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Abstract 

In the past decade, a wide variety of biomaterials comprised of both synthetic and natural 

polymers have been used to promote restoration of injured peripheral nerves. Despite making 

advances, none have matched performance of autographs, a gold standard in nerve repair. 

Mammalian-derived, protein-based conduits have shown good tissue biocompatibility and safe 

degradation products, but are mechanically fragile. Synthetic materials such as Polycaprolactone 

(PCL) typically have advantage of suitable mechanical properties and fine degradation rate 

tunability, but lack cell recognition signaling. Recent studies have shown that keratin promotes 

nerve cell attachment, differentiation and growth, but alone, it cannot be used as nerve guide 

material due to its weak mechanical performances. In the present study we extracted keratin 

protein from human hair and developed nanofibrous membranes of PCL/ Keratin composites by 

using electrospinning technique. Morphological analysis of nanofibers was done by scanning 

electron microscopy (SEM) and physico-chemical properties were analyzed by using X-ray 

diffraction (XRD), mechanical tensile testing, and Fourier Transform Infrared Spectroscopy 

(FTIR).  Mechanical properties of PCL/Keratin nanofiber membrane showed variation in tensile 

strength between ratios. Potential use of these nanofibers was studied by examining the integrity 

in buffer solutions and cellular compatibility. PCL/Keratin fibers confirmed to have non-toxic 

effects on 3T3 fibroblast cells. SEM imaging showed that PCL/Keratin nanofibers promoted 

attachment of fibroblast cells and maintained characteristic cell morphology. Thus, appropriately 

constructed PCL/Keratin based composite nanofibers are expected to demonstrate the favorable 

biological properties of keratin and the mechanical properties of PCL. These nanofibers are 

found potential conduit material for peripheral nerve regeneration.  
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CHAPTER 1 

Introduction 

 Damage to the peripheral nerve has been a common injury for many individuals 

throughout their life time. Injury to the peripheral nervous system normally affects the ability of 

the sensory and motor functions to perform accordingly. Documented in 1995, nearly 50,000 

people experienced peripheral nerve damage restorations according to National Center for Health 

Statistics based on Classification of Diseases (Evans, 2001). Currently, since reported last year 

peripheral nerve damage has affected up to 1 million people throughout the world (Daly, Yao, 

Zeugolis, Windebank, & Pandit, 2012). This large scale problem can occur from numerous 

injuries. Historically of peripheral nerve injuries were recognized and treated as early as the Civil 

War era, and also be a product of normal life style habits or exercise (Mukhatyar, Karumbaiah, 

Yeh, & Bellamkonda, 2009) Peripheral nerve repair does not occur on a cellular level. In reality, 

this type of repair requires the connective tissues to be formed back together to provide a strong 

top outer layer to join the damaged proximal and distal ends (Matsuyama, Mackay, & Midha, 

2000).  

For relatively minor nerve damaged gaps natural regeneration is very probable but for 

larger injured nerve gaps microsurgery has been executed (Jiang, Lim, Mao, & Chew, 2010).  

Microsurgery is beneficial to aid natural regeneration process for gap distances greater than over 

a few millimeters long. For nearly 30 years the advancement of microsurgery has evolved greatly 

to restore peripheral nerve damage. Different techniques have been developed to progress a 

positive quick recovery, although recovery of severed nerves frequently do not completely heal 

with adequate function (Johnson, Zoubos, & Soucacos, 2005). Autographs have served as the 

standard for peripheral nerve damage for decades but have drawbacks such as limitations of 
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adequate available donor sites to replace the damaged peripheral nerve sites. Researchers and 

physicians have considered combining biodegradable nerve conduits to replace using autographs. 

Creativity of choosing specific natural and synthetic materials with certain characteristics allows 

materials to mimic the natural environment especially by nanofibrous materials.  In general 

desired requirements for an ideal nerve guide conduit would include qualities of 

biocompatibility, biodegradability, elevated porosity, mechanically strong, and cell migration 

capability (Cooper, Bhattarai, & Zhang, 2011). A significant concept introduced into creating 

biodegradable nerve conduits was the plan of blending polymer solutions to be used in 

electrospinning process which creates fibrous materials. Due to specific properties such as slow 

degradation and excellent mechanical strength, which is  necessary for peripheral nerve repair 

conduits, the following polymers were frequently used: poly (D,L-lactide-co-glycolic acid 

(PLGA), polycaprolactone (PCL), and poly(lactic acid) (Cao, Liu, & Chew, 2009).  

  The development of clinically applicable nerve guidance conduits requires extensive 

testing and consideration of the precise injured area. The gap size of the repair is a critical 

concern that is taken into consideration to provide the best type of materials and properties.  

In this research we have developed composite nanofibers of keratin and polycaprolactone 

(PCL) by electrospinning method. Electrospinning is the simplest way of producing polymer 

fibers which have a nano scale diameter. Keratin, a naturally occurring polymer, is biorenewable, 

biodegradable, biocompatible, and bio-functional (Nectow, Marra, & Kaplan, 2012; Sierpinski et 

al., 2008). Recent studies have shown that keratin based hydrogel promotes nerve cell 

attachment, differentiation and growth, but alone, it cannot be used as nerve guide material due 

to its weak mechanical performances. PCL is a synthetic biodegradable polymer that is 

mechanically stronger. However, PCL generally has poor cell affinity. Thus a PCL/Keratin based 
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composite, is expected to demonstrate the favorable biological properties of keratin and the 

mechanical properties of PCL. 
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CHAPTER 2 

Background  

2.1 Peripheral Nerve Physiology and Damage  

Recurrent peripheral nerve damage continues to affect up to 1 million people worldwide 

per year  (Daly, Yao, Zeugolis, Windebank, & Pandit, 2012). The peripheral nerves most often 

lose a significant amount of sensory and motor functional use after damage occurs. The intricate 

physiology of the peripheral nerve displayed in Figure 1 shows the layers of fibers that are in 

oposition to be damaged which affects sensory and motor skills function (Filler, 2004). The 

layers consists of the epineurium as an outer cover which is made out of conjoining tissue and 

blood vessels. Damage towards the outermost epineurium layer may cause significant 

disturbance to the flow of blood and expossed the lower layers to opposition (Tupper, 1991). 

Peripheral nerve fibers contain myelinated or unmyelinated fibers that vary in diameter sizes. 

Myelinated diameter fibers are  measured 2–25 µm while unmylinated diameters range from 0.2-

3.0 µm (E, 1989; Sunderland, 1951). Fascicles are formed from the collection of many nerve 

fibers packing together within the fibers and surrounded by perineurium. The layer of 

perineurium indicates the area where surgeons would suture the damaged ends together of the 

peripheral nerve. Figure 2 shows a visual of nerve endings being sutured together with a hollow 

conduit to close the gap. The physiology of peripheral nerves are further organized into three 

different categories. Monofascicular, oligofascicular, and polyfascicular nerves are the variety of 

nerves that exist. Monofascicular nerves are packed with smaller nerve fibers that contribute to 

motor function or sensory tasks. Oligofascicular nerves consists of fewer tiny fibers and 

polyfascicular nerves that are responsible to perform numerous roles (Matsuyama et al., 2000). 
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Damage towards any layer or category of pheriperal nervous system can result in large scale 

problems that are challenging to overcome.  

 

Figure 1. Schematic showing cross-sectional view of peripheral nerve. 

 The extent of peripheral nerve damage can be listed in three categories of neurapraxia, 

axonotmesis, and neurotmesis (Sunderland, 1951). Neurapraxia is the least severe type of 

damage where the construction of the peripheral nerve remains in position, yet disturbance of the 

electrical conduction occurs along the axon. A compression injury would fall in the neurapraxia 

category and on average lasts for hours to several weeks. Damage categorized as axonotmesis is 

reported when the axon is injured but the myelin sheath remains connected, which is commonly 

caused by a crush form of injury. Neurotmesis is the most damaging sort where nerve conduction 

is lost and damage to the outer connective tissue is affected. The classifications of peripheral 

nerve damage are listed in Table 1. Originally, peripheral nerve damage was divided into three 
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categories, and then further organized into more specific categories of damage.   

 

Table 1  

Peripheral Nerve Damage Classifications 

Classification 1 Classification 2 Pathophysiologic Features 

Neurapraxia Type 1 Local myelin damage 

Axonotmesis Type 2 Loss of continuity of axons; endoneurium, 

perineurium, and epineurium intact 

 Type 3 Loss of continuity of axons and 

endoneurium; perineurium and epineurium 

intact 

 Type 4 Loss of continuity of axons, endoneurium 

and perineurium; epineurium intact 

Neurotmesis Type 5 Complete disruption of whole nerve trunk 

 

The worst type of peripheral nerve damage occurs when the nerve is completely severed. 

Peripherial nerve damaged cell bodies fracture the outermost layer of the cytoskeleton and 

causes the cell membrane to rupture. Swelling then occurs at the distal damaged nerve end and a 

stub forms at the base. Degradation transpires of both the cellular membrane and cytoskeleton 

which exposes the Schwann cells. The Schwann cells, which are located along the axons closest 

end and the myelin lipids discard as a result (Stoll, Griffin, Li, & Trapp, 1989).  

2.1.1 Nerve regeneration process. The regeneration process that occurs inside empty 

nerve guidance conduits of peripheral nerves is summarized within five major steps and shown 

in a modified image in Figure 2 (Daly et al., 2012). The initial step is the fluidic phase of the 

regenerative process where extracellular matrix molecules are present.  At this stage plasma 

packs the conduit (Mukhatyar et al., 2009). The next step develops the matrix in which the cables 

are formed joining both ends of the conduit. The third step entails cellular relocation of Schwann 
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cells in between the matrix fibrin cables. Configuration of tissues and proliferation access are 

developed during the third step as well. The forth step is titled the axonal phase, where daughter 

axons begin to grow across either ends of cables of tissues. Step five is when the development of 

myelin structures of adolescent axons is transformed into full-grown fibers. Intraluminal 

guidance, electrospun fiber outer layer, and functionalized surface type conduits are a few types 

displayed. The purpose to alter these hollow conduits is to promote an environment to allow 

Schwann cell passage and increase of cell production. This advancement will ultimately lead to 

axonal growth and will aid the nerve gap to regenerate as the hollow modified conduit degrades.   

 

Figure 2. Process of nerve regeneration in conduits, modified from (Daly et al., 2012). 

Numerous schemes have been exercised to join damaged nerve ends together. Some 

previous attempts included autographs, nerve guide conduits, suturing, and grafting (Mackinnon, 

1989).  In the past decade, a wide variety of biomaterials comprising of both synthetic and 

natural polymers have been utilized to promote the regeneration of injured nerves. (Nectow et 

al., 2012; Sierpinski et al., 2008) Despite making advances with these materials, none have 

matched performance of autographs, a gold standard in nerve repair. Autographs shares the 

biological similarity and structure that closely relates to the damaged peripheral  nerve (Jiang et 
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al., 2010).   In many cases, autographs have limitations at both the donor and nerve gap sight 

which ultimately results in greater chance of losing function. This major drawback of inadequate 

function also often causes additional grafting to form at the donor site (Prabhakaran, Venugopal, 

Chyan, et al., 2008). Purposely the vein autograph has been utilized for nerve gap damages of 

length up to 3 cm long and has reported varying results in diverse studies. Results from a 

particular study reported 85% success rate in cases for nerve defects ranging from 0.5 to 6cm in 

length (Battiston, Tos, Geuna, Giacobini‐Robecchi, & Guglielmone, 2000).  Another study 

reported an increase of thickness in axon diameter and myelin sheath using inside-out repair 

techniques compared to standard vein grafting (Kelleher et al., 2001).  Autographs also promote 

the need for supplementary surgeries which increases the chance for infection and prolongs 

overall healing time. Additionally to these complications development of neuromas can occur as 

a result to surgery (Nectow et al., 2012).  

In 1876 nerve grafting was first introduced and explained by Albert (BN., 2011). In some 

cases there is possibility that donor grafts may not be as readily available as needed (Cao et al., 

2009). Based on the reasons above, biomaterials have been investigated to serve as a better 

alternative to successfully promote regeneration of the damaged distal and proximal nerve ends. 

2.2 Biomaterials Approach to Peripheral Nerve Regeneration 

 Previously biomaterials used for nerve guidance conduits in research included double 

walled poly(lactic-co-glycolic acid)/ poly(lactide) microspheres embedded within the wall of 

PCL nerve guides and used to repair nerve gaps  of >1cm. A similar study posed to use nerve 

guides which incorporated glial cell lines to mend a 1.5cm nerve gap in a rat (Kokai, Bourbeau, 

Weber, McAtee, & Marra, 2011).   Another study incorporated laminin coating on PLGA 

conduits and was able to successfully gap a nerve damage area with a 15mm length (Koh et al., 
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2010). Results showed better outcomes to autographs and the laminin coating encouraged 

guidance of cell adhesion and spreading from opposite damaged nerve ends (Itoh et al., 2003; 

Rutkowski, Miller, Jeftinija, & Mallapragada, 2004). Various examples previously used 

biomaterials and the fabrication techniques are shown in Table 2.  Some biomaterials were 

fabricated by blending the polymers together or having layers of materials. 

Table 2  

List of Commonly Used Biomaterials for Conduit Design 

Material  Fabrication Technique   

PLGA  Foamed and microbraided   

PLLA  Gas foaming/salt leaching   

Chitosan  Chitosan with aligned PGA filaments   

Polyurethane/Collagen  Deposition Manufacturing   

PCL/ PLGA/PLA  Rapid prototyping   

 

2.3 Clinically Approved Nerve Guidance Conduits 

 Some of the listed clinically approved peripheral nerve guidance conduits are shown in 

Table 3. These products were originated in the following areas around the world: Plainsboru, NJ, 

Birmingham, AL, The Netherlands, and Franklin Lakes, NJ. Each serves for a specific damaged 

gap length and degradation time. Amongst the listed materials of collagen type I, woven 

polyglycolic acid (PGA), poly(DL-lactic-co-ɛ-caprolactone)(PLCL), also other materials  such as 
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polyvinyl alcohol (PVA) hydrogel and polyhydroxybuturate (PHB) are used to create nerve 

guides (Daly et al., 2012) (Nectow et al., 2012).   

Table 3  

Clinically Approved Nerve Guidance Conduits (Daly et al., 2012) 

Product Company Material Degradation 

Time 

Max Length 

Gap 

NeuraGen Integra 

Neurosciences 

Collagen type I 4 years 3cm 

Neurotube Synovis Micro 

Companies 

Woven PGA 6-12 months 3cm 

Neurolac Polyganics Inc. PLCL 2-3 years 3cm 

Neuromatrix/Neuroflex Collagen Matrix 

Inc. 

Collagen type I 4-8 months 2.5cm 

 

These clinically approved conduits have yielded data and shown promising results, but 

also have their limitations. Mainly, the maximum gap length is not able to exceed over 3 cm. For 

damaged nerve injury greater than 3 cm, there is no conduit currently available proven to be 

successful in aiding regeneration. In clinical and animal studies, Neurolac was reported to have 

some issues of swelling, biocompatibility, and degradation rate (Nectow et al., 2012). Thus, the 

development of a bioengineered nerve guide conduit, which could match the effectiveness of the 

autologous graft, would be beneficial to the field of peripheral nerve repair.   
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2.4 What is Keratin? 

Keratin is a fibrous, sturdy, and flexible protein that serves as the core building block of 

hair, nails, and skin. Keratin can be extracted from additional sources such as bird feathers, 

shells, beaks, animal hooves, and sheep wool. The extraction process occurs through oxidation or 

hydrolysis which causes a chemical reaction that uses various sources of heat, water, and acid.  

The main purpose of keratin is to guard the epithelial cells from stresses that may possibly cause 

the termination of cells (Coulombe & Omary, 2002).  

In particularly, keratin provides shape, integrity, and strength to the hair fiber. Typically 

hair fiber range from approximately 120-200 microns depending on the origin. Oxidized keratins 

are known as keratoses which undergo conversion of disulfide bonds and linkages in sulfonic 

acid groups within the hair fibers. As proteins, keratin naturally gathers to create bundles and has 

proliferation properties. These properties are directed by nearly 30 growth dynamics and 

cytokines (Lyons, Pelton, & Hogan, 1990). 

2.4.1 Chemical structure of keratin. In hair, keratin molecules are arranged in bundles 

which are held by disulfide bonds (S-S-S-), which gives strength to hair. There are five chemical 

elements that compile to construct keratin. These elements are Carbon, Hydrogen, Sulfur, 

Oxygen, and Cysteine. Of all, Cysteine is an amino acid residue that occupies a majority of space 

within keratin and is highly water soluble.   

 The remainder chemicals form additional bonds that contribute to the keratin structure.  

Hydrogen and Nitrogen combine to shape alkaline amino groups (-NH2) and the Carbon and 

Hydrogen combine together to form carboxylic acid groups (-COOH).  Hair keratins have a 

moderately high sulfur amount in the structure and are supported by a high cross linked matrix of 

proteins known as the keratin-associated proteins  (Moll, Divo, & Langbein, 2008). This matrix 
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not only provides physical support to the structure but also provides cellular contact and 

proliferation to be initiated and growth factors to be activated (Reichl, 2009; Sierpinski et al., 

2008; Tachibana, Furuta, Takeshima, Tanabe, & Yamauchi, 2002) 

2.4.2 Types of keratin. The intracellular intermediate filament (IF) family is the 

structural group keratins belong to. Subgroups are separated in two groups, Type I and Type II. 

Type I is acidic and Type II is basic to natural forms which are represented by a coiled shape, 

from the contact of the α- helical domain (Popescu & Hocker, 2007).  Keratin is found within the 

cytoplasmic network  of the IF that range from 10-12 nm (Coulombe & Omary, 2002).  The 

shape of the keratin structure is shown in Figure 3. Keratins can be classified as either soft or 

hard, according to the amount of sulfur it contains. This quantity is directly associated with the 

extent of cysteine residues that form the disulfide bonds.  

 

Figure 3.Basic Chemical structure of keratin. 

 2.4.2.1 Alpha keratins. Particularly soft keratins are determined by the low amount of 

sulfur that it contains. Some example structures which contain alpha keratins are hair, hoofs, 

horns, wool, and nails. The alpha helix provides the structure the ability to broaden and flex. 
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Keratins are contained and separated into three helical segments in the fibrous region of the 

amino acid chain. The alpha keratins which reside directly in the cortex of the hair filament has 

an average molecular molar mass is measured in a range of 60- 80 kDa (Hill, Brantley, & Van 

Dyke, 2010). This range in weight provides reduced mechanical strength properties which are 

necessary for nerve regenerative conduit strength. An additional contributor to strength relies on 

properties of beta keratins. 

 2.4.2.2 Beta keratins. Hard keratins are found in tougher sources such as nails, hooves, 

and claws of mammals. The high amount of sulfur content makes the structure sturdy and ridged. 

According to Astbury, beta keratins are in the form of sheet like structures that are composed of 

–NH-CHR-CO directional chains each sheet (Huggins, 1980). The adjacent chains created an 

antiparallel structure which launched thoughts about CO and NH group bonding in the sheets 

(Huggins, 1943). Beta keratins are typically harder to extract and are known not to form 

reconstituted configurations (Hill et al., 2010).  In Table 4 comparison of various sources and the 

basic abilities of alpha and beta keratins are shown below.  

Table 4  

Alpha and Beta Keratin Comparison 

 Alpha Keratins Beta Keratins 

Sources hair, horns, sheep wool, and 

nails 

Human  fingernails, hooves, 

and claws of mammals, bird 

feathers 

Ability stretch and flex sturdy and ridged 

 

2.5 What is Polycaprolactone (PCL)?  

Polycaprolactone is a synthetic polymer derived from polyesters from cyclic ester 

lactones. Hydrolysis of PCL degrades by random chain scission of the ester groups.  PCL is one 

of the initial synthetic polymers produce from the Carothers group in the 1930s (Carothers, 
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1929).  PCL has the qualities of being bioresorbable, meaning PCL had the ability to be 

accumulated  in the body without producing toxic effects (Lam, Savalani, Teoh, & Hutmacher, 

2008). 

   2.5.1 Chemical structure of polycaprolactone. PCL is derived from two different 

types of ring opening polymerizations of ɛ-caprolactone. Anionic, cationic and co-ordination or 

from free radical ring opening are the alternative synthesis (Woodruff & Hutmacher, 2010). 

Benefits of ring opening polymerizations include milder reaction conditions, and shorter reaction 

times. The chemical structure of PCL and synthesis scheme of PCL is show in Figure 4. PCL 

also has fine biodegradable and biocompatible qualities as well as the compatibility to be 

blended with other polymers (Cha & Pitt, 1990).  Due to breaking of the ester groups of the 

polymer chains during hydrolysis, water absorption properties of PCL directly depends on the 

extent of the chain length (Göpferich, 1996).  PCL by itself is slow degrading polymer and has a 

remarkable degradation rate > 2 years (Woodruff & Hutmacher, 2010).  It has been expected that 

by blending with other hydrophilic polymers, the degradation rate will be increased.  Controlled 

degradation is a necessary characteristic in many research investigations especially for tissue 

engineering scaffolds. 

 

Figure 4. Synthesis scheme and chemical structure of PCL. 
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2.6 Keratin as Biodegradable Materials for Nerve Regeneration 

 Previous research of keratin extracted from hair has shown great potential in peripheral 

nerve regeneration and other tissue injury. The hair follicle possesses characteristics of cycles of 

growth, regression, and rest which are known as anagen, catagen, and telogen phases (Alonso & 

Fuchs, 2006) . These ideal characteristics can be applied to nerve regeneration purposes when 

keratin is extracted from hair and used as a biomaterial conduit. Keratin has also been extracted 

from wool and used as a biomaterial to form scaffolds.  Natural polymer scaffolds should be 

fully biodegradable and able to be readily excreted from the body based on the healing time of 

the damaged nerve gap. Essentially, factors such as pore size and cell adhesion can be controlled 

to promote long term cell cultivation (Tachibana et al., 2002).  Not only pore size can be 

controlled, but also controlling porosity can be achieved through a method called compression-

molding/particulate-leaching to create keratin sponges extracted from wool (Katoh, Tanabe, & 

Yamauchi, 2004).   

Interest in electrospinning keratin based nanofibers has grown over the years. Some 

researchers have explored blended fibers made of keratin and poly ethylene oxide (PEO). These 

blended fibers have the potential to be used throughout a range of areas which include protective 

fabrics, bioactive shells, bandages,  membranes, and other biomedical devices that support 

improving  tissue engineering (Aluigi et al., 2007).  Different theories have been applied to study 

the interactions of keratin polymer blended solutions. The Graessley’s theory was previously 

used to investigate the viscosity of keratin/PEO blend to further learn about the flow and change 

of shape of the polymer solution (Varesano, Aluigi, Vineis, & Tonin, 2008).  
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2.6.1 Keratin gel as filler material. Studies have shown that conduit fillers can serve as 

aid axonal regeneration in damaged nerve endings. A research group from Wake Forest 

University tested the effectiveness of keratin hydrogel fillers and developed a peripheral nerve 

defect model in rabbits(Paulina S. Hill & L. Andrew Koman, 2011). As a result they discovered 

the keratin filler to progress the conduction delay in comparison to other empty conduits. Due to 

the fact that the keratin filled conduits were not consistently successful, more research is required 

to be tested in this field. Another observation that resulted from this study was that the nerves 

treated with the conduit filled with keratin showed vast myelin thickness.  

Keratin based hydrogel is used to advance biomedical applications such as wound 

healing. Naturally, wound process is composed of three phases of healing of inflammation, 

granulation, and remodeling. Keratinocytes, which are epidermal cells that assemble and 

comprise keratin, tend to travel from wound site borders to coat the entire wound site. (Clark, 

1985). The presence of keratin at the wound site plays a major impact of the healing process of 

epithelial cell. In peripheral nerve damage keratin has been used as a conduit gel filler to provide 

restoration, regulate gene expression, and enhance activity of Schwann cells (Lin et al., 2012). 

From their study it was concluded that keratin gel filled conduits served as a more effective 

guide to lead Schwann cells and axon migration and to encourage proliferation of the 

regenerative nerve process.   

2.7 PCL as Biodegradable Materials Nerve Regeneration 

 Polycaprolactone (PCL) is one of the most commonly used synthetic polymers used for 

nerve regeneration and tissue engineering applications. In studies seeking to enhance 

rejuvenation of tissues and peripheral nerve gaps, a polycaprolactone blend with gelatin were 

manufactured into nanofibrous scaffolds with different ratios. A particular ratio of 70/30 
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PCL/gelatin resulted as a promising blend that encourages the production of new cell production 

and differentiation (Ghasemi-Mobarakeh, Prabhakaran, Morshed, Nasr-Esfahani, & 

Ramakrishna, 2008). Researchers at the University of Pittsburgh used PC12 cells to assess the 

interactions with PCL and collagen based nerve guides. PCL was covered with a layer of laminin 

and served as an extension to cell migration and attachment across the nerve guide model 

(Waddell, Marra, Collins, Leung, & Doctor, 2003). PCL has contributed to the creation of 

numerous biomaterial based conduits blended together with adequate results of desired 

characteristics such as mechanical strength.  

2.8 Advantages and Disadvantages of Keratin and PCL as Biomaterials 

Despite the advantages of using synthetic materials, some can cause inflammatory 

responses. To reduce inflammatory responses, one strategy is to combine or blend synthetic 

materials with other more biocompatible polymers. (Nectow et al., 2012).  In attempts to blend 

PCL with other natural polymers, it becomes opportunistic to take advantage of the ordinary 

biocompatibility of the natural polymer and the mechanical strength properties of PCL. The 

combination of the two polymers creates the needed structural stability that a nerve guide conduit 

should entail during the regeneration process.  

2.9 Nanofibers for Peripheral Nerve Application 

 For peripheral nerve applications, fabrication of nanofibers is beneficial to produce nerve 

guide conduits. Nanofibers provide a 3-D synthetic matrix to emulate the native extra cellular 

matrix. They can be engineered to retain the mechanical strength and biological functionality that 

is needed. Nanofibers create specific geometry based on the desired parameters.  Parameters 

required for electrospinning technology to work efficiently to produce nanofibers are dependent 

on numerous applications. Random fibers are created when polymer solution is electrically 
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charged by a high power supply source. When the electric field overcomes surface tension, of 

liquid drops at the tip of electrospinning syringe, it travels toward the grounded collector and is 

stretched and deposited on the aluminum foil. Spinning is controlled when the correct amount of 

voltage is applied to the corresponding polymer solution. Figure 5 shows the schematic set up of 

electrospinning apparatus. 

  

 

Figure 5. Electrospinning set-up. 

2.10 Electrospinning Parameters (How to Control Spray vs Spinning) 

 The morphology of the electrospun fibers highly depends on how the polymer stream is 

formed through the electrostatic environment. Electrospinning of nanofibers can only be 

successful when repulsion forces surmount the surface tension of the solution. Spraying and 

droplets are created on the ground collector when the repulsion force is not able to overcome the 

surface tension and when additional important parameters such as solution properties and 

apparatus parameters are not at optimal settings.   

 2.10.1 Solution properties.  Polymer solutions created independently and then blended 

hold key characteristics that contribute to the creation of nanofibers through electrospinning 

technology. In many cases, the viscosity of the solutions is apparently a dominate parameter. 
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Other important characteristics of solution properties are molecular weight, surface tension, 

conductivity, and absorption (Beachley & Wen, 2010).   

2.10.2 Apparatus parameters. Considerations included in the apparatus parameters are 

the high power voltage applied, the distance of the polymer solution leaving the syringe tip 

towards the grounded collector, the material of the collector and whether it is stationary or 

rotating. The surrounding conditions of the electrospinning set up such as humidity can also 

affect the outcomes of the nanofibers (Reneker & Chun, 1996; Reneker, Yarin, Fong, & 

Koombhongse, 2000). 

2.11 Types of Fibers and Formation Techniques 

 2.11.1 Random fibers. Parameters required for electrospinning technology to 

successfully create random fibers are solely dependent on the grounded collector.  Random fibers 

form when they are deposited on a stationary collector. 

 2.11.2 Aligned fibers. Biomedical applications in tissue engineering and peripheral nerve 

regeneration can require aligned fibers. Aligned nanofibers are produced by using a fast 

rotational grounded collector. Fibers that are traveling in the same direction can influence 

cellular growth and cell adhesion (Cooper et al., 2011). Aligned fibers contain extra stability and 

strength for the structure of the nanofibers to remain in an original shape without breaking 

immediately under stress. Another way to create aligned fibers is by using two split electrodes 

such as copper wire can be placed on the grounded collector as the fibers are being deposited (Li 

& Xia, 2004).  The fibers collected between copper wires or other forms of electrodes can be 

aligned as well. 

2.12 Objectives and Hypothesis 

Objective 1: To develop miscible blend solution of PCL/Keratin suitable for electrospinning.  
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Hypothesis 1: It is hypothesized that water soluble keratin extracted from human hair will be 

miscible with PCL solution made in polar organic solvent e.g. Trifluoroacetic acid. 

Objective 2: To develop well characterized blend nanofiber of PCL/Keratin suitable candidate 

for conduit for peripheral nerve gap repair. 

Hypothesis 2: It is hypothesized that by mixing certain amounts of PCL with keratin, a 

composite nanofiber of PCL/Keratin with suitable properties such as desirable mechanical 

strength and cellular compatibility will be obtained. 

  



23 

 

CHAPTER 3 

Methodology 

3.1 Materials 

3.1.1 Extraction materials. Hair was obtained from local African American barber 

shops in Greensboro, NC. Peracetic acid solution and Trizma 
TM

 Base powder (primary standard 

and buffer≥99.9% titration crystalline) was purchased from Sigma Aldrich. Hydrochloric Acid 

(A144C-212 Lot 093601) was purchased from Fisher Scientific.  

 3.1.2 Electrospinning materials. PCL, (6 caprolactone polymer, Mn70-90 kDa) and 

Trifluoroethanol (TFE) were obtained from Sigma Aldrich.   

3.2 Extraction of Keratin 

Keratin was extracted from human hair according to a previous method (Sierpinski et al., 

2008) with some modifications. A summary of multiple steps involved in the extraction process 

is outlined in Figure 6. 

 

Figure 6. Keratin extraction process overview. 



24 

 

3.2.1 Cleaning and peracetic acid treatment. Hair was thoroughly washed with warm 

water and soap for a few minutes in the sink and then rinsed with DI water. Washed hair was 

placed in the drying oven for one hour while being frequently stirred to allow each piece of hair 

to dry completely. Dried hair was evenly divided into paper weigh boats and measured on an 

electronic balance.  To save time, all stock solutions were prepared before the extraction process 

began and stored in the refrigerator. Peracetic Acid solution (2 wt%/vol%) was prepared under 

the fume hood by dissolving certain amounts of acid with water in a beaker.  Peracetic acid 

solution was added slowly in the beaker containing hair and covered with parafilm for 12 hours. 

3.2.2 Extraction of keratin in tris buffer. Hair was separated from the peracetic acid 

solution by using a 500 µm sieve. The hair was then thoroughly rinsed with DI water to remove 

residual acids and then separated evenly in two erlenmeyer flasks. The Dubnoff Metabolic 

Shaking Incubator was turned on and set to 38°C, 65 RPM. Stock solution of 1000mM Trizma 

TM
 Base stock solution was prepared and poured into the two flasks enough to cover the hair. 

Flasks were covered with parafilm and placed in the bath shaker for one hour. Liquid from each 

flask which contained free proteins was poured into storage and labeled as “Keratin Extract 

Solution”. DI water was then added to both flasks, covered, and placed back in the bath shaker 

for another hour. Liquid was again added to the “Keratin Extract Solution”.  

  3.2.3 Neutralization. The keratin extract solution was neutralized to approximately 

pH=7 using diluted hydrochloric acid solution of 30 ml of DI water and 4 ml of hydrochloric 

acid.  

 3.2.4 Centrifugation. The neutralized keratin extract solution was filled in twelve 14 ml 

conical tubes to be centrifuged by using VWR clinical 200 Centrifuge at 3000 rpm for 10 



25 

 

minutes during each cycle. Tubes were examined for collection of particles which were 

ultimately discarded. These steps were repeated until the entire solution was centrifuged.  

 3.2.5 Rotoevaporation. The Heidolph Rotary Evaporator connected with the chiller 

filled with DI water and ethylene glycol was assembled. The coolant chiller pump parameters 

were set to -25°C and cooled from 25°C to around -12°C within two hours. The rotary 

evaporator bath was set to 90°C and the solution was added to the rotary flask to fill it ¼ of the 

way full.  The apparatus was lowered into the water bath until the rotary flask was submerged 

and the rotation speed set to 200 rpm. After 1 to 1.5 hours the rotation of the flask was stopped 

and apparatus was lifted to remove the flask and pour the distilled solution into storage.  

3.2.6 Dialysis. Cellulose dialysis membrane (MW cut off 500 µm tubing 43mmx 27mm) 

was cut the desired length and secured at one end and filled with the distilled extracted solution 

with the aid of a funnel, and clamped secure at the top. The filled tube was placed in a 2000mL 

graduated cylinder and DI water was filled to cover the entire tube. The tube was left in the 

cylinder for 24 hours and the water was poured out and refilled ever 3-4 hours. After the 24 hour 

period was over, the water was emptied and the tube was taken out of the cylinder by holding the 

top of the tube securely and placed a beaker.  The best technique discovered to empty the 

purified tube into the beaker successfully was to get a needle and poke holes at the bottom of the 

tube and allow it to drain into the beaker slowly. The mass of 80ml jars were measured, 

recorded, labeled alphabetically, and then filled with the solution.  The jars were sealed with the 

cap and put in the -30⁰ overnight or until frozen. 

3.2.7 Lyophilization. Lyophilization took place using the Freezone freeze dryer set to 

 -86 ºC and 0.070mBar. Samples were obtained directly from the freezer and placed into the 

available freeze dryer ampoules and covered with the black seals. The first ampoule was 
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connected to the freeze dryer by the metal rod and the knob was turned to the vacuum position. 

The pressure light immediately illuminated with green lights until the pressure is below 0.133 

mBar again, which indicated when another sample could be added. The samples were left on for 

at least 25 hours or when completely dry. 

3.3 Electrospinning of PCL/Keratin Nanofibers 

 3.3.1 Polymer solution preparation. Extracted keratin was dissolved in DI water at a 

concentration 10% w/v. The glass container was slowly rotated around manually or slightly tilted 

and remained rested on the side to dissolve keratin on the bottom or side walls. PCL solution was 

prepared by dissolving PCL granules with Trifluoroethanol (TFE) at a concentration 10% w/v. 

When both the solutions were dissolved, a plastic syringe was used to remove the appropriate 

amount of each solution to generate the different ratios of PCL/Keratin 100/0, 90/10, 80/20, 

70/30.  Each solution mixture was vortexed manually or bound by tape to secure contact for 

vigorous mixing to take place. When the solution reached a blended composition, the glass vial 

was immediately taken to the electrospinning apparatus in the fume hood. Figure 7 represents the 

individual polymer solution preparations scheme. After mixing the solutions, the mixed blend 

was applied for electrospinning. 

 

Figure 7. Polymer solution preparation. 
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3.3.2 Electrospinning. In order to create the desired nanofibers from various polymer 

solutions of PCL/ Keratin 100/0, 90/10, 80/20, 85/15, 70/30, 60/40 and 50/50 specific parameters 

were constructed for electrospinning. The Spellman CZE100R  high power voltage was safely 

plugged in, the aparatus was adusted correctly, and the solution was poured into the stationary 

syringe.   The electrically charged high power supply source was set to 25 -27 kV. When the 

electric field overcame surface tension, it traveled toward the stationary grounded collector and 

was stretched and deposited on the aluminum foil.  The stationary syringe tip was approximately 

16 to 23 cm away from the grounded collector and build-up at the tip of the solution while 

electrospinning was removed.  

3.4 Characterization of Nanofibers 

 3.4.1 Scanning electron microscopy. Samples from each fiber ratio produced were first 

gold sputter coated in the Polaron SEM coating System for 1 minute and 30 seconds to guarantee 

even treatment. Subsequently, the samples were loaded into the SEM chamber and imaged using 

a 1-1.5kV accelerated voltage and 5 µA current. Additional parameters were adjusted to view a 

clear image in 500, 3K and 10K resolutions. All images were captured in a 40 second scanning 

process.   

 3.4.2 Fourier transform infrared spectroscopy.  A FTIR spectrum was completed by 

using the Bruker Tensor 2 instrument. PCL/Keratin nanofibers with different ratios were tested.  

Samples were cut from each ratio and placed in individual conical tubes to dry under pressure for 

one hour. Testing was done at 200 scans and 4 cm
-1 

resolution under an absorbance mode. Figure 

8 shows the different PCL/Keratin fiber samples prepared for FTIR experiment. The range of 

ratios prepared for testing included 100% PCL, 90/10, 80/20, 70/30, and 50/50. Testing required 

that fibers had a flat and solid morphology, which excluded ratio 50/50 sample to be included. 
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Figure 8. FTIR fiber samples. 

 3.4.3 X-ray diffraction.  Fiber samples for XRD measurement were prepared. By cutting 

each fiber membranes into a rectangular shape and contacted on a glass slide with two sided 

sticky tape, length and width measurements were recorded for each fiber sample. The parameters 

of the PSD detector used an absorbance =1and measured from 2Ѳ=10 to 40 angle range. Scan 

speed parameters were set to 1 and each scan took approximately 20 to 35 minutes to complete. 

Initially the XRD was calibrated using a test sample. The sample was parallel with the rays and 

the position in the z direction of the sample holder was set at a minimum -0.95 to max 1.95.  

 

Figure 9. XRD fiber samples. 
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 3.4.4 Mechanical strength tensile test. Each fiber sample was cut carefully and length, 

width and thickness for all ratios were measured. The fiber samples were measured in length and 

width by a regular ruler and the thickness was taken with a Digimatic micrometer for all trials. 

Testing was performed to collect data and three samples from each PCL/Keratin ratio were used. 

Fiber samples were center aligned and mounted within a 1 ¾ inch window cut from index cards 

and held with two sided sticky tape as shown in Figure 10. The top and bottom on the index card 

was measured accurately at ¾ inch length to be held by clamps on the convenient table top 

Shimadzu machine (North America Analytical and Measuring Instruments AGS-X series 

obtained from Columbia, MD).. 

 

Figure 10. Fiber sample holder. 

Trapezium Lite software was used to input data collection parameters and were set to 

displacement rate V1= 10mm/ min and data acquisition time= 500 ms for the10 N load cell. 

Additional software parameters were selected to collect the output time (seconds), force 

(Newton’s), and stroke (millimeters) data. To test, the sample holder was centered and tightened 
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between the bottom and top clamps. Both sides of the sample holder were cut to release tension 

before measurements were collected. In the software, the force and stroke were zeroed to 

calibrate the system and the test was started. After each test was completed, the exported raw 

data was saved in a spreadsheet and used to extrapolate the strain and stress from the force and 

displacement data collected. Stress was calculated by dividing the force by the cross sectional 

area and the strain was calculated by dividing the elongation length by the original length of the 

fiber sample. Stress-strain curves were created for each trial to evaluate the Young’s Modulus 

and Ultimate Tensile Strength of the fiber samples.  

3.4.5 Wettability analysis. For wetting analysis fiber samples were cut in small 

rectangles from the original source of each ratio. Dynamic Contact Angle Tester used SCA 20 

software to measure the contact angles that acknowledged which fiber ratios were hydrophilic or 

hydrophobic. Figure 11 shows the quantitative measure of contact angle which measures the 

hydrophobicity and hydrophilicity of solid fiber membrane.  

 

 

 

Figure 11. Wettability analysis set up. 

3.5 In vitro Study 
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 3.5.1 Degradation. Fiber samples one week and 7 week degradations were prepared and 

experimented from three samples of each ratio from PCL/Keratin 100/0, 90/10, 80/20, 70/30. 

Samples were cut into rectangular profiles and were placed in individual labeled conical tubes.  

The fiber samples were immersed in Phosphate Buffer Saline (PBS) solution for one and seven 

week period at 37ºC. After the allotted time periods, fibers were rinsed, pat dry and placed on the 

freeze dryer to be analyzed under SEM.   

3.5.2 Cytotoxicity analysis. Four different 24 well plates are separated into the following 

PCL/ Keratin ratios: A= 100/0, B=90/10, C=80/20, and D=70/30. To clean fibers, 80% ethanol 

was used. Each sample was submerged for 5 minutes in the 24 well plates.  A fresh 80% ethanol 

(5 ml) was poured into the wells for a repeat soaking process. Then each fiber was rinsed and 

submerged with PBS for 5 minutes and repeated as well.  Lastly, all fibers were rinsed with DI 

water for 5 mins and repeated to complete the cleaning process. Fibers were placed in 15 ml 

sized conical tubes and put on the freeze dryer for 1 hour to dry. When complete dryness was 

achieved, the clean fibers were stored back in the 24 well dried plates. Fibers were then sealed 

with Kwik-Sil on 14mm glass slides. A schematic in Figure 12 shows how fiber was placed on 

top of the glass. All fibers were cut into 14mm x 14mm sized squares to provide full coverage 

over the glass slides. Appendix A shows PCL/Keratin ratio sample preparation as an example. 

 

Figure 12. Schematic of fiber cell testing. 

 

 

fiber 
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 For cytotoxicity analysis the 24 well plates prepared in the above procedure were used. 

Sterilization of each sample with sterile DI water was carried out by submerging with 70% EtOH 

for 20 minutes and washed. Fibroblast 3T3 cells with passage 20 were plated 62,000 cell/cm
2
 in 

24 wells with 1 ml of media (10FCS/DMEN + L-glutamine and antibiotics).  Cells were grown 

in 37⁰C incubator for 24 hours (5% CO2 ). Alamar Blue Assay, a non-toxic scalable method was 

used to assess whether cells have enough energy to proliferate. Resazurin was added to 3 wells/ 

condition: 200µl resazurin + 800µl media resulting with a final volume of 2ml. After 1 hour, 4 x 

100µl/sample was removed to wells of 96-well plate for reading on a microplate reader at 530nm 

EX/ 590nm EM. The last column of wells got Cell Tracker Red in media, not resazurin. These 

were imaged on a florescent microscope. Lastly all wells were fixed with 4% paraformaldehyde/ 

2% glut for 20 minutes. Wells were washed 3x with PBS and stored at 4 ºC until it dehydrated in 

alcohols to 100% EtOH and put in a desiccator for 30 mins then was wrapped in parafilm.  
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CHAPTER 4 

Results 

4.1 Extraction of Keratin  

4.1.1 Yields. The amount of hair used initially was compared to the amount of powdered 

keratin that was actually extracted after lyophilization. The yield was approximately 2.5%. The 

extraction process was extensive with numerous multi steps. Several batches of keratin powder 

were prepared to obtain sufficient amount of keratin powder needed to create solutions for 

electrospinning. The fact that the yield remained low, encouraged frequent extractions to occur 

simultaneously. 

4.1.2 Consistency of extracted keratin. The consistency of the extracted keratin 

depended on the consistency of the methods and skills performed throughout the process. Many 

adjustments were established for each step to ensure consistency between trials. Close 

documentation of timing was considered as well.   

4.2 Electrospinning Preparation and Considerations of Spinning Techniques 

 The polymer solutions were mixed for a range of 30 minutes to 2 hours depending on the 

ratio. The PCL/keratin ratio of 60/40 took the longest to mix homogeneously in the glass 

container by vortex.  The PCL/ Keratin with ratio of 70/30 were mixed for over a one hour 

period as well. The viscosities of the two dissolved solutions changed in how it blended from the 

difference in ratios. Thus, prepared solution was charged with high voltage. The ground collector 

remained stationary and fibers from each ratio were able to deposit in one section at a time, and 

the collector was hand rotated to collect remaining fibers throughout the electrospinning process. 

The images in Figure 13 represent a visual of the formation of the 100/0, 90/10, 80/20, and 70/30 

PCL/Keratin fibers. Collection of fibers from different ratios ranged from 30 mins to 1.5 hours. 
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Figure 13. Electrospun nonwoven mesh of PCL/Keratin ratios. 

4.3 Nanofiber Characterization  

4.3.1 Scanning electron microscopy.  The image in Figure 14 is of 100% PCL 

electrospun fiber at 500 magnifications and 10k magnification. It was necessary to create the 

100% PCL fiber to optimize the electrospinning set up and to form successful bead free samples. 

An entire uniform sample of 100% PCL was collected on aluminum foil and was easily 

removable by gently pealing the fiber from the attached surface. The thickness of the fiber 

provided sturdiness to the nonwoven mesh structure. The remaining SEM morphology of 

PCL/Keratin ratios of are imaged in the degradation results, and labeled as the control.  

100/0 90/10 

80/20 70/30 
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Figure 14. SEM image of PCL nanofiber. 

4.3.2 Fourier transform infrared spectroscopy. Spectra of PCL/Keratin nanofibers 

were measured in Figure 15 and represent the bonding between PCL compounds and keratin.  

The major peak for all the fiber samples is measured at 1722 cm
-1

 which agrees with the standard 

basic measurement of PCL absorption band. 
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Figure 15. FTIR PCL/Keratin nanofibers with different ratios. 
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The major PCL peak corresponds to the carbonyl groups. When keratin is added in the 

remaining ratios 90/10, 80/20 and 70/30, it interferes with the functional groups PCL.  The 

stretching of ester bonds are represented within the 1750-1735 cm
-1

 range. A highlighted 

characteristic peak of keratin was observed around 1540 cm
-1 

shown in the dotted line indicated 

for PCL/Keratin 70/30 fiber ratio. 

4.3.3 X-ray diffraction.  The peaks in Figure 16 below represented the crystalline 

structure of the PCL /Keratin structure within the fibers. PCL/Keratin fiber ratios of 90/10, 

80/20, 70/30, and 50/50 were measured.. The characteristic diffraction peaks of PCL are 21.310 ⁰ 

and 23.66 ⁰.  
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Figure 16.XRD PCL/Keratin fiber results. 

The characteristic peaks shown in Table 5 are very close in value to PCL alone. The 

major peak for the PCL/Keratin ratios range from 21.25 ⁰ to 21.48 ⁰ and the secondary peak 

range from 23.55⁰ to 23.79⁰.  The shift in degree indicates a decrease in crystallinity of PCL with 

the addition of keratin.  
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Table 5 

XRD major peaks 

Ratio 1
st
 Peak 2

nd
 Peak 

90/10 21.25⁰ 23.55⁰ 

80/20 21.29⁰ 23.60⁰ 

70/30 21.38⁰ 23.59⁰ 

60/40 21.48⁰ 23.79⁰ 

 

4.3.4 Mechanical strength tensile test. PCL/Keratin mechanical tests were performed 

for the following ratios: 100/0, 90/10, and 80/20.  Figure 17 shows the resulting plot of stress 

verses strain curves. The first indication of deformation within the materials is seen in the first 

bend each curve. 

0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

S
tr

e
s

s
 (

M
P

a
)

Strain (mm/mm)

 100 (a)

 90/10 (b)

 80/20 (c)

PCl/ Keratinb

a

c

 

Figure 17. Mechanical testing on PCL/Keratin ratios. 
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 Figure 18 is the result of ultimate tensile strength and Young’s modulus obtained from 

stress-strain curves. The ultimate tensile strength represents the highest quantity of stress that 

each PCL/Keratin fiber sample can withstand while it was elongated with the force applied, and 

actually breaks.   

 

Figure 18.Ultimate tensile strength and Young's modulus plotted data. 

 4.3.5 Wettability Analysis. The results shown in Table 6  were the given angles of 

wetting analysis of PCL/ Keratin fibers with ratios of 100/0, 90/10, and 80/20. The contact angle 

was determined is listed below. From these results the change in hydrophobic and hydrophilic 

properties from the addition of keratin to each PCL/Keratin fiber sample were evaluated.  

Table 6  

Wettability Analysis 

Ratios Contact Angle 

100/0 81.3⁰ 

90/10 78.7⁰ 

80/20 69.2⁰ 

70/30 62.9⁰ 
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4.4 In Vitro Study 

4.4.1 Degradation. All the degradation nanofibers were imaged under SEM. Figure 19 

shows the top panel of PCL/Keratin nanofibers as a control, and the bottom two panels display 

the SEM images of nanofibers after 1 and 7 weeks.  

 

 

Figure 19. SEM images of 1 and 7 week degradation vs control PCL/Keratin fibers. 

 4.4.2 Cytotoxicity. Fibroblast 3T3 cells are imaged under SEM at 500 and 2,000 

magnification in contact with PCL/Keratin 90/10 ratio fibers (Figure 20). The darker areas on 

both images indicate the location of each fibroblast cells attached on top of and throughout the 

nanofiber topography. Cellular biocompatibility was successfully achieved. 

       70/30                      80/20             90/10 
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1 week 

degradation 

PCL/Keratin 

7 week 

degradation 
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Figure 20. Morphology of 3T3 fibroblast cells seeded on PCL/Keratin nanofiber membrane. 

In the following graph of percent verses PCL/Keratin fibers, determined that no samples 

were statistically different from the control glass cover slide. The results provide confirmation 

that PCL/Keratin nanofibers do not induce harmful or toxic effects on fibroblast 3T3 cells. 

PCL/Keratin ratios are labeled Con= control, A= 100/0, B=90/10, C= 80/20, and D=70/30. 

 

Figure 21. Cytotoxicity results of PCL/Keratin fibers and 3T3 cells. 
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CHAPTER 5 

Discussion and Future Research  

During extraction, hair was moderately oxidized with an oxidizing agent of peracetic acid 

which kept some bonds intact and partially cleaved some disulfide bonds. The consistency of the 

extracted keratin depended on the consistency of the techniques performed throughout the 

extraction process. After several trial experiments the extraction techniques were mastered and 

documented carefully in order to continue a steady outcome of keratin products necessary to 

create successful polymer blends with PCL for electrospinning fibers. The yields however of the 

keratin extracts in powder form were very low. Modifications were altered from preparations for 

keratin biomaterials techniques (Sierpinski et al., 2008) , can be further modified to extract a 

higher yield. The morphology of keratin powder produced after lyophilization changed 

throughout many trials. Some keratin powder only was located at the bottom of the glass jar in 

uniform position. Other freeze dried powders attached to the sides of the glass. These 

observations were handled accordingly from the differences in trials to successfully create the 

solution. 

Preparation of the polymer solutions which included dissolving PCL in Trifluoroethanol 

(TFE) at the chosen concentration and keratin in water at the chosen concentration were both 

recommended computations from previous studies. In many previous studies water soluble and 

insoluble proportions proved successful in mixing. When PCL was chosen specifically as the 

synthetic polymer to blend with natural polymers, a well defined procedure is needed. Regarding 

the fact that PCL is able to dissolve in TFE at a reliable rate, results were successful within a 12 

hour period. Keratin easily dissolved in DI water with the range of a few minutes to up to an 

hour in time. The blending technique developed for PCL and keratin in this research, was similar 
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to the previously developed technique for electrospinning of keratin and polyethylene oxide 

(PEO) blend solution (Aluigi et al., 2007).  

When electrospinning process was executed, the variation of fiber formation was not only 

dependent due to the concentration of the polymer solutions, but also was a resultant of 

optimized parameters within the electrospinning set up. As expected from previous 

experimentation and the properties PCL, successful electrospun PCL fibers were consistently 

formed. The thickness of the PCL fiber exceeded the PCL/Keratin fiber thickness of 90/10, 

80/20, and 70/30.  PCL remains to uphold as a common biomaterial used in peripheral nerve 

guides mainly for the mechanical strength potential. The PCL fibers encompassed the entire 

aluminum foil sheet on the grounded collector superior to any other fiber ratio. The contents 

were overall flat and plentiful for easy removal from the aluminum foil. For the variety of 

physical and chemical testing that was performed, the PCL fibers were manageable and available 

to cut in precise measurements.     

The presence of keratin in the PCL/Keratin nanofibers was confirmed using FTIR. The 

results show a differentiation of characterization peaks from the original 100 % PCL peak to the 

addition of keratin. In previous study, stretching of the ester band of PCL at 1724cm
-1

 was 

observed as a major peak on PCL nanofibers (Prabhakaran, Venugopal, Chan, & Ramakrishna, 

2008). As shown in the PCL/Keratin 70/30 ratio, a characteristic peak around 1540 cm
-1 

indicated presence of keratin. The rate of degradation and the capability of nanofibers retaining 

reliability over a period of time can be determined, as suggested in a similar PCL based 

nanofibers study by FTIR (Bhattarai, 2009). 

 From XRD results of the PCL/Keratin fiber, the shift of ratio compositions explains how 

the addition of the keratin protein effects the composition of PCL.  From previous 
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experimentation of PCL data of XRD, the diffraction peaks were shown at 21.5 ⁰ and 23.6⁰ 

(Johnson et al., 2005).  Therefore, the measured XRD values for ratios 90/10, 80/20, 70/30, and 

50/50 PCL/Keratin fell very closely with that standard angle for these two main peaks in PCL’s 

structure. As keratin is added to the peaks, causes a slight shift with significant decrease in 

intensity of peaks which indicates disruption of PCL crystalline structure and encourages 

miscibility and change in morphology. 

Blended fibers give an advantage of combining natural and synthetic polymer properties 

that are necessary to design conduits with desired properties for peripheral nerve guides. 

Important features that are considered are the ultimate tensile strength and the Young’s modulus 

of the nanofibers. Ultimate tensile data collected from PCL/Keratin fibers compared much less 

than peripheral nerve in situ has a tensile strength of approximately 11.7 MPa (Rydevik et al., 

1990; Weir, Buchanan, Orr, Farrar, & Boyd, 2004). Knowing the desired tensile strength helps to 

identify the best suited biodegradable fiber to use to create conduits from nerve regeneration 

purposes. The decrease of value for Young’s modulus and ultimate tensile strength account to 

the addition of keratin present within the different ratios.  

The degradation study as carried by observing SEM images showed that in a 1 week 

period, fibers did not change the morphology compared to week 7 time period. The images were 

captured in three resolutions and observed at low magnification, the degraded PCL/Keratin 80/20 

ratio appeared to merge together across the fiber image after 7 weeks compared to the control. 

The PCL/ Keratin 70/30 ratio degraded the fastest over the 7 week period, which changed the 

morphology the greatest from all other ratios. PCL/Keratin fiber ratios contained more keratin 

became more hydrophilic, as confirmed in the wetting analysis data collected. The contact angle 

decreased as expected and seen in similar studies of measuring blended natural and synthetic 
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polymer ratios. Due to this modification, the rate of degradation of PCL was increased as 

expected.   

Cytotoxicity testing was only performed over a 24 hour period and determined that 

PCL/keratin fibers are not toxic for 3T3 fibroblast cells. Alamar Blue results showed no samples 

were significantly different from the control glass slide, by comparing the percent of toxic effect 

expressed. To achieve more conclusive results, more PCL/Keratin fiber samples are needed to 

test up to a 1 week time period.  Additional trials will be performed to produce adequate results.  

SEM morphology of cells imaged on PCL/Keratin fibers showed how the 3T3fibroblast cells 

were able to penetrate throughout the fibers and make good contact. Excellent morphology of 

nanofiber/cell was observed in the PCL/ Keratin (90/10) compared to other ratios.  

Damaged peripheral nerves require for the distal and proximal nerve ends to reunite and 

grow back successfully in order to restore function. A major component depends on size of the 

nerve gap. Currently available nerve guidance conduits have been limited to gap sizes ≤ 3cm. 

Historically, the golden standard for smaller gap sizes are using autographs, suturing, or allowing 

natural regeneration to take place. Yet autographs may not ensure the desired healthy function 

after regeneration is complete. Therefore, the need for a improved solution is being investigated 

through using biomaterials such as PCL and keratin to improve peripheral nerve gap damage.   

Future direction in this research will include generating additional weight percent 

blended polymer nanofibers through the use of electrospinning technology. Exploring the 

potential of filling conduits with hydrogels to enhance cellular regeneration properties will be 

investigated in future experimentation.  Schwann and PC12 cell cytotoxicity testing will also be 

conducted in the continued work, to study and compare proliferation and migration affects of the 

neuronal cells on the PCL/Keratin fibers. Each nanofibers ratio combination will be rolled into 
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conduits and cellular adherence, degradation, mechanical strength, and proliferation will be 

tested and observed as well. These factors are detrimental to the stability and pliability of the 

nanofibers to be created into nerve guidance conduits. Ultimately, in vivo studies of PCL/Keratin 

conduits will be created as pictured in Appendix B. As hypothesized and objected for this 

research, PCL/Keratin based nanofibers have the potential and desired properties of mechanical 

strength and cellular compatibility that will provide enhancement of damaged peripheral nerve 

gap sites and will opportunely degrade in the process of healing.   
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Appendix A 

 

 

Figure. Cytotoxicity testing prepared samples. 
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Appendix B 

 

Figure. Future work for creating PCL/Keratin based conduits for in vivo study. 

 


	Synthesis Of Pcl/Keratin Composite Nanofibers For Nerve Repair Application
	Recommended Citation

	tmp.1590772998.pdf.OeQBr

