- fatty acid 

analysis was performed following methods developed by Bryce, (2000). 

3.8.1 Free fatty acid analysis by solid phase extraction. Samples from soxhlet oil 

extraction were weighed between 0.23-0.27g and then placed into a 15ml vial. The addition of 10 

ml of 2:1 chloroform:methanol was made. Samples were vortexted for 30 seconds. Samples were 

allowed to settle for 5 minutes. The samples were then centrifuged at 15
o
C for 10 minutes at 

3,000 rpm. From the bottom layer 3ml of sample was extracted and preconditioned on a supleco 

superclean LC-NH2 SPE cartridge by passing 6ml of hexane thru the column. Then the transfer 

of 3ml of 2:1 chloroform:methanol was made onto the column. Then 3ml of 2:1 

chloroform/isopropanol was added thru the column to remove neutral lipids. All solvents were 

then discarded. The free fatty acids were eluted off the LC-NH2 column using 6 ml of 2% acetic 

acid in diethyl ether and collected in a 10ml sample vial. Samples were then analyzed on Gas 

Chromotgraph using nukol megabore column.  

3.8.2 Total fatty acids transesterfication of fatty glycerides to fatty acid methyl 

esters. Samples from mechanical oil extraction were weighed between 0.23-0.27g of oil and then 

placed into a 10ml vial. The addition of 1.0ml of tetrahydrofuran at room temperature was added 

along with 1.0ml of 1M KOH/methanol and then vortexed for 30 seconds. Samples were then 

allowed to settle for 1 minute. The addition of 1ml of boron trifluoride/methanol was made and 

the sample was vortexed for 1 minute. The solution was then heated to 100
o
C in a hot water bath 

for 15 minutes and then cooled to room temperature. The addition of 0.5ml NaCl [36g/100ml di 
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H20) was made. Then 1ml of isooctane was added and the sample was vortexed for 10 seconds. 

Samples were then centrifuged for 15 minutes at 3,000 rpm at 15
o
C and the top layer was 

removed and analyzed on a gas chromatograph using DB-23 capillary column.  
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CHAPTER 4 

Results 

Below are the results that were obtained for dry seed yield (kgha
-1

), mechanical and 

solvent extraction oil percentage, chlorophyll meter readings (2012), total- and free- fatty acid 

concentrations. Statistical analysis was completed using SAS (9.2v, SAS Institute Inc, Cary, 

NC). Post hoc analysis was performed using Duncan Multiple Range Test (Duncan, 1955). 

4.1 Dry Seed Yield (kgha
-1

)  

During the 2010 growing season statistical analysis was conducted on dry seed yield 

(kgha
-1

) and revealed that the rate of fertilizer applied had a significant effect, (p < 0.01) on yield 

potential (Table 2 see Appendix). Post hoc analysis indicated that plots that received additional 

fertilizer produced significantly higher yields than the control (Table 3). There was a significant 

effect from cultivar, (p = 0.04) and fertilizer rate, (p = 0.03) on dry seed yield (kgha
-1

) in 2011 

(Table 2 see Appendix). Post hoc analysis did not show any statistical difference between 

cultivars Virginia and DKW 46-15 to produce significantly different seed yields. Post hoc 

analysis showed that plots applied with 140-56-168 (kgha
-1

) with or without soysoap application 

produced significantly higher yields than the control (Table 3).  

Table 3.  

Post Hoc Duncan Multiple Range Test from Statistical Analysis During 2010 and 2011 Dry Seed 

Yield (kgha
-1

)  

Fertilizer Rate 2010 2011 

0-0-0 334.9B 283.3B 

70-28-84 + Soysoap      864.5A 504.2BA 

140-56-168 929.7A 654.2A 

140-56-168 + Soysoap 1013A 789.2A 

Note. Fertilizer rates with a letter in common are not significantly different at (α = 0.05) level of 

significance as indicated by Duncan’s multiple range tests. 
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Table 4.  

2010, 2011 and 2012 Mean Cultivar Fertilizer Efficiency  

Year DKW 46-15 Virginia 

2010   3.42A   2.22B 

2011 1.57 1.20 

2012 3.71 3.15 

Note. Fertilizer rates with a letter in common are not significantly different at (α = 0.05) level of 

significance as indicated by Duncan’s multiple range tests. 

There was a significant interaction effect, (p = 0.01) found in 2012 dry seed yield (kgha
-1

) 

(Table 2 see Appendix). Figure 2 shows Duncan groupings were significantly higher for DKW 

46-15 (100%) and Virginia (100% + Soysoap) than DKW 46-15 (50% + Soysoap) and the 

control for both cultivars. Figure 2 also illustrates a large degree of variability found in the 

standard deviations. Table 4 shows the fertilizer use efficiency from each of the cultivars during 

2010, 2011, and 2012. There was a significant cultivar effect, (p = 0.01) on fertilizer efficiency 

during 2010. DKW 46-15 made more efficient use of fertilizer supplied than the Virginia cultivar 

during 2010 (Table 4). During 2011-2012, there was no significant difference in fertilizer 

efficiency due to the effect of cultivar (Table 4), or from the fertilizer rate applied (Table 5).  

Table 5.  

2010, 2011 and 2012 Fertilizer Efficiency Calculated by Cultivars and Individual Fertilizer 

Rates  

  DKW 46-15 Virginia 

Fertilizer Rate 2010 2011 2012 2010 2011 2012 

70-28-84  † † 1.47 † † 1.40 

70-28-84 + Soysoap      2.90 1.10 5.94 2.03 0.70 1.11 

140-56-168 3.81 1.39 0.87 1.90 1.49 4.19 

140-56-168 + Soysoap 3.54 1.10 3.06 2.73 2.53 5.64 

Note. † Treatment not added until 2012 
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Figure 2. Duncan’s multiple range test for the interaction effect from 2012 seed yield (kgha
-1

) 

analysis. 

4.2 Oil Percentage from Solvent and Mechanical Extraction 

4.2.1 Mechanical extracted canola oil percentage during 2011 and 2012. Analysis of 

2011 soxhlet extraction oil percentage revealed no significant difference in oil production due to 

the effects from cultivar, fertilizer rate, or from their interaction (Table 6). During the analysis of 

2012 soxhlet extracted canola oil there was no significant difference in oil percentage due to the 

cultivar selected, fertilizer rate applied or from their interaction. However, it should be noted that 

there was a non-significant trend of 140-56-168 (kgha
-1

) treatment producing the highest oil 

yields for DKW 46-15 in both 2011 and 2012. The Virginia cultivar did not display the same 

trend in 2011 or 2012. During 2011, although non-significant the Virginia cultivar highest 

yielding treatment was 0-0-0 (kgha
-1

). During 2012, the highest oil yielding treatment for the 

Virginia cultivar was 70-28-84 + Soysoap. 
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Table 6.  

Mechanically Extracted Oil Percentage From 2011 and 2012 Growing Seasons 

 

2011 2012 

Fertilizer Rate DKW 46-15 Virginia DKW 46-15 Virginia 

0-0-0 20.28 22.01 19.25 20.95 

70-28-84  † † 16.38 19.37 

70-28-84 + Soysoap       18.25 18.46 20.76 21.80 

140-56-168  24.03 15.41 23.30 20.96 

140-56-168 + Soysoap 18.25 19.47 21.46 20.94 

Note. † Treatment not added until 2012 

4.2.2 Soxhlet extracted canola oil percentage during 2010, 2011 and 2012. During the 

analysis of 2010 soxhlet extracted lipid percentage, a significant cultivar effect, (p < 0.001) was 

revealed (Table 7). Figure 3 illustrates a significantly higher oil percentage for the Virginia 

cultivar than DKW 46-15. During 2011, soxhlet extracted lipid percentages remained unaffected 

by the effects of cultivar, fertilizer rate, or from their interaction. Analysis of 2012 soxhlet 

extracted lipid percentage yielded similar results as in 2011. 

 

Figure 3. Canola oil percentage obtained through soxhlet extraction from 2010 seed harvest.  

B

A

0

5

10

15

20

25

30

35

40

45

DKW 46-15 Virginia

M
ea

n
 %

 O
il

 C
o
n
ce

n
tr

at
io

n

Cultivar



38 

 

Table 7.  

ANOVA Table for 2010 Solvent Extracted Oil Percentage 

 

Source df Sum of Squares Mean Square F  p 

Cultivar 1 122.73 122.73 34.78 0.001 

Fertilizer Rate 3 24.27 8.09 2.29 0.12 

Interaction 3 10.11 3.37 0.96 0.44 

Corrected Total 28 257.85 

   CV=5.4           
 

4.3 Chlorophyll Readings 

Table 8 (see Appendix) shows the statistical analysis of chlorophyll meter readings taken 

on March 27
th

, April 10
th

 and April 17
th

. Chlorophyll meter readings conducted on March 27
th

 

experienced a significant effect from the fertilizer rate, (p = 0.003) applied. Post hoc analysis 

revealed that plots which received additional fertilizer produced significantly higher chlorophyll 

meter readings than the control (Table 9). There was a correlation between March 27
th

 

chlorophyll meter readings and dry seed yield (kgha
-1

) [r = 0.47, n = 26, p = 0.01]. During the 

chlorophyll meter readings conducted on April 10
th

 there was a significant effect, (p = 0.03) from 

fertilizer rate (Table 8 see Appendix).  

Table 9. 

Fertilizer Rate Groupings for Sampling Dates During 2012 Chlorophyll Meter Readings  

Fertilizer Rate March 27
th

 April 10
th

 April 17
th

 

0-0-0 206.60C 152.39C 143.67B 

70-28-84  262.93A 209.78BA 165.67A 

70-28-84 + Soysoap       252.90BA 169.03BC 166.55A 

140-56-168  274.46A 201.31BAC 167.52A 

140-56-168 + Soysoap 296.63A 224.36A 168.55A 

Note. Fertilizer rates with a letter in common are not significantly different at (α = 0.05) level of 

significance as indicated by Duncan’s multiple range tests. 
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Post hoc analysis for chlorophyll readings showed fertilizer rates (100%+Soysoap) and 

(50%) producing significantly higher meter readings than the control (Table 9). There was a 

positive correlation found between April 10
th

 chlorophyll meter readings and dry seed yield 

(kgha
-1

) [r = 0.73, n = 26, p = 0.001]. Chlorophyll meter readings conducted on April 17
th

 

revealed a significant effect from the rate of fertilizer applied, (p = 0.007) (Table 8 see 

Appendix). Mean fertilizer rates for April 17
th

 show significantly higher meter readings for plots 

applied with additional fertilizer (Table 9).  

Table 11. 

2012 Leaf Nitrogen Concentration (ppm) From Sampling Dates by Mean Fertilizer Rate  

Fertilizer Rate March 27
th

 April 10
th

 April 17
th

 

0-0-0 4.19 2.57B 2.74C 

70-28-84  4.68 3.38A 3.16BC 

70-28-84 + Soysoap       3.98 3.02BA 3.30B 

140-56-168  3.70 2.78 BA 3.47BA 

140-56-168 + Soysoap 3.97 2.81 BA 3.76A 

Note. Fertilizer rates with a letter in common are not significantly different at (α = 0.05) level of 

significance as indicated by Duncan’s multiple range tests. 

 

Figure 4. Cultivar post hoc analysis from April 10, 2012 chlorophyll meter readings. 
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There was a positive correlation found between April 17
th

 chlorophyll meter readings and 

dry seed yield (kgha
-1

) [r = 0.63, n = 26, p = 0.001]. On March 27
th

 there was no significant 

effect found on leaf nitrogen concentration from the effects of cultivar, fertilizer rate, or from 

their interaction (Table 10 see Appendix). On April 10
th

 there was a significant cultivar effect, (p 

= 0.02) on leaf N concentration (Table 10 see Appendix). Figure 4 shows the Virginia cultivar 

producing significantly higher concentrations of leaf N than DKW 46-15.  

There was a positive correlation found between April 10
th

 leaf N concentration and dry 

seed yield (kgha
-1

) [r = 0.50, n = 26, p = 0.008]. There was a significant effect from fertilizer 

rate, (p = 0.001) found on leaf N concentration from samples collected on April 17
th

 (Table 10 

see Appendix). Post hoc analysis revealed that leaf N concentration was increased for plots that 

received additional fertilization (Table 11). There was a positive correlation found between April 

17
th

 leaf N concentration and dry seed yield (kgha
-1

) [r = 0.73, n = 25, p = 0.001]. 

4.4 Free- and Total- Fatty Acid Concentrations 

4.4.1 Analysis of free fatty acid concentration from soxhlet lipid extraction 2011-

2012 . 2011 analysis of free fatty acids in soxhlet extracted oil revealed a significant effect, (p = 

0.03) from fertilizer rate on the production of linoleic acid. However, post hoc analysis revealed 

no significant difference in the production of linoleic acid due to rate of fertilizer applied. Oleic, 

linolenic and palmitic acids did not reveal any statistical difference in free fatty acid production 

from the effects of cultivar selection, rate of fertilizer application, or from their interaction.  

Results for the analysis of 2012 free fatty acid concentration were similar to 2011. 

Linoleic, linolenic, oleic, palmitic, eicosenoic, and erucic free fatty acids concentration during 

2012 remained unaffected by the effects from cultivar selection, rate of fertilizer applied, or from 

their interaction.  
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4.4.2 Total fatty acid concentration from mechanically extracted lipids. During 2012, 

oil extracted by mechanical extraction was analyzed for total fatty acid concentration. As shown 

in Table 12 (see Appendix) there was a significant effect from cultivar on oleic acid content, (p = 

0.001). Figure 5 illustrates the Virginia cultivar producing significantly lower concentrations of 

total oleic fatty acid than DKW 46-15. Table 12 (see Appendix) shows the ANOVA table for 

erucic acid and revealed a significant effect, (p = 0.001) from cultivar selection. Figure 6 

illustrates the Virginia cultivar producing significantly higher total erucic fatty acid 

concentrations than DKW 46-15.  

Analysis of linolenic acid revealed a significant cultivar effect, (p = 0.01) (Table 12 see 

Appendix). However, post hoc analysis revealed no significant difference on linolenic fatty acid 

production between Virginia and DKW 46-15. Linoleic acid showed a significant cultivar effect, 

(p = 0.001) (Table 12 see Appendix). The Virginia cultivar had a significantly higher linoleic 

fatty acid concentration than DKW 46-15 (Figure 7). 

 

Figure 5. Oleic total fatty acid concentration from 2012 mechanically extracted oil. 
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Figure 6. Erucic total fatty acid concentration from 2012 mechanically extracted oil. 

 

Figure 7. Linoleic total fatty acid concentration from 2012 mechanically extracted oil. 
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CHAPTER 5 

Discussion  

5.1 2010-2012 Seed and Oil Yield 

No statistical difference was observed in soil samples collected that reflected changes in 

soil nutrients from fertilizer rate applied, cultivar selected, or from their interaction during 2009-

2012 growing seasons. For 3 consecutive years fertilizer rate had a significant effect on dry seed 

yield (kgha
-1

). During 2010, 2011, and 2012 fertilizer rates of (100%) with or without soysoap 

application produced significantly higher seed yields than the control. During the analysis of 

2010 dry seed yield plots applied with 50% + Soysoap fertilizer rate produced significantly 

similar yields as 100% with or without soysoap fertilizer application. This result may be due to 

soysoap increasing nutrient efficiency which enables canola to produce higher seed yields with 

less fertilizer application. However, this trend was not observed in the following years.  

The Virginia cultivar is a high yielding canola cultivar which was developed at Virginia 

State University and adapted to Virginia climatic conditions (Bhardwaj, 2007). The piedmont 

region of North Carolina shares similar climatic conditions as Virginia, so potentially the 

performance of the cultivar may be similar as well. Analysis of 2010 soxhlet extracted oil 

percentage revealed the Virginia (36.84%) cultivar producing significantly higher oil percentages 

than DKW 46-15 (32.69%). This trend was not observed during 2011 or 2012 however, climatic 

conditions were variable as illustrated in Figures 8-10.  

Plant biological and chemical functions depend on temperature, which regulates 

processes such as, evapotranspiration, photosynthesis, and nutrient absorption (Thomas, 2003). 

Temperature stress prior to and during flowering directly affects canola seed yield (Faraji, Latifi, 

Soltani, & Rad, 2009). The photoperiod and temperature in which Brassica napus (L.) is exposed 
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to impacts the length of flowering, which can have an effect on seed yield (Tesfamariam, 

Annandale, & Steyn, 2010). Figure 8 illustrates the average monthly temperatures recorded in 

2010, 2011, and 2012. During 2012 higher average monthly temperatures were recorded from 

November through January as compared to 2010. Increasing temperature during winter canola 

dormancy may have influenced the quantity and overall quality of both seed and oil yields during 

2012.  

 

Figure 8. 2010-2012 Average monthly temperatures. 

Growing degree days (GDD) is a calculation that estimates a crops daily heat value 

(Miller, Lanier, & Brandt, 2001). Global warming may be contributing to increasing growing 

degree days which alters the growing season for members of the Brassica family (Siebold and 

von Tiedemann 2013). During the experiment GDD were calculated from seeding to 

physiological maturity. Figure 9 shows the monthly GDD calculated for 2010, 2011, and 2012. 

GGD almost doubled in 2012 compared to previous years. A dramatic increase in GDD may 

have produced fluctuating seed and oil yields by contributing to uneven maturity times.  
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Wind and sources of mechanical stress may result in yield losses through pod shattering, 

leaf tearing and logging (Cipollini, 1999). Figure 10 illustrates wind speeds (mph) during the 

2010, 2011, and 2012 growing seasons. Wind speeds were notably higher during 2010 and 2011 

canola harvest times. The large losses that occurred in 2011 were due in part from wind damage 

that exacerbated pod shatter.  

 

Figure 9. 2010-2012 Growing degree days during 2010-2012. 

 

Figure 10. 2010-2012 Average monthly wind speeds (mph). 
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5.2 2012 Chlorophyll Readings 

Hand held chlorophyll meters can be used to evaluate crop fertility using quick, 

nondestructive methods which measure chlorophyll content using absorbance and transmittance 

(Ronaghi & Ghasemi-Fasaei, 2013). Potentially chlorophyll meters could help evaluate the 

effectiveness of soysoap on leaf chlorophyll production. Chlorophyll readings were collected the 

day after the application of soysoap. Plots applied with additional fertilizer rates yielded 

significantly higher chlorophyll readings on March 27
th

 and April 17
th

 sampling dates. Overall, 

chlorophyll readings and leaf nitrogen concentrations were unaffected by the application of 

soysoap. 

5.3 Free- and Total- Fatty Acid Concentrations 

The use of a soxhlet apparatus for lipid extraction utilizes a reflux reaction which 

repeatedly washes canola seed with hexane. It has been reported that due to samples being 

extracted at the boiling point of solvents and refluxing for long periods of time that fatty acid 

thermal decomposition is inevitable (Xiao, 2010). The largest drawback of extracting canola oil 

with a soxhlet apparatus was the long time required (8hrs) accompanied by the large amount of 

waste produced when hexane was evaporated under the fume hood. When compared to 

mechanical extraction, the extraction time was quicker however; the amount of lipid extracted 

was much lower. Mechanical extraction does not expose lipids to hexane or long periods of heat 

potential. Therefore, differences in fatty acid concentrations may be revealed between cultivars 

or from the rate of fertilizer application.  

In 2011 and 2012 soxhlet extracted oil showed no significant differences in free fatty acid 

concentration between cultivars, fertilizer rates applied or from their interaction. For 

mechanically extracted oil total fatty acid concentration was calculated in 2012. Significant 
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differences were found between cultivars for oleic, linoleic, linolenic and erucic total fatty acids. 

DKW 46-15 produced higher concentrations of oleic acid than the Virginia cultivar. However, 

the Virginia cultivar produced higher concentrations of linoleic, and erucic fatty acids.  

5.4 Conclusion 

For 3 consecutive years the effect from fertilizer rate had a significant influence on seed 

yield. Plots applied with 140-56-168 (N-P-K) fertilizer rate regardless of soysoap application 

produced significantly higher dry seed yields than the control. The analysis of 2010 soxhlet 

extracted oil percentages showed the Virginia cultivar being a superior oil yielder than DKW 46-

15. Chlorophyll readings conducted supports the results of the dry seed yield analysis in that 

additional fertilizer applied increased dry seed yields. This is due to the assumption that 

increased chlorophyll production is synonymous with increased nitrogen activity. Increased 

nitrogen availability has been repeatedly shown to increase canola seed yield. Chlorophyll meter 

readings sampled on April 10
th

 provided the strongest positive correlation with dry seed yield 

(kgha
-1

). Chlorophyll meter readings conducted 3 weeks after 50% flowering may be an ideal 

time to estimate seed yield and leaf N concentration from meter readings. There was no 

significant increase found on canola dry seed yield (kgha
-1

) or oil percentage using soysoap. 

However, further studies should be conducted to help further elucidate the effectiveness of 

soysoap as an agrichemical.  

Fatty acid analysis showed that mechanically extracted oil shows significant differences 

in the production of oleic, linoleic, and erucic total fatty acid due to the cultivar selected. DKW 

46-15 produced a higher level of oleic total fatty acid. High levels of oleic acid are favorable for 

the production of biofuel. The Virginia cultivar produced higher levels of linoleic and erucic 

total fatty acids. In terms of storability higher levels of linoleic acid can promote increased rates 
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of oxidation which can degrade the quality of fuel. Based on 2012 data, DKW 46-15 may 

possess more desirable fatty acid composition for the production of biodiesel.  
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Appendix 

Table 2.      

2010, 2011 and 2012 ANOVA Tables of Dry Seed Yield (kgha
-1

) after Harvest    

2010 

Source df Sum of Squares Mean Square F p 

Cultivar 1 54346.10 54346.10 1.31 0.27 

Fertilizer Rate 3 1888472.50 629490.80 15.15 0.01 

Interaction 3 75431.37 25143.79 0.60 0.62 

Corrected Total 29 4779999.10 

   CV = 24.99  

2011 

Cultivar 1 180276.97 180277 7.52 0.04 

Fertilizer Rate 3 472446.61 157482.20 6.57 0.03 

Interaction 3 185392.24 61797.41 2.58 0.16 

Corrected Total 14 1019046.30 

   CV = 26.87  

2012 

Cultivar 1 67306.08 67306.08 3.10 0.11 

Fertilizer Rate 4 1032286.30 258071.60 11.89 0.001 

Interaction 4 460562.63 115140.70 5.30 0.01 

Corrected Total 25 3675608.40 

   CV = 29.64   
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Table 8.  

2012 ANOVA Tables from Chlorophyll Meter Readings  

March 27
th

 

Source df Sum of Squares Mean Square F p 

Fertilizer Rate  4 36709.32 9177.33 5.99 0.003 

Cultivar 1 1471.90 1471.90 0.96 0.34 

Interaction 4 6364.30 1591.07 1.04 0.41 

Corrected Total 31 94965.66 

   CV = 15.11  

April 10
th

 

Fertilizer Rate  4 21682.70 5420.68 3.27 0.03 

Cultivar 1 118.03 118.03 0.07 0.79 

Interaction 4 5360.47 1340.12 0.81 0.53 

Corrected Total 31 161055.81 

   CV = 21.21 

April 17
th

 

Fertilizer Rate  4 3510.32 877.58 5.10 0.01 

Cultivar 1 95.16 95.16 0.55 0.46 

Interaction 4 307.58 76.89 0.45 0.77 

Corrected Total 31 25112.27 

   CV = 8.12 
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Table 10. 

ANOVA Tables From the Analysis of 2012 Leaf Sample Nitrogen Concentrations  

March 27
th

 

Source df Sum of Squares Mean Square F p 

Fertilizer Rate  4 2.76 0.69 0.52 0.72 

Cultivar 1 0.01 0.01 0.01 0.91 

Interaction 4 1.92 0.48 0.36 0.83 

Corrected Total 30 30.15 

   CV=28.58 

April 10
th

 

Fertilizer Rate  4 1.87 0.46 2.12 0.12 

Cultivar 1 1.45 1.45 6.57 0.02 

Interaction 4 0.32 0.08 0.37 0.82 

Corrected Total 31 10.39 

   CV=16.38 

April 17
th

 

Fertilizer Rate  4 3.69 0.92 8.2 0.001 

Cultivar 1 0.07 0.07 0.68 0.42 

Interaction 4 0.68 0.17 1.53 0.24 

Corrected Total 30 12.87 

   CV=10.19 



 

 

7
0
 

Table 12.  

Total Fatty Acid Concentration from Mechanically Extracted Oil During 2012 

Oleic  

Source df Sum of Squares Mean Square F p 

Fertilizer Rate 4 2.76 0.69 0.52 0.72 

Cultivar 1 92.69 92.69 67.92 0.001 

Interaction 4 2.98 0.74 0.55 0.71 

Corrected Total 19 473.05 

   CV=1.68 

Linolenic  

Fertilizer Rate 4 2.12 0.53 3.01 0.15 

Cultivar 1 3.18 3.18 18.04 0.01 

Interaction 4 0.17 0.04 0.25 0.89 

Corrected Total 19 36.39 

   CV = 5.78 

Linoleic  

Fertilizer Rate 4 3.32 0.83 1.94 0.26 

Cultivar 1 80.37 80.37 187.52 0.001 

Interaction 4 0.45 0.11 0.27 0.88 

Corrected Total           19 412.96 

   CV= 2.63 

Erucic  

Fertilizer Rate 4 0.26 0.06 0.96 0.46 

Cultivar 1 2.44 2.44 34.80 0.001 

Interaction 4 0.18 0.04 0.65 0.64 

Corrected Total 25 4.35 

   CV=45.74 
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