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Abstract 

The nature of magnesium alloys to degrade is attributed to the high oxidative corrosion rates 

which are attractive for a biodegradable medical implant since they will avoid a removal surgery 

by gradually degrading and being absorbed by the body. In this thesis project, the biocorrosion 

characteristics of AZ31 Mg alloy are investigated in a simulated physiological solution 

mimicking the airway surface lining fluid. Particular attention was focused on the effect of 

carbonate ions present in the solution and porcine stomach mucin added to the test solution to 

create an in vitro model of the epithelial mucus surfaces mimicking the epithelial surface along 

the trachea. The corrosion behavior of the samples was analyzed using both immersion and 

electrochemical tests. The morphological characterization of the samples was performed using 

X-ray computed tomography (Micro-CT) and scanning electron microscopy (SEM). Chemical 

composition of the surface corrosion products was determined with electron dispersive X-ray 

spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that addition of 

bicarbonate ions accelerated uniform corrosion rate with the increase of bicarbonate 

concentration while mucin decelerated the corrosion rate of the samples by adhering to the 

surface thereby reducing the amount of corrosion products formed on the surface. In vitro 

cytocompatibility studies were performed using porcine tracheal epithelial (PTE) cells which 

proved to be non-toxic and biocompatible to the Mg alloy. The experimental data in this thesis 

project is intended to be used as foundation knowledge to predict the corrosion behavior of AZ31 

Mg alloy in the physiological environment, in order to provide degradation information for 

future in vivo study to be utilized as a tracheal stent device. 
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CHAPTER 1 

Introduction 

1.1 Background  

 Airway stenting has now been an integral part of the medical armamentarium for more 

than a decade and is proven to offer effective palliation for patients with airway stenosis 

complications (Dumon, 1990). Airway stents are hollow prosthetic devices made of metal, 

polymers or a combination of both and are placed in the airway intended to restore airway 

patency caused by stenosis (Murgu & Colt, 2006). Surgery is usually the preferred treatment; 

however, when the clinical status of the patient permits, stenting provides a reliable alternative in 

selected cases such as tracheal reconstruction surgeries to prevent airway collapse or to stabilize 

the reconstructed airway which helps to improve quality of life in non-surgical patients 

(Stamenkovic, Hierner, De Leyn, & Delaere, 2007). Patients with expiratory central airway 

collapse often have debilitating dyspnea, cough, inability to clear secretions, and even respiratory 

failure requiring mechanical ventilation (Collard, Freitag, Reynaert, Rodenstein, & Francis, 

1996; Nuutinen, 1977). 

The current airway stents technology are either constructed of silicone (Dumon, 1990) or 

expandable metallic stent made of nickel and titanium alloy (Wood, 2001). The silicone stents 

are well established in the treatment of stenoses resulting from the intraluminal ingrowth of 

tumors or granulation tissue while the expandable metallic airway stents are most often used in 

patients with airway stenosis caused by extrinsic tumoral compression. Both the silicone and 

expandable metallic stents have different advantages and disadvantages shown in Table 1 

(Wood, 2001), which should be considered when the physician chooses the most appropriate 
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stent for an individual patient. However, the ideal airway stent that combines the advantages of 

silicone and metallic stents has not yet been developed.  

Table 1  

Differences between silicone and expandable metallic stents (Wood, 2001) 

Silicone  Expandable metal  

Removable  Permanent  

Able to be dislodged  Stable placement  

Adjustable  Difficult adjustment  

No epithelialization  Epithelialization  

Difficult placement  Easy delivery  

Require general anesthesia  Require local anesthesia  

No tissue ingrowth  Tissue (tumor) ingrowth  

Unreactive  Granulation formation  

Can disturb mucociliary clearance  Better clearance mucociliary secretion  

Rigid bronchoscopy Flexible bronchoscopy 

 

The advantages of metallic stents over silicone stents include; simpler insertion and 

fixation. The metallic stents also have a high internal-to-external diameter ratio and provide 

better clearance of secretion. However, metallic stents can cause granulation formation where 

tissues grow through stent interstices causing the stent to be covered by epithelium. This makes 

the metallic stents not easily removable and therefore may require an open surgery. It is also 

recommended that the metallic stents should not be used in children because it may be necessary 

to exchange existing stents for larger ones as they grow.  
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However, biodegradable metallic stents made of magnesium alloy seems to be a 

promising material for use in the airway since it offers certain theoretical benefits such as non-

toxicity, less irritation on tissues, and high anti-infection capability when compared to the 

currently available for clinical use. The extraction of the bioabsorbable stent will be unnecessary 

and the normal airway will be preserved after stent resorption thereby eliminating the need for 

additional invasive procedures, reducing healthcare expenses and spares the patient the pain of 

multiple procedures used to implant and later remove the implant (Witte, 2010b).Thus, the 

development of biodegradable stents, which can fulfill its mission and step away, is the logical 

approach (Colombo & Karvouni, 2000; Erne, Schier, & Resink, 2006).   

In order to fully understand the purpose of airway stenting, it is vital to have some 

familiarity with the anatomy of the trachea and the main characteristics of tracheal stenosis 

affecting the airway including the most common causes. 

1.1.1 Anatomy of the trachea. The trachea is comprised of 18 to 22 C-shaped rings of 

hyaline cartilage anteriorly located, whose ends are posteriorly connected by trachealis muscles. 

Figure 1 (a) illustrates the trachea and the main bronchi. It functions as a conduit for air and 

clearance of secretions (Grillo, Donahue, Mathisen, Wain, & Wright, 1995). The length goes 

from 9 to 12 cm in adults, measured from the lower border of cricoid cartilage down to carina 

where it divides to left and right bronchi. The average laterolateral diameter is between 1.3 and 

2.2 cm (Grillo, et al., 1995; Webb, Elicker, & Webb, 2000).  

The trachea is composed of 4 layers as shown in Figure 1 (b). The inner layer is 

the mucosa, which is composed of a pseudostratified columnar epithelium containing ciliated 

cells and goblet cells. The second layer is the submucosa, which is composed of connective 

tissue ranging in density from loose to dense irregular. The cartilaginous layer contains C-shaped 
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rings of hyaline cartilage and facilitates smooth movement of the joints. The outermost layer 

is the adventitia, which is a outermost layer and contains the cartilaginous rings interconnected 

by connective tissue. 

 

Figure 1. Anatomy of Trachea (a) Trachea and main bronchi (b) Schematic view of the axial 

cross-section (Source: WebMD.com). 

1.1.2 Tracheal stenosis. Tracheal stenosis is defined as narrowing of the central airway 

due to loss of soft tissue and cartilage support along the trachea. Despite being relatively rare, 

this condition can be life threatening with treatment including surgery or the use of stents (Spittle 

& McCluskey, 2000). The most common cause of tracheal stenosis is trauma, specifically 

internal trauma, usually caused by intubation (Lee, 2008). Other potential causes of tracheal 

stenosis, includes inflammatory diseases, benign or malignant neoplastic conditions, and 

extrinsic pressure (Grillo, et al., 1995). Typical symptoms of tracheal stenosis include shortness 

of breath, coughing, and stridor (Elliott et al., 2003).The narrowing may be seen in various 

different shapes which are usually associated with its causes (Lee, 2008; Webb, et al., 2000). 

 

(a) 

(b) 
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CHAPTER 2 

Literature Review 

2.1 Airway Surface Liquid Overview 

During normal respiration, thousands of bacteria and other airborne irritants are inhaled 

in the airway. Despite this constant intake of pathogens, the body is able to maintain sterility in 

the airways due to the fluid that covers the surface of conducting airways referred to as the 

Airway Surface Liquid (ASL). ASL plays a critical role in the defense mechanisms of the lungs 

against microbial and other environmental threats (Joris, Dab, & Quinton, 1993). It possesses a 

mucus component that traps inhaled particles; and a periciliary liquid layer (PCL) that keeps 

mucus at an optimum distance from the underlying epithelia, through which the microorganisms 

can be expelled in the flow of mucus of approximately 60 µm/s driven by the beating of 

epithelial cilia from the airways illustrated in Figure 2 (Knowles & Boucher, 2002; Tarran, 

Grubb, Gatzy, Davis, & Boucher, 2001).  

 

Figure 2. Epithelial cells, Cilia and Mucus layer illustrating defense mechanisms in the airway.  

In normal airways, the PCL approximates the length of the outstretched cilia which is 7 

µm, whereas the mucus layer varies considerably in height from 7 - 70 µm (Jayaraman, Song, 

Mucus 
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Vetrivel, Shankar, & Verkman, 2001; Winters & Yeates, 1997). ASL also contains antibacterial 

agents (e.g., lysozyme and lactoferrin), and migratory cells such as neutrophils and macrophages 

(Allen, Hutton, Pearson, & Sellers, 1984; Knowles & Boucher, 2002).  

2.2 Components in the Airway Lining 

2.2.1 Ionic and chemical composition in the airway. The volume, ionic composition, 

and pH of the ASL are key physiological parameters that are related to airway hydration, 

reactivity, and antimicrobial activity (Jayaraman, et al., 2001). These parameters are 

also important in the physiology of Cystic Fibrosis (CF) which is a disease caused by a defective 

gene characterized by abnormal transport of [Na+] and [Cl-] across the epithelium, causing the 

body to produce abnormally thick and sticky mucus. The composition of ASL may also depend 

on secretion from airway glands, ion transport across the surface epithelium and goblet cell 

discharge (Widdicombe, 2002).  

The surface of the airway lining layer is covered by a liquid that contains mucin 

macromolecules, electrolytes, and water. The ASL from a healthy airway contains [Na+],[Cl -] 

and K+ with steep ion gradients existing across normal airway epithelia which must be regulated 

and maintained by active electrolyte transport processes of airway epithelia (Joris, et al., 1993). 

Water moves into the airway lumen in response to active Cl- secretion across the epithelia of the 

tracheal surface and of submucosal glands. Active absorption of Na+ across the surface 

epithelium serves to remove liquid. These active ion transport processes move liquid by 

generating local osmotic gradients across the epithelium (Diamond, 1979). 

2.2.2 Mucus and mucin role in the airway. Mucus is a complex viscous adherent 

secretion synthesized by specialized goblet cells in the epithelium that lines the airway. It is 

primarily composed of approximately 95% water, ions, lung secretions and proteins (Allen, et 
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al., 1984). Airway mucus maintains hydration in the airway, it acts as a form of barrier to 

pathogens, bacteria and contributes to the innate defensive system in mucosal immunology and 

as a permeable gel layer for the exchange of gases and nutrients with the underlying epithelium 

(Allen, et al., 1984; Jeffery & Li, 1997; Tabak, 1995). Mucus is the first barrier with which 

nutrients and enteric drugs must interact and diffuse through, in order to be absorbed and gain 

access to the circulatory system and their target end organs. 

The major macromolecular constituents of mucus are the mucin glycoprotein (Thornton, 

Rousseau, & McGuckin, 2008). Mucins are high-molecular weight glycoproteins ranging from 

200kD to 20-40 MDa (Offner & Troxler, 2000) and are expressed by the epithelial cells and 

endothelial cells (Levine et al., 1987). Mucins are present as membrane bound or secreted 

mucins with approximately 80% content of carbohydrate. Mucins structure consist of tandemly 

repeating amino acids rich in serine and threonine, which are the site for O-linked glycosylation 

(Rose & Voynow, 2006). Mucin is responsible for viscoelastic properties of the secretions, 

providing protection for the exposed delicate epithelial surfaces from microbial and physical 

injuries. They also produce certain enzymes that are responsible for the host intestinal defensive 

mechanism which prevents many microbial diseases (Satoh et al., 2000).   

2.2.3 Airway stent/tissue interface. In order to have a successful and effective airway 

stent, it is vital to understand the interface between the device placed in the airway and the 

underlying tissue or environment around the implant. Both the self-expandable metallic stent and 

the silicone stents experience various problems with the underlying tissues after placement in the 

airway. The most common problem associated with self-expandable metallic stents is granulation 

tissue formation, mucus plugging and inflammatory cells (Gottlieb et al., 2009). The mechanism 

of granulation tissue formation involves the interaction of the metal with airway tissue which 
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causes excessive growth of healing tissue around the wire to cause blockage of the stent. 

Similarly Bjarnason et al. reported the effects of placing a metal stent in pig trachea which 

resulted in retention of secretions or plugs of mucus and secondary infection (Bjarnason et al., 

1999). Another problem associated with the metallic stent is the shearing forces at the stent-

mucosal interface created by the differential motion of the stent relative to the airway contribute 

to the constant stimulation of the airway mucosa, leading to reactive granulation tissue 

(Burningham, Wax, Andersen, Everts, & Cohen, 2002). 

Magnesium alloys have a potential to be used as a biodegradable tracheal stent because of 

their attractive properties such as low density, high strength-to-mass ratio and good damping 

characteristics (Tan, Soutar, Annergren, & Liu, 2005; Witte, 2010a). Magnesium is essential to 

human metabolism and is naturally found in bone tissue; therefore released ions are nontoxic to 

the human body. The current metallic tracheal stents may not be used in children because they 

are still growing therefore exchanging the existing stents are required. Thus a magnesium airway 

implant can gradually be dissolved and excreted hence the extraction of the implants will be 

unnecessary. Therefore, it is intriguing to evaluate the dynamics of metallic airway stents and 

components of airway surface lining fluid interactions. 

2.3 Historical Background on Magnesium 

Although Joseph Black discovered magnesia in 1754, it was not until 1808 when 

Humphrey Davy demonstrated magnesia was the oxide of a new metal using electrolytic 

splitting, but it was first industrially produced only 78 years later. Michael Faraday later enabled 

the production of Mg metal by electrolysis of fused anhydrous MgCl2 in 1833 (Witte, 

2010a).The production of commercial magnesium began in 1852 in Germany, using a 

modification of Bunsen’s cell and then followed by America during World War I. Magnesium 
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was used mainly for weapon-manufacturing as it burns hot and fast. It was, however, only during 

the World War II in 1939 when the Germans and later the Americans started using magnesium 

alloy for aircraft construction and other military applications, exploiting the low density of 

magnesium (Chino, Kado, & Mabuchi, 2008; Nguyen, Gupta, & Srivatsan, 2009; Prasad, Rao, & 

Gupta, 2009). From this first industrial production until the Second World War the amount of 

magnesium annual production increased from nearly 10 to 235,000 tons in 1944, only to fall 

again in the late 1940s (Heublein et al., 2003). 

Research and development of magnesium alloys significantly declined after the 1960’s as 

a result of an unfavorable price differential between magnesium and aluminum, and magnesium 

alloys were no longer needed to support war activities. Today, major automotive makers are 

researching applications of magnesium alloys in engines and car parts in order to reduce the 

weight and environmental impact due to gas emission, in accordance with the requirements for a 

more sustainable use of natural resources and controlled environmental impact (Mordike & 

Ebert, 2001). Magnesium alloys are also widely used for manufacturing of mobile phones, laptop 

computers, cameras, and other electronic components owing to their excellent resistance to 

electromagnetic radiation (Goh, Wei, Lee, & Gupta, 2006; Han, Hu, Northwood, & Li, 2008; 

Hassan & Gupta, 2003). 

2.4 Magnesium as a Biodegradable Implant Material 

Magnesium is the lightest of all the engineering metals, having a density of 1.7 g/cm3. It 

is 35% lighter than aluminum  which has a density of 2.7 g/cm3 and over four times lighter than 

steel which is 7.86 g/cm3 (Zucchi, Frignani, Grassi, Balbo, & Trabanelli, 2008). The physical 

and mechanical properties of magnesium make it quite suitable as a biodegradable metal implant 

for both orthopedic and stent application (Staiger, Pietak, Huadmai, & Dias, 2006). Table 2 
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compares magnesium to the natural bone and other engineering materials used as implants. The 

difference in elastic modulus of the other engineering materials corresponding value for natural 

bone varies which may lead to stress shielding effect between implant and bone of the injured 

bone since it will deprive the bone of the normal stress compromising the whole healing process 

as well as the implant stability (Winzer et al., 2005; E. L. Zhang, Yin, Xu, Yang, & Yang, 2009).  

Table 2  

Mechanical properties of Magnesium alloy compared to Natural Bone and other engineering 

materials (Staiger, et al., 2006) 

Properties 
Natural 
bone 

Magnesium Ti alloy 
Co-Cr 
alloy 

Stainless 
steel 

Nitinol 

Density (g/cm3) 1.8-2.1 1.74-2.0 4.4-4.5 8.3-9.2 7.9-8.1 6.45 

Elastic modulus 
(GPa) 

3-20 41-45 110-117 200-230 189-205 28-40 

Compressive yield 
strength (MPa) 

130-180 65-100 758-1117 450-1000 170-310 70-140 

Fracture toughness 
(MPam1/2) 

3-6 15-40 55-115 N/A 50-200 N/A 

 

Because of their low density and good mechanical properties combination, magnesium 

alloys are interesting candidate for biodegradable implants. Magnesium alloys provide 

advantages when used as structural materials, because of their high strength-to-weight ratio, 

specific rigidity, good damping characteristics, and castability, which makes them applicable in 

various fields of modern engineering (Tan, et al., 2005). Magnesium is the fourth most common 

mineral salt in the human body and the second most common intracellular cation Mg2+ (Dube & 
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Granry, 2003). It’s also a vital element involved in several metabolic and biological mechanisms 

(G. L. Song & Song, 2007) and is mainly present in the bone, muscle and soft tissues. 

As early as in 1906 Lambotte applied magnesium as a degradable implant material for the 

fixation of bone fractures (Cao & Kou, 2006). He used pure magnesium plates in combination 

with gold-coated steel nails for the fixation of a fractured lower leg. However, due to galvanic 

corrosion, the Mg plate degraded fast and it dissolved within 8 days with a large amount of gas 

observed beneath the skin. Despite this set-back he concluded that magnesium was resorbable in 

the body and further research in the area has been undertaken since then in both animals and 

humans using different alloys (Cao & Kou, 2006; Djurdjevic & Schmid-Fetzer, 2006; 

Riemelmoser et al., 2007) mostly in vitro (Liu et al., 2010; Witte et al., 2006), but also in vivo 

studies (Witte et al., 2005; Zreiqat et al., 2002). 

In general, the use of degradable implants reduces the need for a second operation for 

implant removal, which saves money to the health system besides being beneficial to the patient. 

This is particularly important for pediatric cases because the body is still changing and growing 

which thus requires the permanent implants to match the growth. Additionally, degradable 

implants also stimulate the damaged tissue as a result of a gradual load transfer from the implant 

to the tissue (Witte, 2010a). However, the optimal degradation performance of a biodegradable 

implant must be controlled to ensure the total mechanical integrity of the tissue as well as 

biocompatibility by delaying the formation of degradation products. For these reasons, a 

magnesium implant resuming all the advantages mentioned, make it a good material selection for 

use as a biodegradable implant.  
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2.5 Corrosion of Magnesium 

Corrosion was defined in 1946, by The American Electrochemical Society as “the 

destruction of a metal by chemical or electrochemical reaction with its environment”. Corrosion 

occurs due to the metals spontaneous need to revert to a more stable form as it is found in nature 

(Jacobs, Gilbert, & Urban, 1998). Magnesium corrosion is attributed to the high oxidative 

corrosion rates due to its strong thermodynamic tendency to oxidize. It is generally known to 

degrade in aqueous environments via an electrochemical reaction which produces magnesium 

hydroxide and hydrogen gas. The general anodic and cathodic reactions occurring on a 

magnesium anode can be expressed by reactions (2-1) and (2-2), respectively.  

        Mg(s)               Mg2+
(aq) + 2e–    Anodic reaction                   (2-1) 

        2H2O(aq) + 2e–                H2(g) + 2OH–
(aq)   Cathodic reaction                (2-2) 

        Mg(s) + 2H2O(aq)                   Mg(OH)2(s) + H2 (g)   Net reaction                     (2-3) 

 

Figure 3. Reactions between magnesium alloy and aqueous environment. 

These processes are illustrated on Figure 3. The prime corrosion product formed is 

magnesium hydroxide however different environments will lead to further types of corrosion 

products, e.g. carbonates when in the presence of carbonic acid or CO2 in water or sulphates 

when in the presence of diluted sulphuric acidic or sulphur containing contaminants. From the 

analysis of the previous equations it can be observed that magnesium corrosion is not 
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considerably dependent on the environment’s oxygen concentration (G. Song, Atrens, Stjohn, 

Nairn, & Li, 1997; G. L. Song & Song, 2007) .  

2.5.1 Negative difference effect (NDE). The NDE is a very strange phenomenon found 

in magnesium and its alloy due to the strong hydrogen evolution and the rate of this reaction has 

been found to increase with the increase in the anodic polarization. However, this phenomenon is 

still not well understood. Due to this effect, predicting the corrosion behavior of magnesium 

becomes challenging because it does not follow the normal corrosion behavior as other metals 

such as copper, iron and steels. Typically, anodic and cathodic reaction models the behavior of 

all electrochemical corrosion processes meaning as current density increases, the anodic reaction 

rate increases and the cathodic reaction rate decreases. An anodic increase of the applied 

potential causes an increase in anodic dissolution rate, while the cathodic site decreases in 

hydrogen evolution (G. L. Song & Atrens, 1999).  

Song et. al reports the breakdown of a protective film where the hydrogen evolution is 

attributed to the presence of film-free regions inside the pits (G. L. Song & Atrens, 1999). 

Therefore the increase of film-free surface with anodic polarization must be overcompensated by 

the decrease of the cathodic current density by anodic polarization. The dissolution of Mg 

undergoes two reactions as shown in equations (2-4) and (2-5).  In this model, the NDE is due to 

the increase of the Mg+ concentration by the anodic polarization, which accelerates the hydrogen 

evolution (Przylusk.J & Palka, 1970). 

   Mg                  Mg+ + e-          (2-4) 

2Mg+ + 2H+      2Mg2+ + H2           (2-5) 

2.5.2 The pourbaix diagram for magnesium corrosion. The behavior of magnesium in 

water solutions at room temperature is shown in the Pourbaix diagram in Figure 4 and it 
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highlights the theoretical areas of corrosion, passivation, and immunity. The Pourbaix diagram 

provides a means for visualizing the effects of potential and pH on the thermodynamic regions of 

magnesium corrosion and stability. At physiological pH = 7.4, magnesium’s corrosion potential 

corresponds to the region where hydrogen is stable. Therefore, magnesium corrodes in 

physiological environments to produce magnesium ions (Mg+/Mg2+) and hydrogen gas. 

Hydrogen evolution is the dominant reduction reaction, so dissolved oxygen does not play a 

significant role in Mg corrosion (Makar & Kruger, 1993). Corrosion is strongly deterred above 

pH = 11, the equilibrium pH for Mg(OH)2, which is assumed to be the major constituent of the 

passive film.  

 

Figure 4. Magnesium’s pourbaix diagram in H2O (Makar and Kruger 1993). 

The electrochemical standard potential of the metal is E0 = -2.37V. Within the human 

body magnesium degrades according to the reactions in equation 2-3, leaving hydrogen gas 

bubbles and magnesium hydroxide. These hydrogen bubbles may cause physical problems such 



17 
 

 
 

as blocking the blood stream or separating the tissues leading to necrosis in the vicinity of an 

implant if large volumes are formed in a short period of time. If the hydrogen bubbles are formed 

slowly enough they will have time to diffuse into the tissue. The magnesium hydroxides form on 

the surface of the implant, alkalizing the surroundings. When reaching pH above 11, this can 

temporarily protect the metal, according to the Pourbaix diagram. 

2.5.3 Galvanic corrosion. Galvanic corrosion is the corrosion that takes place when 

different metals or alloys are coupled together in the presence of an electrolyte. This type of 

corrosion is observed when heavy localized corrosion of the magnesium matrix is detected close 

to cathodic areas (G. L. Song & Atrens, 1999). A distinction between external and internal 

galvanic corrosion can be established depending on whether the Mg is in contact with a nobler 

metal or whether there exist cathodic second phases or impurities in the matrix, respectively. The 

position of the dissimilar metals in the galvanic series, the conductivity of the electrolyte and the 

ratio of the surface areas of the dissimilar metals are factors which affect the severity of the 

corrosion. Magnesium is the least noble of the metals with a potential of -1.7V, meaning that 

magnesium is very susceptible to galvanic corrosion (Zeng et al., 2006).  

According to Ohm’s law, the galvanic corrosion current can be expressed by: 

I���� � �E�	� 
 E�	��

�R� � R�
     

Ep-c – Polarized potentials for the cathode material 

Ep-Mg– Polarized potentials for the magnesium 

Re – Electrolyte resistance  

Rm – Resistance in the metal-metal contact between anode and cathode 

From the equation, galvanic corrosion current can be minimized by either minimizing the 

potential difference between magnesium and the cathode or maximizing the resistance of the 
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circuit. Metals with low hydrogen overvoltage such as copper, nickel, and iron may have a 

negative effect on the degradation performance of magnesium even in minor quantities, because 

their low solubility in Mg can ease the development of micro-galvanic cells and cause internal 

galvanic corrosion (G. L. Song & Atrens, 1999). On the other hand, metals with high hydrogen 

overvoltage are much less damaging. Additionally, the secondary phases present in the Mg alloy 

can also behave as cathodes leading to dissolution of the Mg matrix adjacent to them. Grain 

boundaries also represent cathodic regions to the anodic grain interior. In this case, corrosion 

tends to concentrate in the adjacent zone to the grain boundary until the eventual undercut and 

fallout of the grain (G. L. Song & Atrens, 2003). 

2.5.4 Pitting corrosion. Pitting corrosion is the most common type of localized corrosion 

in which pits form from dissolution of the specific areas of the material surface which leads to 

creation of small holes in the metal. Pitting corrosion occurs due to the depassivation of a small 

area, which becomes anodic while an unknown but potentially vast area becomes cathodic, 

leading to very localized galvanic corrosion. Magnesium mostly undergoes pitting corrosion in 

the presence of chloride ions in non-oxidizing medium (G. L. Song & Atrens, 1999). The 

initiation of pits starts at defects of the passive film such as pores and scratches which are anodic 

compared to their vicinity and result in the dissolution of metal.  

2.5.5 Stress cracking corrosion (SCC). Since the Mg implant being used as a 

biomedical implant will be under load, corrosion under stress conditions must be addressed. 

Stress corrosion cracking (SCC) is characterized by the growth of cracks in a material that is 

exposed to a corrosive environment and stress due to mechanical loading or a susceptible alloy. 

The driving force of this type of corrosion is related to the potential difference between the grain 

boundaries and the bulk material. In certain corrosive environments, SCC usually leads to an 
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unexpected quick failure of the sample, especially when subjected to a tensile stress. It usually 

progresses rapidly and is more common among alloys than pure metals. Al and Zn containing 

alloys promote SCC whereas alloys containing zirconium and rare earth are free from SCC 

(Winzer, et al., 2005). 

Studies regarding this type of corrosion claimed that, depending on the medium (Miller, 

1993), chemical composition and structure of the Mg alloy, intergranular and transgranular SCC 

was observed (Winzer, et al., 2005). Intergranular cracking is continuous and involves only 

electrochemical processes where dissolution of the matrix adjacent to the grain boundaries is 

observed and the consequent stress pulls the metal apart. On the other hand, transgranular 

cracking is found to be discontinuous and comprising mechanical and electrochemical processes. 

Pits and notches caused by electrochemical processes result in brittle fractures, cracking after 

high stress tensions. The crack stops at barriers, for example grain boundaries, and continues 

once the obstruction is removed by electrochemical attack. Hydrogen embrittlement has also 

been reported to be responsible for SCC (Winzer, et al., 2005). 

2.6 Surface Treatment of Magnesium Alloy 

In order to enhance the corrosion resistance of magnesium based implants to avoid fast 

degradation in the human body, the magnesium alloy need to be coated to maintain their 

mechanical integrity. There are many ways to enhance the corrosion resistance of magnesium 

alloys in a way that inhibits electric contact between the substrate and avoid galvanic corrosion, 

as described in literature (Chiu, Wong, Cheng, & Man, 2007; Gray & Luan, 2002; Kuwahara et 

al., 2000; Thomann et al., 2010). Typical surface modification techniques include physical 

surface modification, chemical conversion treatment, plasma electrolytic oxidation, 

electroplating and organic coating. Among these techniques, plasma electrolytic oxidation is one 
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of the most promising methods for magnesium alloys (Hsiao & Tsai, 2005; Hsiao, Tsung, & 

Tsai, 2005; Mizutani, Kim, Ichino, & Okido, 2003; Wu et al., 2007). Although plasma 

electrolytic oxidation treatment is usually more expensive than a chemical surface treatment, it is 

always selected for application requiring high performance, such as wear resistance and heavy 

duty paint preparation. In this work, plasma electrolytic oxidation of AZ31 magnesium alloy was 

the coating choice for the surface treatment method for the magnesium alloy. 

2.6.1 Plasma electrolytic oxidation (PEO). It is the most industrially used method for 

coating magnesium alloys. It is an electrolytic passivation process used to increase the thickness 

of the natural oxide layer on the surface of the metal parts by applying high voltages usually 

from 100-500V (Vijh, 1971) on the metal which constitute the anode electrode of the electrical 

circuit (Y. J. Zhang, Yan, Wang, & Li, 2005). Many studies in the literature are dedicated to 

understand the properties of these coatings on magnesium substrates resulting in enhanced 

corrosion and wear resistance (Arrabal, Matykina, Hashimoto, Skeldon, & Thompson, 2009; 

Ghasemi, Raja, Blawert, Dietzel, & Kainer, 2008; Liang, Srinivasan, Blawert, & Dietzel, 2009, 

2010).  

In general, the microstructure of PEO coating is composed of an outer porous layer and 

an inner barrier layer as shown in Figure 5. The composition and quality of the inner barrier layer 

has a considerable influence on the corrosion resistance of the coating, while the resistance of the 

outer porous layer is too weak thereby not contributing to a significant corrosion protection of 

the Mg substrate  (Y. J. Zhang, et al., 2005). These micro-pores, acting as transportation passage 

for the corrosive ions, thereby, corrosive media may rapidly enter onto the barrier layer of PEO 

coating and so that decrease largely the protectiveness of the PEO coatings (Blawert, Dietzel, 

Ghali, & Song, 2006; Srinivasan, Liang, Blawert, Stormer, & Dietzel, 2010). Therefore, the outer 
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layer usually requires a sealing treatment to achieve the necessary performance (Zuo, Zhao, & 

Zhao, 2003). Preparation process can also produce a good quality of inner barrier layer, and 

simultaneously, lower the porosity of the porous layer should be helpful to upgrade the corrosion 

performance of PEO coatings.  

 

Figure 5. Schematic description of a ceramic coating prepared by the PEO process.  

The structures of PEO coating on Mg alloy depend on processing parameters, such as 

chemical composition of electrolyte, electric parameters, alloy composition of substrate, 

pretreatment and post treatment, etc. Especially, the chemical composition of the electrolyte 

exerts a considerable influence on the formation and property of effective oxide layer for Mg 

alloy (W. Zhang, Tian, Du, Zhang, & Wang, 2011). Therefore, it is important to select proper 

base electrolyte compositions to improve the compactness and its corrosion resistance on Mg 

alloys. The most common electrolytic bath contains chemicals such as phosphates, silicates, 

hydroxides, fluorides in variable concentrations. 

2.6.2 Polymer coating (PLGA). Amongst all the biomaterials, application of the 

biodegradable polymer poly lactic-co-glycolic acid (PLGA) has shown immense potential as a 

drug delivery carrier and as scaffolds for tissue engineering (Makadia & Siegel, 2011). PLGA is 

Mg Substrate 

Non-porous barrier 
layer 

Low porosity layer 

High porosity layer 
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a copolymer of poly lactic acid (PLA) and poly glycolic acid (PGA). PLGA polymers are 

physically strong and highly biocompatible and have been extensively studied as delivery 

vehicles for drugs, proteins and various other macromolecules such as DNA, RNA and peptides 

(Bouissou, Rouse, Price, & van der Walle, 2006; Jain, 2000).  The PLGA films can be used on 

metallic surfaces to some effect, particularly in stents where sustained delivery of drugs is 

critical in preventing restenosis and helping prevent cell proliferation in stents (Pan, Tang, Shao, 

Wang, & Huang, 2007). However, this type of delivery method results in an uncontrolled, 

usually short, diffusion-like release and can disguise the structure of the metallic implant by 

applying a uniform layer to the surface (Pan, Tang, Weng, Wang, & Huang, 2007).  

In orthopedic applications it has been shown that a micro/nanostructure is very important 

for bone growth, even on the surface of a PLGA film (Smith et al., 2007). An alternate method of 

sustained drug delivery would be to employ a particulate formulation of PLGA. By doing so, it 

would allow for a controlled, tunable drug release whilst preserving or enhancing the underlying 

texture of the implant surface, thus also promoting cellular interactions. The PLGA degradation 

and the drug release rate can be accelerated by greater hydrophilicity, increase in chemical 

interactions among the hydrolytic groups, less crystallinity and larger volume to surface ratio of 

the device (Park, 1994; Schliecker, Schmidt, Fuchs, Wombacher, & Kissel, 2003; Tsuji, Mizuno, 

& Ikada, 2000). All of these factors should be taken into consideration in order to tune the 

degradation and drug release mechanism for desired application.  

2.7 Problem Statement 

The present work aims to investigate the in vitro corrosion behavior of the AZ31 Mg 

alloy in order to provide degradation information for future in vivo study while aiming to 

reinforce the progress of biodegradable magnesium implants.  This was performed by evaluating 
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the different concentrations of carbonate ions and porcine stomach mucin in a physiological 

environment to determine their effect on the corrosion rate on Mg alloy.  

Hypothesis: 

i) Addition of carbonate ions in the simulated physiological solution will accelerate 

general corrosion rate of the magnesium alloy. 

ii)  Addition of porcine stomach mucin in the test solution decreased the corrosion 

rate of the magnesium by adsorption on the solid surface thereby reducing the 

formation of corrosion products forming on the surface.  

The corrosion resistance of magnesium alloy was evaluated by coating the samples using 

plasma electrolytic oxidation (PEO) technique to grow protective coatings on the surface. 
Consequently, a multi-layer coating of both anodized and Poly Lactic-co-Glycolic Acid (PLGA) 

coatings was investigated to further slow down the initial corrosion rate of the anodized 

magnesium alloy by sealing the micro-cracks and micro-pores on the outer surface oxide layer 

effectively.  

Cytocompatibility of the magnesium alloy was assessed using porcine tracheal epithelial 

(PTE) cells to determine the cell responses, in terms of cell morphology and cell adhesion on the 

different surfaces of the AZ31 Mg alloy including untreated, anodized, multilayer coating of 

anodized+PLGA and PLGA+Paclitaxel drug were evaluated. The cell adhesion assay was used 

to analyze the potential of the magnesium alloy to be utilized as biomedical implant studying its 

non-toxicity and biocompatibility.  
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CHAPTER 3 

Materials and Methods 

This study employed multiple techniques to characterize the corrosion rate of AZ31B 

magnesium alloy as a biomaterial. Evaluation of corrosion behavior was performed using 

electrochemical testing and immersion testing in a Gamble solution mimicking the biological 

environment. The morphological characterization of the samples was performed using Micro-CT 

and SEM and chemical compositions were identified using EDX and XRD analysis on corrosion 

products after immersion tests. Cell adhesion assay was performed using porcine tracheal 

epithelial (PTE) cells to determine biocompatibility of Mg alloys. Analysis of the cell culture 

samples was performed by SEM observation, after ion beam coating, following fixation and 

dehydration. 

3.1 Sample  

AZ31 Magnesium alloys with nominal composition of 2.5-3.5 wt % Al, 0.6-1.4 wt % Zn 

and balance Mg was tested in this study. The samples were obtained from GoodFellow Corp., 

Oakdale, PA. For the immersion test samples, the cylindrical specimens were cut with diameter 

of 6.35 mm and a height of 2 mm, which were polished up to 1200 grit of silicone carbide sand 

paper, using water as a lubricant and rinsed with acetone and distilled water sequentially and 

dried. The electrochemical samples were embedded into epoxy resin to leave a working area of 

0.785cm2, and electrical connection provided through a copper wire. In order to ensure the same 

surface roughness of samples, the exposed surface was also polished to 1200 grit of silicone 

carbide sand paper.  
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3.2 Solution 

Both electrochemical and immersion tests was carried in Gamble solution also referred to 

as simulated lung fluid (SLF), as shown in Table 2, intended to simulate the interstitial 

conditions in the lung (Marques, Loebenberg, & Almukainzi, 2011). When preparing Gamble 

solution, the components were added in order presented in the Table 3 to avoid salt precipitation. 

Citrate was used instead of proteins to avoid foaming and acetate instead of organic acids. The 

pH of solution was adjusted using 0.1M HCl and 0.1M NaOH to obtain a pH of 7.4. 

Table 3  

Concentrations of chemicals used to prepare Gamble solution or SLF (Marques, et al., 2011) 

Gamble Solution Composition Concentration 

Magnesium Chloride 0.095 g/l 

Sodium Chloride 6.019 g/l 

Potassium Chloride 0.298 g/l 

Disodium Hydrogen Phosphate 0.126 g/l 

Sodium Sulfate 0.063 g/l 

Calcium Chloride Dihydrate 0.368 g/l 

Sodium Acetate 0.574 g/l 

Sodium Hydrogen carbonate 2.604 g/l 

Sodium Citrate Dihydrate 0.097 g/l 

 

The concentration of sodium bicarbonate was changed in order to study the effect of the 

different concentrations of carbonate ions in a physiological environment and evaluate the effect 

on corrosion rate of Mg. The different carbonate ions concentrations tested included 0 g/l, 1 g/l, 
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2.6g/l and 4g/l. Porcine stomach mucin was later added in the SLF to mimic the epithelial 

surface along the trachea. The different mucin concentrations tested included 0 g/l, 0.03 g/l and 

0.1 g/l. In total, there were 12 test solutions. Table 4, shows the different concentrations of both 

porcine stomach mucin and NaHCO3 in Gamble solution. The different concentrations of both 

carbonate ions and mucin was studied to identify the effect of both ions and proteins on the 

corrosion of magnesium alloy.   

Table 4  

Test solutions with different concentrations of mucin and sodium carbonate (NaHCO3) in 

Gamble solution 

Solution No. Concentrations of NaHCO3 Mucin Concentrations 

Test Solution 1 0 g/l NaHCO3 0 g/l Mucin 

Test Solution 2 1 g/l NaHCO3 0 g/l Mucin 

Test Solution 3  2.6 g/l NaHCO3 0 g/l Mucin 

Test Solution 4 4 g/l NaHCO3 0 g/l Mucin 

Test Solution 5  0 g/l NaHCO3 0.03 g/l Mucin 

Test Solution 6 1 g/l NaHCO3 0.03 g/l Mucin 

Test Solution 7 2.6 g/l NaHCO3 0.03 g/l Mucin 

Test Solution 8 4 g/l NaHCO3 0.03 g/l Mucin 

Test Solution 9 0 g/l NaHCO3 0.1 g/l Mucin 

Test Solution 10 1 g/l NaHCO3 0.1 g/l Mucin 

Test Solution 11 2.6 g/l NaHCO3 0.1 g/l Mucin 

Test Solution 12 4 g/l NaHCO3 0.1 g/l Mucin 
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3.3 Porcine Stomach Mucin 

Type III partially purified porcine stomach mucin was purchased from Sigma-Aldrich, St. 

Louis, MO (Cat #. M1778). The mucin was diluted into the Gamble solution to create an in vitro 

model of the epithelial mucus surfaces mimicking the epithelial surface along the trachea to help 

understand the degradation mechanism of magnesium alloy in mucin. The three different 

concentrations were 0 g/l, 0.03 g/l and 0.1 g/l as illustrated in Table 4. The test solution was 

prepared using distilled water and was continuously stirred until a homogeneous solution was 

obtained.  

3.4 Corrosion Characterization 

 

Figure 6. Electrochemical testing setup. 

The corrosion characterization techniques used included immersion test, electrochemical 

tests as well as monitoring of the pH change. Electrochemical tests were carried out using a 

Gamry Ref 600 with the typical three electrode system and a water bath set up at 37oC. Figure 6 

shows the electrochemical setup used in the electrochemical tests. The three electrodes 

constituted of the working electrode (WE), reference electrode (RE) and the counter electrode 

(CE). RE measures the working electrode potential and has a constant electrochemical potential 
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as long as no current flows through it. The WE is the electrode where the current is measured 

while CE is a conductor that completes the cell circuit. A water bath set at 37oC was included in 

the experiment.   

3.4.1 pH measurement. The pH value of the test solution has a tremendous effect on the 

corrosion rate of magnesium (Inoue, Sugahara, Yamamoto, & Tsubakino, 2002). Therefore, the 

pH of both electrochemical and immersion tests solutions were measured with pH meter (Oakton 

® pH2100, Eutech instruments, Singapore) before and after the tests to measure the pH variation 

of the test solutions.   

3.4.2 Immersion test. Immersion testing was employed in this research in an effort to 

expose the degradation behavior of the magnesium alloy in a physiological environment. 

Cylindrical specimens with a diameter of 6.35 mm and a height of 2 mm were cut from a rod of 

as drawn AZ31B magnesium alloy, which were polished up to 1200 grit of silicone carbide sand 

paper. The test was carried out in an isotemp incubator at 37oC for 10 days, the samples were 

immersed in 250ml Gamble solution and the beakers covered with parafilm to minimize 

hydrogen evolution and evaporation of the solution. The pH of solutions was adjusted using 

0.1M HCl and 0.1M NaOH to 7.4 ± 0.05 before the immersion test and measured after the 

immersion test to determine the corrosion rate. Due to the pH increase during the test, the 

solutions were changed every day to minimize the pH impact. 

3.4.3 Open circuit potential (OCP). The open circuit potential measurement started 1 

min after the sample was immersed in the test solution. The data acquisition frequency was 0.5 

Hz. The potential vs. time response data was collected for a period of 24 hours for each test 

involving the different test solutions tested. The samples exhibited stable curves after 3 to 5 h as 
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the surface of the sample became passivated. Each test was repeated 3 times to ensure the 

reproducibility of the results.  

3.4.4 Electrochemical impedance spectroscopy (EIS). The frequency range for EIS 

measurements was 100 kHz to 10 mHz, with seven measurement points per decade. 

Measurements were made at the OCP with rms amplitude of 10 mV. The initial OCP delay was 1 

min. The test was repeated 3 times to ensure the reproducibility of the results. 

3.4.5 Linear polarization resistance (LPR). All polarization experiments were 

performed at 37oC for a period of 24 hours. Linear polarization instrumentation used by Gamry 

Echem Analyst software converted the current measured to corrosion rate readings in mils per 

year (mpy). The test was repeated 3 times to ensure the reproducibility of the results. 

3.4.6 Potentiodynamic polarization. Potentiodynamic polarization curves were obtained 

by scanning the potential from -0.2 V/OCP to 1 V/OCP with a scanning rate of 0.5mV/s. The 

larger anodic scan range was used because we are more interested in the anodic region. After the 

graphs were generated, Gamry Echem Analyst software was used in order to generate corrosion 

rates for the samples. To do this, both an anodic and cathodic section of the resulting curve was 

chosen. The software then used a linear regression to fit the curve to the Butler-Volmer equation, 

shown below, and to obtain the resulting tafel slopes and corrosion current. 

I � i���� �e�.����	���
�� 
 e�.����	���
�� � 
Where; 

I – The measured cell current (Amps) 

Icorr – The corrosion current (Amps) 

E – The electrode potential (Volts) 

Eoc – The open circuit potential (Volts) 
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βa  – The anodic tafel slope constant (Volts per decade) 

βc – The cathodic tafel slope constant (Volts per decade) 

3.5 Plasma Electrolytic Oxidation (PEO) 

In this experiment, the formation of anodic oxide films was performed in 1M sodium 

hydroxide and 0.1M sodium silicate electrolyte. The solution was prepared from distilled water 

and was continuously stirred during treatment with a stainless steel rod used as a counter 

electrode. The PEO coatings were done at different applied voltages in the range of 100V - 500V 

and current density of 0.020mA cm2 -0.600mA cm2 and the pulse frequency was between 50Hz - 

100Hz using the square waveform as illustrated in Figure 7.  

 

Figure 7. Scheme of square waveform of applied voltage (V) with time (t). 

The experiment was performed at room temperature and to maintain a uniform 

distribution of temperature, the bath solution was stirred by a magnetic stirrer in the 1000ml 

glass container. The anodized sample was rinsed using distilled water and dried. The corrosion 

resistance of the coated AZ31 was analyzed using electrochemical testing. The plasma 

electrolytic oxidation experimental setup is shown in Figure 8. 
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Figure 8. Plasma Electrolytic Oxidation experimental setup. 

3.6 Polymer (PLGA)  coating  

PLGA (poly D,L-lactide-co-glycolide) pellets (PLGA; LA/GA=50/50, Mw 40000-75000) 

were dissolved in chloroform in order to obtain 5% (w/v) solution. The solution was stirred until 

a homogenous polymer solution was obtained. Before coating deposition, the samples were 

polished with waterproof abrasive paper up to 1200 grits, degreased with acetone and rinsed with 

ethanol and distilled water sequentially, and then followed by blow-drying. The dip coating 

process was performed by dipping the both the untreated and anodized AZ31 samples into the 

polymer solution, followed by drying in an oven at 60oC for 10 min. The thickness of the 

deposited polymer was controlled by the number of dipping between 1 and 5. For this study, 

three dip coatings were explored for both electrochemical testing and cell adhesion assay. 

Polymeric drug delivery system using paclitaxel-loaded PLGA was used to coat cell 

adhesion assay samples. Paclitaxel of 99.5% purity was purchased from Sigma-Aldrich (USA). 

The drug release coating was composed of poly (DL-lactide-co-glycolide)/paclitaxel 
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(PLGA/PTX) layer coated using dip coating. The morphology of the cells attached on the cells 

was studied using SEM to determine if the cells were affected by the drug release controlled by 

the degradation of PLGA.  

3.7 Cell Adhesion Assay 

In this study, the cell adhesion assay involved incubating AZ31 alloys samples generally 

exhibiting an area of 0.785cm2 with primary porcine tracheal epithelial cells.   The porcine 

airway epithelial cells were provided by Dr. Jenora Waterman (North Carolina A&T State 

University, Greensboro, NC).  Briefly, frozen porcine tracheal epithelial cells were warmed in a 

37°C water bath for 1-2 min.  The cells were transferred to pre-warmed media (50:50 mixture of 

Dulbecco’s Modified Eagle Medium (DMEM): Ham’s F-12 containing 2% fetal bovine serum 

(FBS), antibiotics and growth supplements) and pipetted gently to evenly distribute cells.  Cell 

were seeded at a density of 1x105 PTE cells/well (in a volume of 0.6 ml media/well) onto AZ31 

alloy discs categorized into four test groups: untreated, anodized, untreated+PLGA, and 

untreated+PLGA+10% Paclitaxel drug coatings. Samples were incubated at 37ºC with 5% CO2 

conditioned humidified air, using 24-well (#3526) plates for approximately 12 hours. Following 

incubation, media was aspirated and the samples were rinsed three times with 1X PBS pH 7.4 to 

remove non-adherent cells.  The attached cells were then fixed in 4% paraformaldehyde and 

dehydrated using 100% ethanol.  Analysis was performed by ion beam coating and SEM 

observation, following fixation and dehydration. 

3.8 Surface Characterization 

In this section, introductory surface characterization techniques used in the experimental 

work is presented. The techniques used included SEM, XRD, EDX analysis, and Micro CT. 
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3.8.1 Scanning electron microscopy (SEM). In this experiment, Hitachi SU8000 field 

emission scanning electron microscope was used. It utilizes a raster scan pattern which enables 

the observation and local characterization of materials’ surface topography, chemical 

composition and crystallography at the micrometer scale. The operating principle of the SEM 

involves the scan of the sample surface, using a finely focused electron beam, controlling the 

brightness at each point of the obtained image which is acquired in accordance with the signal 

emitted by the sample (Hitachi, 2012).  

3.8.2 X-ray diffraction (XRD). In this experiment, X-ray diffraction was performed 

using the Bruker AXS D8 Discover. X-ray diffraction (XRD) is a versatile, non-destructive 

technique that reveals detailed information about the chemical composition and crystallographic 

structure of materials. The basic step in X-ray crystallography involves measuring the intensity 

of the diffracted X-rays at various angles. The different samples after the 10 day immersion test 

were characterized by XRD to determine the chemical composition of corrosion products formed 

on the surface. The patterns were later compared with the control sample.  

3.8.3 X-ray computed tomography (micro-CT). The surface morphology of the 

immersion test samples in this experiment was examined using micro-CT (Phoenix Nanotom-

MTM, GE sensing & Inspection technologies GmbH, Germany) shown in Figure 9. X-ray 

computed tomography in non-destructive 3D analysis developed to fulfill the fast growing 

demand for high resolution and high precision images. It features a fully automated CT scan 

execution, volume reconstruction and the analysis process. The immersion test samples were 

analyzed after the 10 days immersion to characterize the 3-D morphology of the corrosion 

products formed on the surface.  



34 
 

 
 

 

Figure 9. Micro-CT System Nanotom-M at North Carolina A&T State University.  
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CHAPTER 4 

Results and Discussion  

4.1 Immersion Tests Results 

 Figures 30, 31 and 32 in the appendix shows optical images of AZ31B alloy after 

immersion test (Before Immersion, Day 3 and Day 10 respectively) in Gamble solution with 

different concentrations of carbonate ions and porcine stomach mucin in the test solutions as 

illustrated in Table 4.  White calcium phosphate was deposited on the surface of the sample 

immersed in the Gamble solution containing 0 g/l HCO3, 0g/l Mucin. It was observed that the 

thickness of the precipitate increased as day passed. However, the white calcium phosphate 

precipitation diminished gradually with the increase of both carbonate ions and mucin 

glycoproteins in the solutions. The thickness and uniform corrosion products mainly Mg(OH)2 

were formed on the surface of magnesium alloy immersed in solution with carbonate in this 

study. Xin Y et al. asserted that HCO-
3 ions in solution accelerated initial corrosion of 

magnesium, but retarded the pitting corrosion and corrosion rate as time lapse since it forms 

passivation layer consisting of magnesium carbonate (Xin et al., 2007).  

4.1.1 pH measurement results. The variation of pH plot during immersion tests is 

shown in Figure 10. The immersion test was repeated 3 times (n=3) for duration of 10 days each 

and the average values plotted with the error bars showing the minimum and the maximum pH 

values. From the plot it can be noted that the pH decreased in the test solutions containing 0 g/l 

HCO-
3, 0 g/l mucin by -0.4 while the pH of the test solutions containing 0 g/l HCO3, 0.03 g/l 

mucin and 0g/l HCO3, 0.1 g/l mucin both decreased about -0.3. The pH usually increases during 

immersion test because OH- are generated at both anodic and cathodic regions as magnesium is 

corroded (G. L. Song & Atrens, 2003). However, the pH of solutions was lower in this case 
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because of the effect or the formation of hydroxyapatite on the sample surface (Barrere et al., 

2003; Lindstrom, Johansson, & Svensson, 2003). The process that induces hydrogen ions is 

shown in equation (4-1). The pH variation without the magnesium sample was also tested to 

confirm decrease of pH by dissolution of CO2 in the atmosphere and average of daily decrement 

was about 0.2. 

Ca8H2 (PO4)6.5H2O + 2Ca2+                Ca8(PO4)6(OH)2 + 3H2O + 4H+                (4-1) 

 

Figure 10. Variation of pH plot on the AZ31 samples showing the effect mucin and HCO3
- 

increase in Gamble solution.  

The addition of bicarbonate ions in the solution showed a substantial increase in the pH. 

The plot illustrates solutions containing 4 g/l HCO3, 0 g/l mucin increased by approximately 

+1.3 which was the highest pH increase from all the solutions tested. This indicated that the 

corrosion rate of magnesium alloy caused by HCO-
3 ions was faster than the formation of 

hydroxyapatite caused by the calcium and phosphate in solution. Similar results were also 

n=3 



37 
 

 
 

obtained by Xin et al. (Xin, et al., 2007) showing the effect of HCO3
- ions increase in the 

corrosion behavior of magnesium in simulated fluid. The solution containing 4 g/l HCO3, 0.1 g/l 

mucin had a lower increase of pH of about +0.8 compared to 4 g/l HCO3, 0.03 g/l mucin which 

had +1.2 hence the increase in mucin in the solution lowered the corrosion rates of the samples 

immersed in the solutions. It is hypothesized that mucin adsorption on the surface of the samples 

decreases the corrosion rate by reducing the formation of corrosion products on the surface, 

which explains the low pH with the increase in mucin.  

4.1.2 X-ray computed tomography (micro-CT) results. Calcium phosphate was 

deposited on the surface of the samples immersed in the Gamble solution containing 0 g/l HCO3, 

0 g/l mucin and 0 g/l HCO3, 0.03 g/l mucin with pitting corrosion only occurring on the areas 

where thickened precipitate had fallen off as illustrated in Figure 33 in the appendix.  The 

deposition of calcium phosphate was seen to decrease dramatically on the sample immersed in 

the 0 g/l HCO3, 0.1 g/l mucin solution. The same phenomenon was observed when there was an 

increase of HCO3
- ions in the Gamble solution, which accelerated general corrosion rate of the 

samples corroded uniformly without severe localized corrosion as shown in Figure 34 in the 

appendix. Some voids and corrosion products were formed by small pitting corrosion were 

observed with a thin layer of corrosion product on the surface. As the concentration of HCO3
- 

ions increased, the more general corrosion progressed thus increasing the corrosion product 

thickness, evidenced by the SEM cross-section morphology as shown in Figure 35 in the 

appendix.  

4.1.3 Scanning electron microscope results. SEM images of the surface of the samples 

after immersion tests were taken after 10 days as shown in Figure 11 illustrating an increase in 

carbonate ions from 0 g/l HCO3 to 4 g/l HCO3 respectively with 0g/l mucin in the solution. 
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Figure 11(a) shows spherical calcium phosphate composed of splenial microstructures were 

incompactly deposited on the surface of the sample. The splenial microstructures in rosette 

cluster of hydroxyapatite have been observed in many studies (Pietak, Mahoney, Dias, & Staiger, 

2008; Tomozawa & Hiromoto, 2011) on calcium phosphate coating on titanium or magnesium 

alloys and on in vitro and in vivo test for them in physiological environment.  

 

Figure 11. SEM images of corroded surface after immersion test for 10 days. Solutions had 0 g/l 

concentration of mucin with (a) 0 HCO3; (b) 1 HCO3; (c) 2.6 HCO3; (d) 4HCO3. 

With the addition of HCO3
- ions, the tendency of corrosion completely changed by being 

covered with dense corrosion products with spherical calcium phosphate partially formed at sites 

where pitting corrosions, as shown in Figures 11 (b), (c) and (d). The corrosion thickness was 

observed to increase with the increase of HCO3 ions concentrations while the presence of 



39 
 

 
 

hydroxyapatite decreased. The effects of carbonates tend to be complex in terms of corrosion. 

They can accelerate or slow the corrosion rate of magnesium depending on the concentration of 

carbonate ions. According to the work of Baril and Pebere, when the concentration of carbonate 

ions exceeds about 40 mg/L, the corrosion rate goes up due to accelerated dissolution of the 

Mg(OH)2 (MgO) protection film (Baril & Pebere, 2001). If the concentration is lower than this 

critical concentration, corrosion of magnesium can be retarded. The carbonate ions concentration 

in the gamble solution was about 2.6 g/L (Marques, et al., 2011) which is much higher than 40 

mg/L. Hence, carbonates increase the corrosion rate in Gamble solution. 

 

Figure 12. SEM images of corroded surface after immersion test for 10 days. Solutions had 0 g/L 

HCO3 with (a) 0 g/l mucin; (b) 0.03 g/l mucin; (c) 0.1 g/l mucin. 
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Figure 12 shows SEM images of corroded surface after immersion in test solutions # 1, 5, 

and 9 containing no concentration of carbonate ions with increasing concentrations of porcine 

stomach mucin 0 g/l mucin, 0.03 g/l mucin and 0.1g/l  mucin respectively. It can be observed 

that the increase in mucin effect was almost the same as when the carbonate ions in the solutions 

which decreased the presence of hydroxyapatite on the surfaces of the samples. Porcine stomach 

mucin adsorption on the solid surface of the magnesium alloy decreased the corrosion rate by 

reducing the formation of corrosion products forming on the surface or the deposition of calcium 

phosphate on the surface of the magnesium alloy.  

 

Figure 13. SEM images of corroded surface after immersion test for 10 days. Solutions had 4 g/l 

HCO3 with (a) 0g/l mucin; (b) 0.03 g/l mucin; (c) 0.1 g/l mucin. 
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The mucin is seen to reduce the formation of hydroxyapatite on the surface by attaching 

on the magnesium surface hence reducing the formation of corrosion products. This same effect 

observed in the SEM images in Figure 13 of samples immersed in 4 g/l HCO3
- ions with an 

increase in mucin. The hydroxyapatite deposition on the surface decreased with an increase in 

mucin causing the splenial microstructures in rosette cluster of hydroxyapatite to decrease on the 

surface.  

Table 5  

Chemical composition of corrosion products formed on the surface after immersion test in 

solutions for 10 days detected by EDX analysis (Unit: Atomic %) 

Solution concentration C O Mg Al P Cl Ca Zn 

0g/l HCO3, 0 g/l Mucin 6.51 42.10 0.95 0.23 18.42 0.00 31.06 0.25 

2.6g/l HCO3, 0 g/l Mucin 3.89 50.24 21.40 0.00 12.81 0.06 10.03 0.00 

0g/l HCO3, 0.03 g/l Mucin 6.860 44.62 10.26 0.00 13.33 0.11 24.90 0.65 

2.6g/l HCO3, 0.03g/l Mucin 5.65 46.20 20.10 3.62 12.65 0.00 11.13 0.12 

0g/l HCO3, 0.1 g/l Mucin 8.95 38.15 31.40 0.00 12.16 0.09 9.75 0.08 

2.6g/l HCO3, 0.1 g/l Mucin 10.23 35.21 27.70 1.12 13.21 0.00 12.45 0.00 

 

Table 5 shows chemical composition of general corrosion products formed on the surface 

after immersion tests for 10 days in Gamble solution (Marques, et al., 2011) as detected by EDX 

analysis. The EDX table shows corrosion products are mainly Mg(OH)2 and small amount of 

MgCO3 due to the presence of carbonate ions. However, the solution containing 0 g/l HCO3, 0 

g/l Mucin formed precipitation of O, Ca and P which was uniformly deposited on the surface 
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with Ca/P ratio of about 1.6~1.8 while magnesium was hardly detected in the corrosion products. 

Therefore, it might be inferred that the product on the surface on the sample of the solution was 

only deposited and was not a corrosion product. The fact that the Ca and P exist in the form of 

hydroxyapatite has been confirmed by the presence of HA peak in XRD. 

The constituents of corrosion product formed in solutions containing HCO3
- ions were O, 

Mg, P and Ca and Ca/P ratio was about 0.8~1. The amount of magnesium was higher and Ca/P 

ratio was lower in comparison to composition of corrosion product formed on the sample in the 0 

g/l HCO3, 0 g/l mucin solution. The was small contents of Al in corrosion products formed on 

the surfaces of the samples immersed in solutions containing HCO3
-  than samples immersed in  

solutions without HCO3
- ion as identified from the EDX data of Table 6. Elemental mapping 

images on predominant constituents of cross sections of corrosion products formed after the 

immersion test for 10 days is shown in Figure 14.  

The mapping results in Figure 14(a) showed the deposition of calcium phosphate 

compound on the surface of the sample immersed in Gamble solution containing 0 g/l HCO3, 0 

g/l mucin. The deposition of calcium phosphate was observed to be thicker with no pitting 

corrosion on the surface of the magnesium substrate. Small amounts of Al was also observed on 

the surface of the corrosion products, however, the predominant elements were Ca, P, and O. 

Figure 14(b) shows mapping elements of corrosion products formed on the samples immersed in 

solutions containing 0 g/l HCO3, 0.1 g/l mucin which was observed to have thin corrosion 

products of Ca, P and O elements. The thickness of the corrosion product decreased in thickness 

in the presence of mucin. The Mg substrate had no pitting on the surface due to the deposition of 

both mucin and calcium phosphate on the surface.   
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Figure 14. SEM images showing mapping images of cross-sections of corrosion products formed 

after immersion for 10 days in Gamble solution; (a) 0 g/l HCO3, 0 g/l mucin, (b) 0 g/l HCO3, 0.1 

g/l mucin, (c) 2.6 g/l HCO3, 0 g/l mucin and (d) 2.6 g/l HCO3, 0.1 g/l mucin. 
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Figure 14(c) shows mapping illustrating corrosion products elements formed on the 

samples immersed in the Gamble solutions containing 2.6 g/l HCO3, 0 g/l mucin. It was observed 

that the thick corrosion products displayed pitting corrosion on the surface of the sample tested 

compared to the sample immersed in 2.6 g/l HCO3, 0.1 g/l mucin which had a thinner corrosion 

products with uniform and pitting corrosion forming on the surface. The main corrosion product 

on the samples containing HCO3 ions were mainly Mg(OH)2 which was reconfirmed from the 

line analysis results in Figure 15 while the samples immersed 0 g/l HCO3, 0 g/l mucin  had 

mostly calcium phosphate deposition on the surface.  

 

 

Figure 15. Line analysis of cross section on corrosion products after immersion test in the 

solutions (a) 0 g/l HCO3, 0 g/l Mucin, (b) 2.6 g/l HCO3, 0 g/l Mucin. 

Mg O 

(b) 

Ca P 
(a) 
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Figure 16 shows SEM cross-section morphology comparison to determine effect of both 

carbonate and mucin showing the corrosion product thickness formed on the surface samples. 

The thickness of corrosion products on the surface of the samples increases when immersed in 

the test solution containing HCO3 ions. Thus the more concentrated the test solution was with 

carbonate ions, the thicker the corrosion products. However, the thickness of the corrosion 

products decreased with the increase of mucin concentration in the solution. The average 

thickness of calcium phosphate deposition formed on the surface of the sample immersed in 0 g/l 

HCO3, 0 g/l mucin solution was approximately 36.2µm while the average deposition thickness 

formed on the surface immersed in 0 HCO3, 0.1g/l mucin was approximately 3.1 µm thick. The 

thickness of the corrosion products was measured using Image Pro software which measured 10 

different lengths on each SEM image and an average of the values calculated to get an 

approximate average thickness. Since one sample was used to measure the thickness of the 

corrosion products, no statistical analysis was performed.  

The sample immersed in 2.6 g/l HCO3, 0 g/l mucin had uniform corrosion products of an 

average thickness of approximately 19.5 µm while 2.6 g/l HCO3, 0.1 g/l mucin decreased to 

about 5.6 µm thick. The average thickness of corrosion products formed on the sample immersed 

in 4 g/l HCO3, 0 g/l mucin was approximately 32 µm while the sample immersed in 4 g/l HCO3, 

0 g/l mucin solution had approximately 8.7 µm thick corrosion products. It can therefore be 

concluded that mucin had an effect on reducing the corrosion rate of the samples by lowering the 

corrosion products formed on the samples while the increase of carbonate ions increased 

passivation on the surface resulting to thicker corrosion products. 
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Figure 16. SEM cross-section morphology comparing the corrosion products thickness on the 

samples in different solution concentrations; (a) 0 g/l HCO3, 0 g/l Mucin, (b) 2.6 g/l HCO3, 0 g/l 

Mucin, (c) 4 g/l HCO3, 0 g/l Mucin (d) 0 g/l HCO3, 0.1 g/l Mucin, (e) 2.6 g/l HCO3, 0.1 g/l 

Mucin and (f) 4 g/l HCO3, 0.1 g/l  Mucin. 
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4.1.4 X-ray diffraction (XRD) results. The XRD analysis of corrosion products 

revealed the presence of calcium phosphate (hydroxyapatite) precipitate peaks on the surface of 

the sample immersed in Gamble solution containing 0 g/l HCO3, 0 g/l mucin. The hydroxyapatite 

exhibited high intensity peaks and was noted to decrease with both the increase of both mucin 

and bicarbonate ions in the solutions as illustrated in Figures 36 and 37 at the appendix. This 

implies that mucin altered the formation of corrosion by inhibiting calcium phosphate 

compounds from forming on the magnesium surface while the addition of carbonate ions 

accelerated general corrosion rate with presence of magnesium carbonate peaks on the surface of 

the surface samples. The results also revealed presence of magnesium hydroxide (Mg(OH)2) as 

the main corrosion products although the peaks weren’t as high due to formation of thin 

corrosion layer formed on the surface of the immersed samples.  

4.2 Electrochemical Test Results 

4.2.1 pH measurement. Figure 17 shows variation of pH plot illustrating the effect of 

mucin when increased in Gamble solution containing 4 g/l HCO3
-
 during electrochemical testing 

for a period of 24 hours. The pH was noted to increase gradually in all the three different 

solutions. The presence of bicarbonate HCO3
- ions in the solution caused a substantial increase in 

the pH. However, with the increase of mucin in the Gamble solution, the pH decreased hence 

slowing the corrosion rate. Mucin adsorption on the surface of the magnesium samples surface 

reduced the formation of corrosion products forming on the surface, hence the low pH with the 

increase in mucin. Similarity could also be observed between the immersion test pH 

measurement and the electrochemical test. Both tests had a pH increase of around the same 

value, for example comparing 4 g/l HCO3, 0 g/l mucin test solution had an increase of 

approximately +1.2 for the duration of the 24 hours.  
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Figure 17. Variation of pH plot showing the effect of mucin increase on the pH of Gamble 

solution containing 4 g/l HCO3 during electrochemical testing. 

4.2.2 Open circuit potential (OCP). Figure 18 shows the evolution of Open Circuit 

Potential (OCP) for AZ31B magnesium alloys when immersed in Gamble solution at 37°C for 

24 hour comparing the effect of mucin in terms of concentration (0 g/l, 0.03 g/l, and 0.1 g/l). 

Both samples immersed in gamble solution containing 0 g/l HCO3 and 1 g/l HCO3 in Figure 

18(a) had almost identical increase in potential which increased rapidly before stabilizing after 

2.5 hours of immersion. However, the samples immersed in Gamble solution containing both 2.6 

g/l HCO3 and 4 g/l HCO3 had a prolonged increase in potential which took 5 hours before 

starting to fluctuate between -1.35 V and -1.45 V throughout the immersion period. Figure 18(b) 

had the same tendency as (a), however, the only difference is that the potential of the sample 

immersed in 4 g/l HCO3 increased gradually for about 10 hours before stabilizing with a potential 

of 1.34V. Figure 18(c) shows a rapid increase in potential of sample immersed in Gamble 
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solution containing 0 g/l HCO3 for 1 hour before it stabilized at 1.45V. After 10 hours, the 

potential was observed to decrease to 1.50V. The samples immersed in 2.6 g/l HCO3 and 4 g/l 

HCO3 had the same increase in potential. The sharp rise observed during the open circuit 

potential first hours of immersion is probably due to film formation or passivation.  

 

Figure 18. OCP plots comparing the mucin effect on the samples immersed in Gamble solution 

containing different concentration of HCO3 ions for 24 hour at 37oC. (a) 0 g/ml mucin; (b) 0.03 

g/l mucin; (c) 0.1 g/l mucin. 

The effect of the different concentrations of mucin in the solution did not have an effect 

on the potential on the samples being tested. However, the potential increased with an increase of 

HCO3
- ions in the solutions which was due to the increase of the corrosion products forming on 

(a) 

(c) 

(b) 



50 
 

 
 

the surface of the magnesium samples possibly magnesium hydroxide, magnesium carbonate or 

calcium phosphate. Therefore, increasing HCO3
- ions in the solutions caused the thicker 

corrosion product which resulted in the higher potential.  

The open circuit potential (OCP) is a parameter easily determined experimentally through 

direct measurement of the electrode potential in relation to a reference electrode. OCP indicates 

the thermodynamically tendency of a material to electrochemical oxidation in a corrosive 

medium. The OCP was recorded until it stabilizes around a stationary value within three to four 

hours of immersion, although this potential may vary with time because changes in the nature of 

the surface of the electrode such as the oxidation and formation of the passive layer.  

4.2.3 Electrochemical impedance spectroscopy (EIS) results. As enlightened 

previously, in order to identify and investigate the electrochemical reaction mechanisms, the 

electrochemical behavior of the untreated, anodized and PLGA coated samples were examined 

by EIS. The EIS measurements with its frequency depending information allow distinguishing 

between different corrosion mechanisms and to assess the protecting ability of the surface 

corrosion products. The film formed during exposure to the different electrolytes can act, 

according to its stability and homogeneity, as a more or less efficient electric barrier for the 

charge transfer. The higher the resistance of the resultant surface layer, the higher the corrosion 

resistance of the film and therefore the higher will be the impedance value measured at low 

frequency (Quach, Uggowitzer, & Schmutz, 2008).   

Based on the impedance plots, the microstructural features of the corrosion products and 

oxide coating, appropriate equivalent circuit have been proposed as shown in Figure 19 (Duan, 

Yan, & Wang, 2007; Ghasemi, et al., 2008).  The equivalent circuit consists of two R/CPE 

components in series with RS, corresponding to the three parts of the EIS measured, i.e. corrosive 
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environment, outer layer and inner layer, respectively. In the equivalent circuit, RS is the solution 

resistance; R1/CPE1 pair represents the resistance of the corrosion products or coating, and 

R2/CPE2 pair is the inner layer/interface resistance of the corrosion products or coating.  

 

 

 

 

 

 

Figure 19. Schematic representation corresponding to equivalent circuit of EIS plot.  

Figure 20 shows the EIS nyquist plots for AZ31 magnesium samples immersed in 

Gamble solution without carbonate ions showing the effect of mucin increase at 37oC at different 

immersion times up to 24 hours. The choice of such a long duration is essential to estimate the 

longevity of the material being tested for implant application and at the same time help study the 

corrosion products formed on the surfaces of the samples. The Nyquist plots sample had similar 

shapes of the except for the difference in the diameter of loops. The diameter of the capacitive 

semicircle of a measured Nyquist spectrum is closely related to the corrosion rate (G. L. Song, 

Bowles, & StJohn, 2004), the larger the semicircle is, the better the corrosion resistance is. The 

larger diameters represent higher frequency while the smaller diameters represent low frequency. 

The high frequency capacitive loop may originate from the passivation on the AZ31 alloy hence 

better corrosion resistance. Figure 20 (a) diameter loop increased for 10 hours, before the 

corrosion resistance of the sample started to decline. 

CPE1 

CPE2 

R1 

RS 

R2 
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Figure 20. EIS nyquist plots of sample immersed in Gamble solution containing 0g/l HCO3 

showing the effect of mucin increase. (a) 0g/l Mucin (b) 0.03 g/l mucin; (c) 0.1 g/l mucin. 

Figure 20 (b) increased for 5 hours before the decline of the corrosion resistance while 

Figure 20 (c) increased for 15 hours before it started to decline. The decline in the diameter loop 

is due to the pitting corrosion formed on the surface of the samples which breaks the passivation 

on the surface. It can therefore be concluded that a larger amount of mucin in the Gamble 

solution stabilizes the sample hence having a better corrosion resistance. The circuit elements 

calculated from the fitting results of the immersion impedance plots showing increase in mucin 

concentrations is summarized in Table 6. 

(c) 

(b) (a) 
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Table 6  

Parameters of EIS showing the effect of mucin increase in Gamble solution 

Time 

(Hours) 

0 g/l HCO3, 0 g/l 

Mucin R1 (Ωcm2) 

0 g/l HCO3, 0.03 g/l 

Mucin R1 (Ωcm2) 

0 g/l HCO3, 0 g/l Mucin R1 

(Ωcm2) 

1 hr 3.225×103 4.081×103 2.571×103 

2 hr 6.161×103 8.930×103 6.034×103 

5 hr 8.550×103 20.68×103 11.87×103 

10 hr 13.82×103 13.78×103 12.34×103 

15 hr 7.232×103 9.045×103 37.48×103 

24 hr 8.410×103 6.969×103 23.49×103 

 

Table 6 shows the resistance of corrosion products formed on the immersed surface 

during EIS. The sample immersed in 0 g/l HCO3, 0 g/l mucin solution had its corrosion products 

resistance increased over duration of 10 hours to 13.82x103 Ωcm2 before it started decreasing 

and fluctuating around 8.41x103 Ωcm2 after 24 hours of immersion. The decrease in the 

resistance of the corrosion products after 10 hours of immersion was due to pitting corrosion 

formed on the passivation layer which caused the resistance to decrease. The sample immersed 

in 0 g/l HCO3, 0.03 g/l mucin solution had its corrosion products resistance increase for 5 hours 

before it started decreasing ending up with 6.96x103 Ωcm2 after 24 hours. However when 0.01 

g/l of mucin was added in the solution the passivation layer was more stable and increased 

gradually before starting to decrease after 15 hours. Therefore, it could be concluded that a larger 

amount of mucin in the solution caused the corrosion products formed on the surface to be more 

stable and decreasing pitting corrosion from happening on the surface of the passivation layer.   
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Figure 21. EIS nyquist plots of sample immersed in Gamble solution containing 0g/l mucin 

showing the effect of increasing carbonate ions (a) 0 g/l HCO3; (b) 1 g/l HCO3; (c) 2.6 g/l HCO3; 

(d) 4 g/l HCO3. 

 Figure 21 shows EIS nyquist plots for AZ31 magnesium samples immersed in Gamble 

solution without mucin showing the effect of increasing carbonate ions at 37oC at different 

immersion times up to 24 hours. The diameters of loops are increased with the increase in 

carbonate ions in the solution causing surface passivation. This behavior mainly resulted from 

the fast precipitation of magnesium hydroxide and magnesium carbonate in the corrosion product 

layer that can subsequently suppress development of pitting corrosion completely.  

The circuit elements calculated from the fitting resulted from the immersion impedance 

plots showing increase in carbonate ions concentrations are summarized in Table 7. After 24 

(a) (b) 

(c) (d) 
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hours of immersion, the sample immersed in 0 g/l HCO3, 0 g/l mucin corrosion product 

resistance of 8.41x103 Ωcm2 while the samples immersed in 1 g/l HCO3, 0 g/l mucin, 2.6 HCO3, 

0 g/l mucin and 4 g/l HCO3, 0 g/l mucin had R1 values of 191.9x103 Ωcm2, 224.7 x103 Ωcm2 and 

8.446x106 Ωcm2 respectively. From the EIS parameters, it can be proven than the corrosion 

products resistance R1 or the passivation layer increases with the increase of the carbonate ions 

in the solution.  

Table 7  

Parameters of EIS showing the effect of carbonate ions in Gamble solution 

Time 

(Hours) 

0 g/l HCO3, 0g/l 

Mucin R1 (Ωcm2) 

1 g/l HCO3, 0g/l 

Mucin R1 (Ωcm2) 

2.6 g/l HCO3, 0 g/l 

Mucin R1 (Ωcm2) 

4 g/l HCO3, 0g/l 

Mucin R1 (Ωcm2) 

1 hr 3.225×103 7.137×103 17.82×103 15.77×103 

2 hr 6.161×103 8.666×103 22.27×103 36.02×103 

5 hr 8.550×103 14.58×103 76.56×103 503.9×103 

10 hr 13.82×103 26.18×103 97.71×103 2.340×106 

15 hr 7.232×103 48.54×103 137.9×103 3.923×106 

24 hr 8.410×103 191.9×103 224.7×103 8.446×106 

 

The corrosion resistance of the untreated sample in Gamble solution with different 

concentration of mucin was also evaluated by EIS. The different concentrations of mucin tested 

were 0, 0.1, 0.5 and 1 g/l mucin. Gamble solution with 1 g/l mucin solution had a higher 

polarization resistance due to the larger diameter of the capacitive loop, hence suggesting a 

stronger anti-corrosion property. Mucin adsorption on the surface of the magnesium samples 

surface increased it corrosion resistance while the low value of the polarization resistance with 
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0g/l mucin indicated that the untreated AZ31 Mg alloy sample would be eroded easily.  The 

nyquist plot is shown in Figure 22.  

 
Figure 22. Nyquist plots of untreated magnesium AZ31 samples immersed in Gamble solution in 

different concentrations of mucin. 

The values of the fitting circuit elements are summarized in Table 8 respectively. The 

results showed AZ31 Mg alloy sample immersed in solution containing 0 g/l mucin had a 

polarization resistance of 76.73 Ωcm2. The low value of the polarization resistance indicated that 

the sample would be eroded easily. The polarization resistance value increased with increase in 

mucin hence solution with 1 g/l mucin had a value of 507.5 Ωcm2 hence changing the anti-

corrosion properties of the film thereby preventing the corrosive medium from penetrating into 

the Mg alloy substrate. The EIS results are in good agreement with the Potentiodynamic 

polarization test. 
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Table 8  

Parameters of untreated AZ31 by fitting EIS model carried out in Gamble with different 

concentrations of mucin 

Untreated AZ31 

Sample 

RS (Ωcm2) R1(Ωcm2) CPE1 (S*s^a) R2 (Ωcm2) CPE2 (S*s^a) 

0 g/l Mucin 37.65 76.73 35.35 10-6 23.50 4.99 10-3 

0.1g/l Mucin  39.08 94.16 31.88 10-6 29.04 4.74 10-3 

0.5g/l Mucin  43.97 270.6 20.97 10-6 72.38 2.67 10-3 

1g/l Mucin 40.49 507.5 15.47 10-6 109.2 1.68 10-3 

 

EIS proved to be a useful technique, because it offers insight into both the mechanism of 

corrosion attack while at the same time analyzing the processes taking place on a specimen’s 

surface (Xin, et al., 2007). A small amplitude AC signal is applied to the system being studied 

during the EIS experiment making it a non-destructive method for the evaluation of a wide range 

of materials, including coatings and anodized films. It can also provide detailed information of 

the systems under examination; parameters such as corrosion rates, dielectric properties, 

compositional influences on the conductance of solids, electrochemical mechanisms, mass 

transport, detection of localized corrosion, and reaction kinetics can all be determined from these 

data (Hamdy, El-Shenawy, & El-Bitar, 2006; Macdonald, 2005).  

4.2.4 Linear polarization resistance (LPR). Linear polarization tests were conducted on 

a 24 hour period using sequence wizard software to assess the rate of localized corrosion of the 

surface of the AZ31 alloys. Figure 23 shows linear polarization curves of AZ31 sample 

immersed in Gamble solution for a period ranging from 1 hour to 24 hours.  After 1 hour period 
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of immersion, the sample’s OCP was about -1.62V, while after 24 hours, the OCP was -1.32V. 

The linear polarization instrumentation using Gamry Echem Analyst software was used to 

convert the current measured to corrosion rate readings in mils per year (mpy).  

 

Figure 23. Linear polarization curves of sample immersed in Gamble solution containing 2.6 g/l 

HCO3
-, 0g/l mucin for 24 hours. 

The OCP of the samples increase as the immersion time increasing, thus the high 

potential and low corrosion current results low corrosion rate of 7.86×10-3 mpy on the sample as 

illustrated in Table 9. After 1 hour of immersion, the polarization curve had a low OCP with high 

corrosion current which is directly proportional to the corrosion rate, hence high corrosion rate of 

1.079 mpy. The increase in OCP with time causing the corrosion rate to decrease was probably 

due to film formation or passivation on the surface of the immersed sample. 
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Table 9  

Linear polarization data measurement by Gamry Echem Analyst software of untreated AZ31 

alloy immersed in Gamble solution containing 2.6 g/l HCO3
-, 0g/l mucin for 24 hours.  

Immersion Time Corrosion Rate (mpy) 

1 hour 1.079 

5 hour 126.4×10-3 

10 hours 20.82×10-3 

15 hours 10.93×10-3 

20 hours 8.63×10-3 

24 hours 7.86×10-3 

 

Linear Polarization Resistance measured the DC current through the metal interface when 

the electrodes are polarized by a small electrical potential. LPR test is a non-destructive 

electrochemical technique in which the potential of a metal is scanned over a small range relative 

to the open circuit potential and the resulting current is measured. This current is related to the 

corrosion current which in turn is directly proportional to the corrosion rate. The major 

advantage to LPR monitoring is the speed in which it can provide an instantaneous measurement 

of the corrosion rate (Argade, Panigrahi, & Mishra, 2012). Changes in the corrosion rate can 

typically be detected in minutes, providing an almost instantaneous measuring system.  This fast 

response allows an operator to evaluate process changes and is particularly useful in monitoring 

the effectiveness of a prevention program. It can also provide a qualitative pitting tendency 

measurement,  such  as  whether  the  tendency  for pitting will  be  shallow  and  infrequent,  or  

deep  and abundant.   
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4.2.5 Potentiodynamic polarization. Representative potentiodynamic polarization 

curves for untreated AZ31B samples immersed in Gamble solution with different concentrations 

of mucin are displayed in Figure 24. The corrosion potential ecorr and corrosion current density 

icorr were calculated from the intersection of the cathodic and anodic Tafel curves extrapolated 

cathodic and anodic polarization curves. When ecorr increases and icorr decreased, the corrosion 

resistance of the samples would be improved. It is obviously that the corrosion potentials 

increased with the increase of mucin from 0 g/l to 1 g/l in the solution having corrosion 

potentials of -1.78 V, -1.76 V, 1.72 V and -1.64 V respectively.  

 

Figure 24. Potentiodynamic polarization curves of untreated magnesium AZ31 samples 

immersed in Gamble solution with different concentrations of mucin. 

Fitting results if electrochemical parameters, as seen in Table 10, prove that polarization 

resistance increases and corrosion current density (icorr) reduces remarkably with the increase in 

the mucin concentration. The untreated AZ31 sample immersed in Gamble solution containing 0 
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g/l mucin had a corrosion current density of 8.35x10-1 mA/cm2 while the sample immersed in 

gamble solution containing 1g/l mucin had a corrosion current density of 3.07 10-2 mA/cm2. It 

implied that mucin played a good protection by effectively decreasing the corrosion rate of 

magnesium by acting as a barrier shield.  

Table 10  

Parameters of untreated magnesium AZ31 samples immersed in Gamble solution with different 

concentrations of mucin 

Untreated AZ31 Sample Ecorr  (V) Icorr (mA/cm2) Corrosion rate (mpy) 

0 g/l Mucin -1.78 8.35 10-1 752.14 

0.1 g/l Mucin  -1.76 4.90 10-1 441.38 

0.5 g/l Mucin  -1.72 1.71 10-1 154.03 

1 g/l Mucin -1.64 3.07 10-2 27.65 

 

4.3 Plasma Electrolytic Oxidation and PLGA Coating Results 

Figure 25 shows the result of potentiodynamic polarization for corrosion assessment. 

After the potentiodynamic polarization tests, corrosion craters could be observed evidently by 

naked eyes on the surface of magnesium alloy substrate, but there were no distinct changes on 

the surface of coated samples. Although the increase of the Ecorr was not significant, the icorr was 

three orders of magnitude lower than that of the untreated sample. The icorr is an important 

parameter to evaluate the corrosion resistant properties of materials. The lower the icorr, the better 

corrosion resistance they perform. PEO treatment improved the corrosion resistance while the 

multi-layer coating of both anodized and PLGA coating effectively improved the corrosion 
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resistance by sealing the micro-cracks and micro-pores on the outer surface oxide layer 

effectively and controlling the release of the magnesium ions (Y. M. Wang et al., 2009).  

 

Figure 25. Potentiodynamic polarization curves of AZ31 alloy in Gamble solution. 

From the measured results, the corrosion voltage was -1.78 V in the untreated Mg alloy, -

1.77 V in the anodized sample and -1.64 V in the anodized+PLGA coated sample. Although 

corrosion potential of untreated and anodized samples remained at the same level, they have 

different polarization behavior, especially in anodic branch which shows the pitting corrosion 

behavior. The corrosion current density of the untreated, anodized and PLGA coated samples 

were 8.35 10-1 mA/cm2, 3.72 10-2 mA/cm2 and 2.15 10-3 mA/cm2 respectively as illustrated in 

Table 11. Therefore, the DC polarization curve result shows that the corrosion resistance of 

AZ31B magnesium alloy was greatly improved by PEO treatment and PLGA coating. 
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Table 11  

Parameters of untreated, anodized AZ31 and anodized+ PLGA AZ31 by fitting DC polarization 

curve obtained in Gamble solution 

AZ31 Alloy Sample Ecorr  (V) Icorr (mA/cm2) Corrosion rate (mpy) 

Untreated -1.78 8.35 10-1 752.14 

Anodized -1.77 3.72 10-2 33.51 

Anodized + PLGA -1.64 2.15 10-3 0.194 

 

Representative EIS of untreated, anodized and anodized+PLGA AZ31 alloy samples 

exposed to Gamble solution at 37oC are shown in Figure 26. It is evident that the impedance 

modulus of the untreated sample was far less than that of anodized sample while the 

anodized+PLGA coated sample a larger impedence modulus which confirms that PLGA coating 

improves the corrosion resistance of the sample by providing sealing of the micropores of the 

anodized sample.  

 
Figure 26. Nyquist plots of untreated anodized AZ31 and anodized+ PLGA coated AZ31 in 

Gamble solution at 37oC. 
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The values of the fitting circuit elements are summarized in Table 9. By combination 

Figure 26 and Table 12, it can be clearly seen that there is a good correlation between the 

experimental curves and data which are calculated from equivalent circuit. The multi-layer 

coating of anodization and PLGA combined proved to have a better corrosion resistance than the 

anodized layer by having the coating resistance (R1) of 9388.60 Ωcm2 and 6287.10 Ωcm2 

respectively.   

Table 12  

Parameters of untreated anodized and anodized + PLGA AZ31 samples obtained from EIS 

model carried out in Gamble solution 

AZ31  Alloy Coating RS (Ωcm2) R1(Ωcm2) CPE1 (S*s^a) R2 (Ωcm2) CPE2 (S*s^a) 

Untreated  19.91 3925.00 _ _ 9.16 10-6 

Anodized  28.02 6287.10 1.30 10-6 6.327 104 425.8 10-9 

Anodized + PLGA 14.0 10-4 9388.60 476.2 10-9 1.577 105 1.095 10-6 

 

The surface morphology of the anodized samples was investigated by SEM which 

confirmed the presence of thick oxide layer on the alloy as shown in Figure 27.  It is rather 

obvious that there exist many micropores on the surface of the coating, which is the typical 

feature of an anodized coated surface, and the size of pores is affected by the electrolyte types. 

The micro-cracks in the coating were induced by large discharge sparks caused by the vibration 

due to the escape and evaporation of gaseous products. The micro-pores and micro-cracks were 

randomly distributed in the coating surfaces which were formed by the oxygen bubbles in the 

coating growth process and the thermal stress due to the rapid solidification of the molten oxide 

in the relatively cooling electrolyte. These pores lead to poor corrosion resistance of the anodized 
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coating when exposed in corrosive environments (Guo, Cao, Lu, Liu, & Xu). Consequently, 

PLGA coating used to seal the micro-pores of the outer oxide layer of the anodized surface 

makes it have a compact and defect-free layer without distinct cavities and crevices. The PLGA 

film formed on the surface of the anodized sample can be able to prevent the outer layer of the 

anodized coating from being exposed directly to corrosive ions as an effective protective barrier. 

 

Figure 27. Surface morphologies of AZ31B anodized surface. 

During the plasma electrolytic oxidation process, the applied voltages ranged from 100V-

500V. The effect of applied voltage on coating corrosion resistance was various with its 

thickness and porosity (Zhanga, Shan, Chen, & Han, 2008). When the applied voltage was 

increased, the anodic reaction becomes more intense and more magnesium alloys are oxidized 

into various oxidations, which will make the thickness increase. When the applied voltage was 

low, there was no marked sparking discharge on the surface of the substrate forming smooth 

anodic coating with a thin transparent passive film. When the applied voltage was more than 200 

V, the anodic coating was thicker and the pore size is larger with several cracks appear on the 

surface of the anodic coating. Thus the porosity of anodic coating increases with increasing 

applied voltage.  
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The effect of frequency was also found to affect the coating morphologies which is 

defined as the pulse number per second. The frequency used in this present work was between 

50Hz – 100Hz using the square waveform. However, it was noted that with a higher the 

frequency, the shorter the time of one cycle. The continually anodizing time in one cycle 

decreased with the increase of frequency, which results in a good restoration of anodic coatings 

by electrolyte and a decrease of gas evolution (Chang et al., 2011). The porosity decreases and 

the corrosion resistance of anodic coatings were noticed to improve with the increase of 

frequency. 

The poor corrosion resistance of magnesium and its alloys makes it desirable to alter its 

surface properties in order to improve its corrosion resistance. Various surface treatments such as 

electrochemical plating, conversion coating and anodization have been used to increase the 

corrosion resistance. PEO is one of the electrochemical surface treatment methods, which form 

the oxide layer on magnesium alloys in plasma state generated by applying extremely high 

voltage in a suitable electrolyte (Hwang, Kim, & Shin, 2009). Verdier et. al reported that the cell 

voltage of PEO process was important factor in the process parameter, especially influencing 

growth rate of oxide layer (Verdier, van der Laak, Delalande, Metson, & Dalard, 2004). The 

structure of the oxide layer fabricated by PEO process depends on various processing conditions, 

including chemical composition and concentration of electrolyte which exerts a considerable 

influence on the property and formation of effective oxide layer for magnesium alloy.  

4.4 Cell Adhesion Assay Results 

In this experiment, biocompatibility of the magnesium alloy was assessed using porcine 

tracheal epithelial (PTE) cells to determine the cell responses, in terms of cell morphology and 

cell adhesion on the surfaces of the samples after 12 hours of incubation time. Upon completion 



67 
 

 
 

of the adhesion assay, a phase contrast image of the glass substrate used as a control was taken 

using an Advanced Microscopy Group EVOS-xl digital inverted microscope to ensure the cells 

were still viable after the experiment as shown in Figure 28. The cells adhered to the glass 

substrate and were observed to be round and healthy morphology. During the initial viewing of 

the samples still using the optical light microscopy, an interesting finding was observed when the 

cells were noticed to attach on the edges on the anodized and PLGA coated samples. However, 

few cells were noticed to attach on the untreated samples and paclitaxel coated samples.  

 

Figure 28. Optical light microscopy image showing control PTE cells attached on a glass 

substrate. 

Figure 29 shows SEM images of cells attached to the surfaces of magnesium alloy taken 

after performing ion beam coating. Figure 29 (a) shows cells attached on the untreated AZ31 

alloy, but did not attach well since there were areas where no cells were found on the surface. 

The results also demonstrated the importance of surface treatment for initial cell adhesion and for 

cell survival on the magnesium surfaces. Probably a shorter incubation time would have ensured 

more cells adhering on the surface and a long-term cell survival on the surface. The anodized 

surfaces however were proved to be non-toxic and biocompatible to the PTE cells because of 

200 µm 
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their three-dimensional surface as shown in Figure 29 (b). The reactivity of the magnesium was 

reduced by the coating which must have also helped in the adhesion of the cells. The rounded 

dark spots on the surface were the cells while the white areas were the anodized layer. The result 

indicated a healthy morphology of cells and good interaction between cells and anodized 

magnesium alloys surfaces.  

 

Figure 29. SEM images of PTE cells adhered on the surfaces after the cell adhesion assay for 12 

hours. (a) untreated AZ31, (b) Anodized coated AZ31, (c) Untreated AZ31 coated with 2wt% 

PLGA and (d) untreated AZ31 coated with 2wt% PLGA with 10% paclitaxel drug. 

The SEM image in Figure 29 (c) shows untreated AZ31 alloy coated with 2% wt PLGA 

which had a good interaction with the cells. The cells seemed to be spreading along the surface 
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with the morphologies being round shaped and attached closely together showing a healthy 

morphology attaching on the polymer. The fact that some of the cells have a spherical shape 

suggests that the cells are starting to detach from the surface. Figure 29 (d) shows sample coated 

with 2%wt PLGA+10%wt paclitaxel drug. As mention earlier, paclitaxel is an anti-cancer 

chemotherapy drug which exhibits a significant activity against a variety of solid tumors, 

including breast cancer and lung cancer. Therefore the paclitaxel-loaded PLGA coated sample 

released the drug to the cells during polymer breakdown. Hence because of drug, it was hard to 

find cells attached on the surface while the ones found had a deformed shape possibly caused by 

the drug.  

Paclitaxel has been shown to exhibit a significant activity against a variety of solid 

tumors, including breast cancer, lung cancer, head and neck carcinomas (Fonseca, Simoes, & 

Gaspar, 2002; Spencer & Faulds, 1994; Thigpen, 2000). In vascular stent materials, loading drug 

in the coating on the stent can limit the early thrombogenicity. Drugs in the stent coating can be 

released by diffusion mechanisms or during polymer breakdown. So, a properly designed drug 

release coating on the stent has negligible risk of systemic toxicity (X. Wang et al., 2008).  

In vitro cell culture tests can be used to screen potential bioabsorbable Mg alloys for their 

effects on the cells and tissue in particular physiological environments, such as bones or blood 

vessels. Cell adhesion has been particular interest because it plays important roles in the 

regulation of cell behavior in wound healing and tissue regeneration, such as the regulation of 

growth, differentiation, migration and survival of cells. Cell adhesion is the integrated process of 

multiple complex events, such as specific binding of membrane proteins with extracellular 

matrix (ECM) and the signal transduction. These events are strictly controlled by complicated 
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mechanisms and are highly interconnected and interdependent driven by ligand receptor 

interactions, especially integrin bindings (Arnaout, Goodman, & Xiong, 2007). 

A large range of factors including hydrogen gas evolution, pH increase due to Mg 

dissolution in the cell culture medium, as well as the chemical and physical properties of the 

native or corroded magnesium surface may all have contributed to a decrease in cell adhesion 

and growth on the Mg substrate in comparison to glass. Dissecting those factors is possible but 

requires extensive experiments that go beyond the scope of this study. 
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CHAPTER 5 

Conclusions and Future Work 

This work reviews the biological performance of AZ31 magnesium alloys (biodegradable 

materials for temporary implant) in simulated airway surface fluid at 37oC.  The corrosion 

behavior was studied by the analysis of corrosion resistance variation with immersion time, using 

electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), polarization 

resistance and corrosion current density using potentiodynamic polarization technique. The 

results and morphological characterization of the samples were confirmed by x-ray computed 

tomography (Micro-CT), scanning electron microscopy (SEM). Chemical composition of the 

surface corrosion products was determined with electron dispersive x-ray spectroscopy (EDX) 

and X-ray diffraction (XRD).  

The aim is to explore possible routes to improve limiting factors such as the corrosion 

resistance and improve integration of the implant with tissue, and ultimately highlights the need 

for further research. It is aimed to find the best magnesium alloy with low cost and low corrosion 

rate as implant in human body. Furthermore, the feasibility to slow down the biodegradation of 

magnesium alloys to solve the rapidly corroding magnesium implant problems was demonstrated 

by studying the effect of adding porcine stomach mucin to Gamble solution on the corrosion 

behavior of AZ31 alloy.  

Biocompatibility of the magnesium alloy was assessed using porcine tracheal epithelial 

(PTE) cells to determine the cell responses, in terms of cell morphology and cell adhesion on the 

surfaces of the samples. A good cell interaction with the material’s surface demonstrates that the 

magnesium implants material will posses’ acceptable biocompatibility and that the magnesium 
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ions produced from implant dissolution is not expected to lead to toxic reactions, as the 

concentration of magnesium in the body is controlled by homeostatic mechanisms. 

The main aspects worth to emphasize are summarized as follows: 

1) The immersion test demonstrated that thick corrosion product layer was formed on the 

magnesium alloy surface with the addition of carbonate ions which also induced fast 

passivation on the surface.  The addition of porcine stomach mucin into the physiological 

media inhibited the corrosion rate of the samples by reducing the thickness of the 

corrosion products on the surface. When carbonate ions was absent in the physiological 

media, calcium phosphate (hydroxyapatite) was formed on the surface with more calcium 

element at the top of the corrosion products than bottom layer of corrosion products while 

the mucin inhibited the deposition of hydroxyapatite on the surface. 

2) From the various electrochemical tests, all results confirmed that the increase in 

carbonate ions in the test solution caused fast precipitation of magnesium hydroxide in 

the corrosion product layer that can subsequently suppress development of pitting 

corrosion completely. Mucin was observed to increase the corrosion resistance of the 

samples by attaching on the sample surface hence decreasing the corrosion current 

densities. 

3) pH measurements both for immersion and electrochemical tests showed a substantial 

increase in the pH when carbonate ions was added in the test solution while absence of 

carbonate caused the pH to decrease due to the formation of calcium phosphate which 

induced the hydrogen ions causing pH drop. The addition of mucin in the test solution 

attenuated magnesium induced increase in pH thereby slowing the corrosion rate of the 

magnesium samples.  
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4) PEO treatment led to a substantial improvement of the corrosion resistance consisting of 

a compact and porous layer in order to delay the initial corrosion rate of magnesium. 

Consequently, a multi-layer coating of PLGA coating further slowed down the initial 

corrosion rate by sealing all the micro-pores and cracks on the outer oxide layer 

effectively.  

5) The cell adhesion assay results indicated healthy morphology of cells and good 

interaction between cells and AZ31 magnesium alloy.   Therefore, the present in vitro cell 

assay indicates that AZ31 magnesium alloy has great potential to be used as 

implants/stents in biomedical applications. 

The promising future of magnesium and its alloys is dependent on being able to control the rate 

of corrosion in body fluids. The encouraging in vitro results obtained in this work provides a 

scientific foundation which helps understand what is happening in vivo which was analyzed 

using simulated airway surface liquid. The presence of the physiological mucin concentration in 

the airway could be beneficial in terms of controlling the corrosion rate of the biodegradable 

magnesium alloy airway stent. With a novel way of controlling the concentration of mucin in the 

airway, the corrosion rate of a magnesium alloy implant in the airway could potentially be 

controlled for a specific period of time thereby fulfilling its mission and step away by degrading 

after tissue healing. The results therefore represent the basis for future research in evaluating 

magnesium as a bioresobable airway stent. 

 

 

 

 



74 
 

 
 

References 

Allen, A., Hutton, D. A., Pearson, J. P., & Sellers, L. A. (1984). Mucus glycoprotein structure, 

gel formation and gastrointestinal mucus function. Ciba Found Symp, 109, 137-156.  

Argade, G. R., Panigrahi, S. K., & Mishra, R. S. (2012). Effects of grain size on the corrosion 

resistance of wrought magnesium alloys containing neodymium. Corrosion Science, 58, 

145-151. doi: DOI 10.1016/j.corsci.2012.01.021 

Arnaout, M. A., Goodman, S. L., & Xiong, J. P. (2007). Structure and mechanics of integrin-

based cell adhesion. Current Opinion in Cell Biology, 19(5), 495-507. doi: DOI 

10.1016/j.ceb.2007.08.002 

Arrabal, R., Matykina, E., Hashimoto, T., Skeldon, P., & Thompson, G. E. (2009). 

Characterization of AC PEO coatings on magnesium alloys. Surface & Coatings 

Technology, 203(16), 2207-2220. doi: DOI 10.1016/j.surfcoat.2009.02.011 

Baril, G., & Pebere, N. (2001). The corrosion of pure magnesium in aerated and deaerated 

sodium sulphate solutions. Corrosion Science, 43(3), 471-484. doi: Doi 10.1016/S0010-

938x(00)00095-0 

Barrere, F., van der Valk, C. M., Dalmeijer, R. A. J., van Blitterswijk, C. A., de Groot, K., & 

Layrolle, P. (2003). In vitro and in vivo degradation of biomimetic octacalcium 

phosphate and carbonate apatite coatings on titanium implants. Journal of Biomedical 

Materials Research Part A, 64A(2), 378-387. doi: Doi 10.1002/Jbm.A.10291 

Bjarnason, H., Cahill, B., Klow, N. E., Han, Y. M., Urness, M., Gunther, R., . . . Hunter, D. W. 

(1999). Tracheobronchial metal stents: effects of covering a bronchial ostium in pigs. 

Acad Radiol, 6(10), 586-591.  



75 
 

 
 

Blawert, C., Dietzel, W., Ghali, E., & Song, G. L. (2006). Anodizing treatments for magnesium 

alloys and their effecton corrosion resistance in various environments. Advanced 

Engineering Materials, 8(6), 511-533. doi: DOI 10.1002/adem.200500257 

Bouissou, C., Rouse, J. J., Price, R., & van der Walle, C. F. (2006). The influence of surfactant 

on PLGA microsphere glass transition and water sorption: remodeling the surface 

morphology to attenuate the burst release. Pharm Res, 23(6), 1295-1305. doi: 

10.1007/s11095-006-0180-2 

Burningham, A. R., Wax, M. K., Andersen, P. E., Everts, E. C., & Cohen, J. I. (2002). Metallic 

tracheal stents: complications associated with long-term use in the upper airway. Ann 

Otol Rhinol Laryngol, 111(4), 285-290.  

Cao, G., & Kou, S. (2006). Hot cracking of binary Mg-Al alloy castings. Materials Science and 

Engineering a-Structural Materials Properties Microstructure and Processing, 417(1-2), 

230-238. doi: DOI 10.1016/j.msea.2005.10.050 

Chang, L. R., Cao, F. H., Cai, J. S., Liu, W. J., Zhang, Z., & Zhang, J. Q. (2011). Influence of 

electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave 

power source. Transactions of Nonferrous Metals Society of China, 21(2), 307-316. doi: 

Doi 10.1016/S1003-6326(11)60714-0 

Chino, Y., Kado, M., & Mabuchi, M. (2008). Compressive deformation behavior at room 

temperature-773 K 14 in Mg-0.2 mass%(0.035at.%)Ce alloy. Acta Materialia, 56(3), 

387-394. doi: DOI 10.1016/j.actamat.2007.09.036 

Chiu, K. Y., Wong, M. H., Cheng, F. T., & Man, H. C. (2007). Characterization and corrosion 

studies of fluoride conversion coating on degradable Mg implants. Surface & Coatings 

Technology, 202(3), 590-598. doi: DOI 10.1016/j.surfcoat.2007.06.035 



76 
 

 
 

Collard, P., Freitag, L., Reynaert, M. S., Rodenstein, D. O., & Francis, C. (1996). Respiratory 

failure due to tracheobronchomalacia. Thorax, 51(2), 224-226. doi: Doi 

10.1136/Thx.51.2.224 

Colombo, A., & Karvouni, E. (2000). Biodegradable stents : "fulfilling the mission and stepping 

away". Circulation, 102(4), 371-373.  

Diamond, J. M. (1979). Osmotic water flow in leaky epithelia. J Membr Biol, 51(3-4), 195-216.  

Djurdjevic, M. B., & Schmid-Fetzer, R. (2006). Thermodynamic calculation as a tool for 

thixoforming alloy and process development. Materials Science and Engineering a-

Structural Materials Properties Microstructure and Processing, 417(1-2), 24-33. doi: 

DOI 10.1016/j.msea.2005.08.227 

Duan, H. P., Yan, C. W., & Wang, F. H. (2007). Growth process of plasma electrolytic oxidation 

films formed on magnesium alloy AZ91D in silicate solution. Electrochimica Acta, 

52(15), 5002-5009. doi: DOI 10.1016/j.electacta.2007.02.021 

Dube, L., & Granry, J. C. (2003). The therapeutic use of magnesium in anesthesiology, intensive 

care and emergency medicine: a review. Canadian Journal of Anaesthesia-Journal 

Canadien D Anesthesie, 50(7), 732-746.  

Dumon, J. F. (1990). A Dedicated Tracheobronchial Stent. Chest, 97(2), 328-332.  

Elliott, M., Roebuck, D., Noctor, C., McLaren, C., Hartley, B., Mok, Q., . . . Wallis, C. (2003). 

The management of congenital tracheal stenosis. International Journal of Pediatric 

Otorhinolaryngology, 67, S183-S192. doi: DOI 10.1016/j.ijporl.2003.08.023 

Erne, P., Schier, M., & Resink, T. J. (2006). The road to bioabsorbable stents: reaching clinical 

reality? Cardiovasc Intervent Radiol, 29(1), 11-16. doi: 10.1007/s00270-004-0341-9 



77 
 

 
 

Fonseca, C., Simoes, S., & Gaspar, R. (2002). Paclitaxel-loaded PLGA nanoparticles: 

preparation, physicochemical characterization and in vitro anti-tumoral activity. Journal 

of Controlled Release, 83(2), 273-286. doi: Pii S0168-3659(02)00212-2 

Doi 10.1016/S0168-3659(02)00212-2 

Ghasemi, A., Raja, V. S., Blawert, C., Dietzel, W., & Kainer, K. U. (2008). Study of the 

structure and corrosion behavior of PEO coatings on AM50 maginesium. alloy by 

electrochemical impedance spectroscopy. Surface & Coatings Technology, 202(15), 

3513-3518. doi: DOI 10.1016/j.surfcoat.2007.12.033 

Goh, C. S., Wei, J., Lee, L. C., & Gupta, M. (2006). Development of novel carbon nanotube 

reinforced magnesium nanocomposites using the powder metallurgy technique. 

Nanotechnology, 17(1), 7-12. doi: Doi 10.1088/0957-4484/17/1/002 

Gottlieb, J., Fuehner, T., Dierich, M., Wiesner, O., Simon, A. R., & Welte, T. (2009). Are 

metallic stents really safe? A long-term analysis in lung transplant recipients. European 

Respiratory Journal, 34(6), 1417-1422. doi: Doi 10.1183/09031936.00041909 

Gray, J. E., & Luan, B. (2002). Protective coatings on magnesium and its alloys - a critical 

review. Journal of Alloys and Compounds, 336(1-2), 88-113.  

Grillo, H. C., Donahue, D. M., Mathisen, D. J., Wain, J. C., & Wright, C. D. (1995). 

Postintubation Tracheal Stenosis - Treatment and Results. Journal of Thoracic and 

Cardiovascular Surgery, 109(3), 486-493. doi: Doi 10.1016/S0022-5223(95)70279-2 

Guo, M., Cao, L., Lu, P., Liu, Y., & Xu, X. Anticorrosion and cytocompatibility behavior of 

MAO/PLLA modified magnesium alloy WE42. J Mater Sci Mater Med, 22(7), 1735-

1740. doi: 10.1007/s10856-011-4354-z 



78 
 

 
 

Hamdy, A. S., El-Shenawy, E., & El-Bitar, T. (2006). Electrochemical Impedance Spectroscopy 

Study of the Corrosion Behavior of Some Niobium Bearing Stainless Steels in 3.5% 

NaCl. International Journal of Electrochemical Science, 1(4), 171-180.  

Han, L. H., Hu, H., Northwood, D. O., & Li, N. Y. (2008). Microstructure and nano-scale 

mechanical behavior of Mg-Al and Mg-Al-Ca alloys. Materials Science and Engineering 

a-Structural Materials Properties Microstructure and Processing, 473(1-2), 16-27. doi: 

DOI 10.1016/j.msea.2007.03.053 

Hassan, S. F., & Gupta, M. (2003). Development of high strength magnesium copper based 

hybrid composites with enhanced tensile properties. Materials Science and Technology, 

19(2), 253-259. doi: Doi 10.1179/026708303225009346 

Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung, W., & Haverich, A. (2003). 

Biocorrosion of magnesium alloys: a new principle in cardiovascular implant 

technology? Heart, 89(6), 651-656.  

Hitachi. (2012). SU8000 Detector System: Variety of Signal Detection System (pp. 1). North 

Carolina: Hitachi. 

Hsiao, H. Y., & Tsai, W. T. (2005). Characterization of anodic films formed on AZ91D 

magnesium alloy. Surface & Coatings Technology, 190(2-3), 299-308. doi: DOI 

10.1016/j.surfcoat.2004.03.010 

Hsiao, H. Y., Tsung, H. C., & Tsai, W. T. (2005). Anodization of AZ91D magnesium alloy in 

silicate-containing electrolytes. Surface & Coatings Technology, 199(2-3), 127-134. doi: 

DOI 10.1016/j.surfcoat.2004.12.010 



79 
 

 
 

Hwang, D. Y., Kim, Y. A., & Shin, D. H. (2009). Corrosion Resistance of Plasma-Anodized 

AZ91 Mg Alloy in the Electrolyte with/without Potassium Fluoride. Materials 

Transactions, 50(3), 671-678. doi: DOI 10.2320/matertrans.MER2008345 

Inoue, H., Sugahara, K., Yamamoto, A., & Tsubakino, H. (2002). Corrosion rate of magnesium 

and its alloys in buffered chloride solutions. Corrosion Science, 44(3), 603-610. doi: Doi 

10.1016/S0010-938x(01)00092-0 

Jacobs, J. J., Gilbert, J. L., & Urban, R. M. (1998). Corrosion of metal orthopaedic implants. 

Journal of Bone and Joint Surgery-American Volume, 80A(2), 268-282.  

Jain, R. A. (2000). The manufacturing techniques of various drug loaded biodegradable 

poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21(23), 2475-2490. doi: Doi 

10.1016/S0142-9612(00)00115-0 

Jayaraman, S., Song, Y., Vetrivel, L., Shankar, L., & Verkman, A. S. (2001). Noninvasive in 

vivo fluorescence measurement of airway-surface liquid depth, salt concentration, and 

pH. Journal of Clinical Investigation, 107(3), 317-324. doi: 10.1172/JCI11154 

Jeffery, P. K., & Li, D. (1997). Airway mucosa: secretory cells, mucus and mucin genes. 

European Respiratory Journal, 10(7), 1655-1662.  

Joris, L., Dab, I., & Quinton, P. M. (1993). Elemental composition of human airway surface fluid 

in healthy and diseased airways. American Review of Respiratory Disease, 148(6 Pt 1), 

1633-1637.  

Knowles, M. R., & Boucher, R. C. (2002). Mucus clearance as a primary innate defense 

mechanism for mammalian airways. Journal of Clinical Investigation, 109(5), 571-577. 

doi: Doi 10.1172/Jci200215217 



80 
 

 
 

Kuwahara, H., Al-Abdullat, Y., Ohta, M., Tsutsumi, S., Ikeuchi, K., Mazaki, N., & Aizawa, T. 

(2000). Surface reaction of magnesium in Hank's solutions. Magnesium Alloys 2000, 

350-3, 349-358.  

Lee, E. Y. (2008). Advancing CT and MR imaging of the lungs and airways in children: imaging 

into practice. Pediatric Radiology, 38, S208-S212. doi: DOI 10.1007/s00247-008-0767-3 

Levine, M. J., Reddy, M. S., Tabak, L. A., Loomis, R. E., Bergey, E. J., Jones, P. C., . . . Al-

Hashimi, I. (1987). Structural aspects of salivary glycoproteins. J Dent Res, 66(2), 436-

441.  

Liang, J., Srinivasan, P. B., Blawert, C., & Dietzel, W. (2009). Comparison of electrochemical 

corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by 

plasma electrolytic oxidation. Corrosion Science, 51(10), 2483-2492. doi: DOI 

10.1016/j.corsci.2009.06.034 

Liang, J., Srinivasan, P. B., Blawert, C., & Dietzel, W. (2010). Influence of pH on the 

deterioration of plasma electrolytic oxidation coated AM50 magnesium alloy in NaCl 

solutions. Corrosion Science, 52(2), 540-547. doi: DOI 10.1016/j.corsci.2009.10.011 

Lindstrom, R., Johansson, L. G., & Svensson, J. E. (2003). The influence of NaCl and CO2 on 

the atmospheric corrosion of magnesium alloy AZ91. Materials and Corrosion-

Werkstoffe Und Korrosion, 54(8), 587-594. doi: DOI 10.1002/maco.200390130 

Liu, C. L., Wang, Y. J., Zeng, R. C., Zhang, X. M., Huang, W. J., & Chu, P. K. (2010). In vitro 

corrosion degradation behaviour of Mg-Ca alloy in the presence of albumin. Corrosion 

Science, 52(10), 3341-3347. doi: DOI 10.1016/j.corsci.2010.06.003 

Macdonald, J. R. (2005). Impedance spectroscopy: Models, data fitting, and analysis. Solid State 

Ionics, 176(25-28), 1961-1969. doi: DOI 10.1016/j.ssi.2004.05.035 



81 
 

 
 

Makadia, H. K., & Siegel, S. J. (2011). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable 

Controlled Drug Delivery Carrier. Polymers (Basel), 3(3), 1377-1397. doi: 

10.3390/polym3031377 

Makar, G. L., & Kruger, J. (1993). Corrosion of Magnesium. International Materials Reviews, 

38(3), 138-153.  

Marques, M. R. C., Loebenberg, R., & Almukainzi, M. (2011). Simulated Biological Fluids with 

Possible Application in Dissolution Testing. Dissolution Technologies, 18(3), 15-28.  

Miller, W. K. (1993). Stress-corrosion Cracking. ASM, 251.  

Mizutani, Y., Kim, S. J., Ichino, R., & Okido, M. (2003). Anodizing of Mg alloys in alkaline 

solutions. Surface & Coatings Technology, 169, 143-146.  

Mordike, B. L., & Ebert, T. (2001). Magnesium - Properties - applications - potential. Materials 

Science and Engineering a-Structural Materials Properties Microstructure and 

Processing, 302(1), 37-45. doi: Doi 10.1016/S0921-5093(00)01351-4 

Murgu, S. D., & Colt, H. G. (2006). Tracheobronchomalacia and excessive dynamic airway 

collapse. Respirology, 11(4), 388-406. doi: DOI 10.1111/j.1400-1843.2006.00862.x 

Nguyen, Q. B., Gupta, M., & Srivatsan, T. S. (2009). On the role of nano-alumina particulate 

reinforcements in enhancing the oxidation resistance of magnesium alloy AZ31B. 

Materials Science and Engineering a-Structural Materials Properties Microstructure and 

Processing, 500(1-2), 233-237. doi: DOI 10.1016/j.msea.2008.09.050 

Nuutinen, J. (1977). Acquired tracheobronchomalacia. A clinical study with bronchological 

correlations. Ann Clin Res, 9(6), 350-355.  

Offner, G. D., & Troxler, R. F. (2000). Heterogeneity of high-molecular-weight human salivary 

mucins. Adv Dent Res, 14, 69-75.  



82 
 

 
 

Pan, C. J., Tang, J. J., Shao, Z. Y., Wang, J., & Huang, N. (2007). Improved blood compatibility 

of rapamycin-eluting stent by incorporating curcumin. Colloids and Surfaces B-

Biointerfaces, 59(1), 105-111. doi: DOI 10.1016/j.colsurfb.2007.04.015 

Pan, C. J., Tang, J. J., Weng, Y. J., Wang, J., & Huang, N. (2007). Preparation and 

characterization of rapamycin-loaded PLGA coating stent. Journal of Materials Science-

Materials in Medicine, 18(11), 2193-2198. doi: DOI 10.1007/s10856-007-3075-9 

Park, T. G. (1994). Degradation of Poly(D,L-Lactic Acid) Microspheres - Effect of Molecular-

Weight. Journal of Controlled Release, 30(2), 161-173. doi: Doi 10.1016/0168-

3659(94)90263-1 

Pietak, A., Mahoney, P., Dias, G. J., & Staiger, M. P. (2008). Bone-like matrix formation on 

magnesium and magnesium alloys. Journal of Materials Science-Materials in Medicine, 

19(1), 407-415. doi: DOI 10.1007/s10856-007-3172-9 

Prasad, Y. R. K., Rao, K. P., & Gupta, M. (2009). Hot workability and deformation mechanisms 

in Mg/nano-Al2O3 composite. Composites Science and Technology, 69(7-8), 1070-1076. 

doi: DOI 10.1016/j.compscitech.2009.01.032 

Przylusk.J, & Palka, E. (1970). Study of Kinetics of Anodic Oxydation of Magnesium in a 

Ammonium Chloride Solution. Electrochimica Acta, 15(5), 853-&. doi: Doi 

10.1016/0013-4686(70)90050-2 

Quach, N. C., Uggowitzer, P. J., & Schmutz, P. (2008). Corrosion behaviour of an Mg-Y-RE 

alloy used in biomedical applications studied by electrochemical techniques. Comptes 

Rendus Chimie, 11(9), 1043-1054. doi: DOI 10.1016/j.crci.2008.06.007 



83 
 

 
 

Riemelmoser, F. O., Kuhlein, M., Kilian, H., Kettner, M., Hanzi, A. C., & Uggowitzer, P. J. 

(2007). Micro-alloyed wrought magnesium for room-temperature forming. Advanced 

Engineering Materials, 9(9), 799-802. doi: DOI 10.1002/adem.200700161 

Rose, M. C., & Voynow, J. A. (2006). Respiratory tract mucin genes and mucin glycoproteins in 

health and disease. Physiol Rev, 86(1), 245-278. doi: 86/1/245 [pii] 

10.1152/physrev.00010.2005 

Satoh, S., Hinoda, Y., Hayashi, T., Burdick, M. D., Imai, K., & Hollingsworth, M. A. (2000). 

Enhancement of metastatic properties of pancreatic cancer cells by MUC1 gene encoding 

an anti-adhesion molecule. Int J Cancer, 88(4), 507-518. doi: 10.1002/1097-

0215(20001115)88:4<507::AID-IJC1>3.0.CO;2-0 [pii] 

Schliecker, G., Schmidt, C., Fuchs, S., Wombacher, R., & Kissel, T. (2003). Hydrolytic 

degradation of poly(lactide-co-glycolide) films: effect of oligomers on degradation rate 

and crystallinity. International Journal of Pharmaceutics, 266(1-2), 39-49. doi: Doi 

10.1016/S0378-5173(03)00379-X 

Smith, L. J., Swaim, J. S., Yao, C., Haberstroh, K. M., Nauman, E. A., & Webster, T. J. (2007). 

Increased osteoblast cell density on nanostructured PLGA-coated nanostructured titanium 

for orthopedic applications. Int J Nanomedicine, 2(3), 493-499.  

Song, G., Atrens, A., Stjohn, D., Nairn, J., & Li, Y. (1997). The electrochemical corrosion of 

pure magnesium in 1 N NaCl. Corrosion Science, 39(5), 855-875. doi: Doi 

10.1016/S0010-938x(96)00172-2 

Song, G. L., & Atrens, A. (1999). Corrosion mechanisms of magnesium alloys. Advanced 

Engineering Materials, 1(1), 11-33. doi: Doi 10.1002/(Sici)1527-

2648(199909)1:1<11::Aid-Adem11>3.3.Co;2-E 



84 
 

 
 

Song, G. L., & Atrens, A. (2003). Understanding magnesium corrosion - A framework for 

improved alloy performance. Advanced Engineering Materials, 5(12), 837-858. doi: DOI 

10.1002/adem.200310405 

Song, G. L., Bowles, A. L., & StJohn, D. H. (2004). Corrosion resistance of aged die cast 

magnesium alloy AZ91D. Materials Science and Engineering a-Structural Materials 

Properties Microstructure and Processing, 366(1), 74-86. doi: DOI 

10.1016/j.msea.2003.08.060 

Song, G. L., & Song, S. Z. (2007). A possible biodegradable magnesium implant material. 

Advanced Engineering Materials, 9(4), 298-302.  

Spencer, C. M., & Faulds, D. (1994). Paclitaxel - a Review of Its Pharmacodynamic and 

Pharmacokinetic Properties and Therapeutic Potential in the Treatment of Cancer. Drugs, 

48(5), 794-847. doi: Doi 10.2165/00003495-199448050-00009 

Spittle, N., & McCluskey, A. (2000). Lesson of the week: tracheal stenosis after intubation. BMJ, 

321(7267), 1000-1002.  

Srinivasan, P. B., Liang, J., Blawert, C., Stormer, M., & Dietzel, W. (2010). Characterization of 

calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy. 

Applied Surface Science, 256(12), 4017-4022. doi: DOI 10.1016/j.apsusc.2010.01.069 

Staiger, M. P., Pietak, A. M., Huadmai, J., & Dias, G. (2006). Magnesium and its alloys as 

orthopedic biomaterials: A review. Biomaterials, 27(9), 1728-1734. doi: DOI 

10.1016/j.biomaterials.2005.10.003 

Stamenkovic, S., Hierner, R., De Leyn, P., & Delaere, P. (2007). Long-segment tracheal stenosis 

treated with vascularized mucosa and short-term stenting. Annals of Thoracic Surgery, 

83(3), 1213-1215. doi: DOI 10.1016/j.athoracsur.2006.04.027 



85 
 

 
 

Tabak, L. A. (1995). In Defense of the Oral Cavity - Structure, Biosynthesis and Function of 

Salivary Mucins. Annual Review of Physiology, 57, 547-564. doi: DOI 

10.1146/annurev.physiol.57.1.547 

Tan, A. L. K., Soutar, A. M., Annergren, I. F., & Liu, Y. N. (2005). Multilayer sol-gel coatings 

for corrosion protection of magnesium. Surface & Coatings Technology, 198(1-3), 478-

482. doi: DOI 10.1016/j.surfcoat.2004.10.066 

Tarran, R., Grubb, B. R., Gatzy, J. T., Davis, C. W., & Boucher, R. C. (2001). The relative roles 

of passive surface forces and active ion transport in the modulation of airway surface 

liquid volume and composition. J Gen Physiol, 118(2), 223-236.  

Thigpen, J. T. (2000). Chemotherapy for advanced ovarian cancer: overview of randomized 

trials. Semin Oncol, 27(3 Suppl 7), 11-16.  

Thomann, M., Krause, C., Angrisani, N., Bormann, D., Hassel, T., Windhagen, H., & Meyer-

Lindenberg, A. (2010). Influence of a magnesium-fluoride coating of magnesium-based 

implants (MgCa0.8) on degradation in a rabbit model. Journal of Biomedical Materials 

Research Part A, 93A(4), 1609-1619. doi: Doi 10.1002/Jbm.A.32639 

Thornton, D. J., Rousseau, K., & McGuckin, M. A. (2008). Structure and function of the 

polymeric mucins in airways mucus. Annual Review of Physiology, 70, 459-486. doi: 

10.1146/annurev.physiol.70.113006.100702 

Tomozawa, M., & Hiromoto, S. (2011). Microstructure of hydroxyapatite- and octacalcium 

phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH 

values. Acta Materialia, 59(1), 355-363. doi: DOI 10.1016/j.actamat.2010.09.041 

Tsuji, H., Mizuno, A., & Ikada, Y. (2000). Properties and morphology of poly(L-lactide). III. 

Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight 



86 
 

 
 

poly(L-lactide) film in phosphate-buffered solution. Journal of Applied Polymer Science, 

77(7), 1452-1464. doi: Doi 10.1002/1097-4628(20000815)77:7<1452::Aid-

App7>3.0.Co;2-S 

Verdier, S., van der Laak, N., Delalande, S., Metson, J., & Dalard, F. (2004). The surface 

reactivity of a magnesium-aluminium alloy in acidic fluoride solutions studied by 

electrochemical techniques and XPS. Applied Surface Science, 235(4), 513-524. doi: DOI 

10.1016/j.apsusc.2004.03.250 

Vijh, A. K. (1971). Sparking Voltages and Side Reactions during Anodization of Valve Metals in 

Terms of Electron Tunnelling. Corrosion Science, 11(6), 411-&. doi: Doi 

10.1016/S0010-938x(71)80125-7 

Wang, X., Zhang, X., Castellot, J., Herman, I., Iafrati, M., & Kaplan, D. L. (2008). Controlled 

release from multilayer silk biomaterial coatings to modulate vascular cell responses. 

Biomaterials, 29(7), 894-903. doi: DOI 10.1016/j.biomaterials.2007.10.055 

Wang, Y. M., Wang, F. H., Xu, M. J., Zhao, B., Guo, L. X., & Ouyang, J. H. (2009). 

Microstructure and corrosion behavior of coated AZ91 alloy by microarc oxidation for 

biomedical application. Applied Surface Science, 255(22), 9124-9131. doi: DOI 

10.1016/j.apsusc.2009.06.116 

Webb, E. M., Elicker, B. M., & Webb, W. R. (2000). Using CT to diagnose nonneoplastic 

tracheal abnormalities: Appearance of the tracheal wall. American Journal of 

Roentgenology, 174(5), 1315-1321.  

Widdicombe, J. H. (2002). Regulation of the depth and composition of airway surface liquid. J 

Anat, 201(4), 313-318.  



87 
 

 
 

Winters, S. L., & Yeates, D. B. (1997). Roles of hydration, sodium, and chloride in regulation of 

canine mucociliary transport system. Journal of Applied Physiology, 83(4), 1360-1369.  

Winzer, N., Atrens, A., Song, G. L., Ghali, E., Dietzel, W., Kainer, K. U., . . . Blawert, C. 

(2005). A critical review of the stress corrosion cracking (SCC) of magnesium alloys. 

Advanced Engineering Materials, 7(8), 659-693. doi: DOI 10.1002/adem.200500071 

Witte, F. (2010a). The history of biodegradable magnesium implants: A review. Acta 

Biomaterialia, 6(5), 1680-1692. doi: DOI 10.1016/j.actbio.2010.02.028 

Witte, F. (2010b). The history of biodegradable magnesium implants: a review. Acta Biomater, 

6(5), 1680-1692. doi: S1742-7061(10)00096-6 [pii] 

10.1016/j.actbio.2010.02.028 

Witte, F., Fischer, J., Nellesen, J., Crostack, H. A., Kaese, V., Pisch, A., . . . Windhagen, H. 

(2006). In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials, 

27(7), 1013-1018. doi: DOI 10.1016/j.biomaterials.2005.07.037 

Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C. J., & 

Windhagen, H. (2005). In vivo corrosion of four magnesium alloys and the associated 

bone response. Biomaterials, 26(17), 3557-3563.  

Wood, D. E. (2001). Airway stenting. Chest Surg Clin N Am, 11(4), 841-860.  

Wu, C. S., Zhang, Z., Cao, F. H., Zhang, L. J., Zhang, J. Q., & Cao, C. N. (2007). Study on the 

anodizing of AZ31 magnesium alloys in alkaline borate solutions. Applied Surface 

Science, 253(8), 3893-3898. doi: DOI 10.1016/j.apsusc.2006.08.020 

Xin, Y. C., Liu, C. L., Zhang, X. M., Tang, G. Y., Tian, X. B., & Chu, P. K. (2007). Corrosion 

behavior of biomedical AZ91 magnesium alloy in simulated body fluids. Journal of 

Materials Research, 22(7), 2004-2011. doi: Doi 10.1557/Jmr.2007.0233 



88 
 

 
 

Zeng, R. C., Zhang, J., Huang, W. J., Dietzel, W., Kainer, K. U., Blawert, C., & Ke, W. (2006). 

Review of Studies on Corrosion of Magnesium Alloys. Transactions of Nonferrous 

Metals Society of China, 16, S763-S771.  

Zhang, E. L., Yin, D. S., Xu, L. P., Yang, L., & Yang, K. (2009). Microstructure, mechanical and 

corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical 

application. Materials Science & Engineering C-Biomimetic and Supramolecular 

Systems, 29(3), 987-993.  

Zhang, W., Tian, B., Du, K. Q., Zhang, H. X., & Wang, F. H. (2011). Preparation and Corrosion 

Performance of PEO Coating With Low Porosity on Magnesium Alloy AZ91D In Acidic 

KF System. International Journal of Electrochemical Science, 6(11), 5228-5248.  

Zhang, Y. J., Yan, C. W., Wang, F. H., & Li, W. F. (2005). Electrochemical behavior of 

anodized Mg alloy AZ91D in chloride containing aqueous solution. Corrosion Science, 

47(11), 2816-2831. doi: DOI 10.1016/j.corsci.2005.01.010 

Zhanga, R. F., Shan, D. Y., Chen, R. S., & Han, E. H. (2008). Effects of electric parameters on 

properties of anodic coatings formed on magnesium alloys. Materials Chemistry and 

Physics, 107(2-3), 356-363. doi: DOI 10.1016/j.matchemphys.2007.07.027 

Zreiqat, H., Howlett, C. R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., & 

Shakibaei, M. (2002). Mechanisms of magnesium-stimulated adhesion of osteoblastic 

cells to commonly used orthopaedic implants. Journal of Biomedical Materials Research, 

62(2), 175-184.  

Zucchi, F., Frignani, A., Grassi, V., Balbo, A., & Trabanelli, G. (2008). Organo-silane coatings 

for AZ31 magnesium alloy corrosion protection. Materials Chemistry and Physics, 

110(2-3), 263-268. doi: DOI 10.1016/j.matchemphys.2008.02.015 



89 
 

 
 

Zuo, Y., Zhao, P. H., & Zhao, J. M. (2003). The influences of sealing methods on corrosion 

behavior of anodized aluminum alloys in NaCl solutions. Surface & Coatings 

Technology, 166(2-3), 237-242. doi: Pii S0257-8972(02)00779-X 

Doi 10.1016/S0257-8972(02)00779-X 

 

 

 



90 
 

 
 

Appendix 

 

 

F
ig

ur
e 

30
. O

pt
ic

al
 im

ag
es

 o
f A

Z
31

B
 b

ef
or

e 
im

m
er

si
on

 te
st

 



91 
 

 
 

 

F
ig

ur
e 

31
. O

pt
ic

al
 im

ag
es

 o
f c

or
ro

de
d 

A
Z

31
B

 a
ft

er
 3

 d
ay

s 
im

m
er

si
on

 te
st

 in
 G

am
bl

e 
so

lu
ti

on
s 



92 
 

 
 

 

 

F
ig

ur
e 

32
. O

pt
ic

al
 im

ag
es

 o
f c

or
ro

de
d 

A
Z

31
B

 a
ft

er
 1

0 
da

ys
 im

m
er

si
on

 te
st

 in
 G

am
bl

e 
so

lu
ti

on
s 



93 
 

 
 

 

 

F
ig

ur
e 

33
. C

T
 d

at
a 

af
te

r 
im

m
er

si
on

 s
ho

w
in

g 
ef

fe
ct

 o
f i

nc
re

as
in

g 
m

uc
in

 w
it

ho
ut

 H
C

O
3-  in

 G
am

bl
e 

so
lu

ti
on

 fo
r 

10
 d

ay
s 



94 
 

 
 

 

F
ig

ur
e 

34
. C

T
 d

at
a 

im
m

er
si

on
 s

ho
w

in
g 

ef
fe

ct
 o

f i
nc

re
as

in
g 

H
C

O
3 

io
ns

 in
 G

am
bl

e 
so

lu
ti

on
 fo

r 
10

 d
ay

s 



95 
 

 
 

 
 

F
ig

ur
e 

35
. C

T
 d

at
a 

af
te

r 
10

 d
ay

s 
im

m
er

si
on

 s
ho

w
in

g 
ef

fe
ct

 o
f i

nc
re

as
in

g 
m

uc
in

 in
 G

am
bl

e 
so

lu
ti

on
 c

on
ta

in
in

g 
2.

6 
g/

l 

H
C

O
3-   



96 
 

 
 

 

F
ig

ur
e 

36
. X

R
D

 p
at

te
rn

s 
of

 s
tu

di
ed

 M
g 

al
lo

y 
co

m
pa

ri
ng

 p
ea

ks
 fr

om
 th

e 
di

ff
er

en
t s

ol
ut

io
ns

 w
it

h 
di

ffe
re

nt
 m

uc
in

 

co
nc

en
tr

at
io

n 
af

te
r 

10
 d

ay
 im

m
er

si
on

 te
st

 



97 
 

 
 

 

 

F
ig

ur
e 

37
. X

R
D

 p
at

te
rn

s 
of

 s
tu

di
ed

 M
g 

al
lo

y 
co

m
pa

ri
ng

 p
ea

ks
 o

f s
am

pl
es

 im
m

er
se

d 
in

 0
 g

/l
 H

C
O

3,
 0

 g
/l

 

m
uc

in
, 2

.6
 g

/l
 H

C
O

3,
 0

 g
/l

 m
uc

in
 a

nd
 2

.6
 g

/l
 H

C
O

3,
 0

.1
 g

/l
 m

uc
in

 a
ft

er
 1

0 
da

y 
im

m
er

si
on

 te
st

 


	A Study Of Cytocompatibility And Biodegradability Of Az31 Magnesium Alloy In Simulated Airway Surface Lining Fluid
	Recommended Citation

	Microsoft Word - 199992_supp_undefined_0968D87E-93DD-11E2-A8E0-AB212E1BA5B1.docx

