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Abstract 

Thermal characterization of composites is essential for their proper assignment to a specific 

application. Specific heat, thermal diffusivity, and thermal conductivity of carbon-carbon 

composites are essential in the engineering design process and in the analysis of aerospace 

vehicles, space systems and other high temperature thermal systems. Specifically, thermal 

conductivity determines the working temperature levels of a material and is influential in its 

performance in high temperature applications.  

There is insufficient thermal property data for carbon-carbon composites over a range of 

temperatures. The purpose of this research is to develop a thermal properties database for 

carbon-carbon composites that will contain in-plane (i-p) and through-the-thickness (t-t-t) 

thermal data at different temperatures as well as display the effects of graphitization on the 

composite material. The carbon-carbon composites tested were fabricated by the Resin Transfer 

Molding (RTM) technique, utilizing T300 2-D carbon fabric and Primaset PT-30 cyanate ester 

resin.  

Experimental methods were employed to measure the thermal properties. Following the ASTM 

standard E-1461, the flash method enabled the direct measurement of thermal diffusivity. 

Additionally, differential scanning calorimetry was performed in accordance with the ASTM E-

1269 standard to measure the specific heat. The measured thermal diffusivity, specific heat, and 

density data were used to compute the thermal conductivity of the carbon-carbon composites. 

The measured through-the-thickness thermal conductivity values of all the materials tested range 

from 1.0 to 17 W/mK, while in-plane values range from 3.8 to 4.6 W/mK due to the effect of 

fiber orientation. Additionally, the graphitized samples exhibit a higher thermal conductivity 

because of the nature of the ordered graphite structure. 
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1 CHAPTER 1 

Introduction 

1.1 Background 

Advances in innovation in today’s technologies has allowed for the accomplishment of 

once thought inconceivable tasks. Miniaturization of electronics, faster heat dissipation for space 

vehicle components, and more efficient aircrafts of lighter components are just some of the 

developments. With these improvements there is an increased need for materials that can achieve 

and withstand the desired extreme conditions. A composite is a material system consisting of two 

or more phases on a macroscopic scale whose properties are designed to be superior to those of 

the constituent materials acting independently. The reinforcement phase is usually discontinuous 

and stronger, and the matrix phase is weaker and continuous (Daniel & Ishai, 2006). Composite 

materials are often sought as the answers to these problems because they combine the beneficial 

qualities of the constituent materials and exhibit improved performance.  

Thermal and mechanical characterization of composite materials is the key for appropriate 

utilization. More often only mechanical properties of a composite are used to deem it suitable for 

an application, but adding a thermal aspect to this determination yields a stronger verification to 

the composite’s applicability. Thermal diffusivity, specific heat, and thermal conductivity 

identify some of the crucial thermal properties. Specifically, thermal conductivity determines the 

working temperature levels of the material, and it plays a critical role in the performance of 

materials in high temperature applications such as aerospace vehicles and space systems. It is an 

essential parameter in problems involving heat transfer and thermal structures (Saad, Baker, & 

Reaves, 2011). There are several factors that influence thermophysical properties including but 

not limited to the fiber type, fiber alignment (Chen, Ren, Zhang, Zhang, & Wu, 2012), and 
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volume fraction of the constituent materials as well as the thermal processing technique used in 

fabrication (Ohlhorst, Vaughn, Ransone, & Tsou, 1997). 

The carbon-carbon composites have superior thermal and mechanical characteristics. They 

are lightweight, retain their mechanical strength at high temperatures, possess a low coefficient 

of thermal expansion, and exhibit low wear from room temperature to high temperatures. 

Additionally, they have a high and tailorable thermal conductivity and can withstand 

temperatures in excess of 3300 K (Luo et al., 2004); (Grujicic et al., 2006). These characteristics 

make the carbon-carbon composites attractive candidates as advanced thermal system materials 

(Ohlhorst et al., 1997). Primarily, the composites are employed in the aerospace industry thereby 

capitalizing on their auspicious thermal capabilities. Due to their excellent mechanical, thermal, 

wear, and frictional properties the carbon-carbon composites are great candidates in today’s 

brake industries in aviation and some automotive industries (Iqbal, Dinwiddie, Porter, Lance, & 

Filip, 2011). Also, these materials have densities much lower than those of metals and ceramics 

and hence make components of lower weights, an important consideration for aero-vehicles 

(Manocha, 2003). Applications requiring thermal management or system elements needing high 

temperature stability, including rocket nozzles and exit cones, also benefit from the desirable 

carbon-carbon composite qualities. 

Graphitization of the carbon-carbon composite involves heat-treating it to a temperature of 

2500°C and is an example of a technique that allows for the thermal conductivity to be altered. 

This processing technique extends the composite’s capabilities and alters its molecular and 

thermal makeup. Increasing the graphite order of the standard carbon structure, results in a 

significantly higher thermal conductivity than the non-graphitized composite.  
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1.2 Objective 

The overall goal of this research is to develop a thermal properties database for carbon-

carbon and graphitized carbon materials. The through-the-thickness (t-t-t) and in-plane (i-p) 

thermal properties of the carbon-carbon composites and graphitized carbon-carbon composites 

were examined. The through-the-thickness measurements were conducted experimentally 

utilizing the flash method, an established technique defined by the ASTM E-1461 test standard. 

The in-plane testing was achieved experimentally in a similar fashion and the theoretical analysis 

was accomplished using the rule of mixtures. The specific heat of the material is independent of 

specimen orientation and was determined using the ASTM E-1269 test standard. This 

information along with density data allowed for the determination of thermal conductivity.  

The materials tested were developed at Center for Composite Materials and analyzed in 

the Thermal Characterization Laboratory at North Carolina A&T State University as part of the 

NASA-URC “Center for Aviation Safety” sponsored research. All of the carbon-carbon 

composites were produced by the Resin Transfer Molding (RTM) process. The constituents are a 

plain weave T300 2-D carbon fabric and a Primaset PT-30 cyanate ester resin. The estimated 

fiber volume fraction is 55%. Four categories of the materials were prepared for analysis. One 

portion of the specimens had a 1K x 1K plain weave T300 fabric and were cut as t-t-t samples 

with no heat treatments. Several other specimens possessed a 1K x 1K plain weave T300 fabric 

and were cut as t-t-t samples with a graphitization heat treatment. The other of the carbon-carbon 

samples contained the 3K x 3K plain weave T300 fabric and were not heat treated. Some of these 

were cut to t-t-t samples and the others were prepared as i-p samples. The K term refers to 1,000 

filaments in a strand, which describes the tow count of the fibers in the fabric. For instance the 

3K x 3K plain weave fabric would indicate that the fabric contains 3,000 filaments in each strand 
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in both directions. Table 1.1 displays photos of the different categories of the materials with the 

associated orientation, tow count, and heat treatment.  

Table 1.1 

Tested Materials Specifications 

Material Orientation Fiber Tow Heat Treatment PHOTO 

Carbon-Carbon t-t-t 1K x 1K None 

 

Graphitized 

Carbon-Carbon 
t-t-t 1K x 1K 

Graphitized to 

2500 ˚C 

 

Carbon-Carbon  t-t-t 3K x 3K None 

 

Carbon-Carbon  i-p 3K x 3K None 
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2 CHAPTER 2 

Literature Review 

2.1 Heat Conduction and Thermal Property Definitions 

Heat conduction is the transfer of energy from a region of high temperature to a region of 

low temperature via the interaction of adjacent molecules due to the existence of a temperature 

gradient with the system (Hahn & Özişik, 2012). The mathematical theory of heat conduction 

was developed by Joseph Fourier and his law describes, heat flux, the flow of heat per unit time. 

Fourier’s law of Heat Conduction can be expressed in several ways. The rate of heat flow in one 

direction can be given as: 

 ̇     
  

  
 (2.1) 

where k is thermal conductivity, A is the cross sectional area, dT is temperature difference, and 

dx is the material thickness. If an energy balance is executed and there is constant thermal 

conductivity, a differential form in one dimension is delineated by (Hahn & Özişik, 2012):  

 

 

  

  
 

   

   
 

 

 
 (2.2) 

where   is the rate of heat conducted per unit volume in units W/m
3
, α is thermal diffusivity in 

m
2
/s, and k is thermal conductivity in W/mK. 

 Thermal conductivity plays a major role in this this analysis because the flow of heat for 

a given temperature gradient is directly proportional to the thermal conductivity of the material 

(Hahn & Özişik, 2012). As defined by the Springer Handbook of Materials Measurement 

Methods, given two surfaces on either side of a material with a temperature difference between 

them, the thermal conductivity is the heat energy transferred per unit time and per unit surface 

area, divided by the temperature difference. Overall, thermal conductivity is a material's 
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capability to conduct energy, and in this research it is expressed in the SI units of W/mK. 

Materials of high thermal conductivities transfer heat energy well and are considered as 

conductors. Materials that conduct heat poorly are deemed as insulators and have low thermal 

conductivity values.  

Thermal diffusivity measures the speed of the propagation of heat into a material during 

changes of temperature. The higher the thermal diffusivity the faster the response of the material 

to thermal perturbations and the faster such changes propagate throughout the material (Hahn & 

Özişik, 2012). Materials of larger values of thermal diffusivity will transmit heat quickly and will 

adjust to the temperature of their surroundings quickly. On the other hand, substances of low 

thermal diffusivities will take a much longer time to conform to the temperature of their 

surroundings. Additionally, specific heat is the amount of heat, measured in calories, required to 

raise the temperature of one gram of a substance by one degree Celsius (Czichos, H., Saito, T., & 

Smith, L., 2006). These properties are related to thermal conductivity by the following equation:  

  
 

   
 (2.3) 

where α is the thermal diffusivity, ρ is the density of the material and cp is the specific heat.   

2.2 Theoretical Methods for Determining Thermal Conductivity of Composites 

The thermal conductivity of a composite can be predicted provided suitable assumptions 

are made about the flow of heat through the constituents. It is possible to measure or obtain the 

in-plane properties of the fiber and resin constituents of a composite. In general, the resin can be 

considered to have macroscopic isotropy (Takezawa, 2005) and therefore has the same properties 

in all directions. For the axial case, the thermal gradient is the same in each constituent and the 

thermal conductivity is given by a simple rule of mixtures (Hull & Clyne, 1996):  



9 

 

 

 

               (2.4) 

where k1C is the in-plane thermal conductivity of the composite, Vf is the fiber volume fraction, 

k1f is the in-plane thermal conductivity of the fiber, Vm is the matrix volume fraction, and km is 

the thermal conductivity of the matrix. In the scope of this research the carbon fabric is the fiber 

or reinforcement, and the cyanate ester resin is the matrix of the composite.  

Predictions of the through-the-thickness thermal conductivity are challenging. There 

exists a range of theoretical approximations for this transverse property from simple models 

using combinations of thermal resistance to more sophisticated conduction models capable of 

accommodating interphase resistance. Measuring the matrix properties is usually direct since this 

material can be made in bulk form, but determining the fiber properties in the transverse 

direction is more difficult than the axial direction because of the small fiber size (Wetherhold & 

Wang, 1994). Because of the issues with direct measurement, it is common to evaluate the 

composite and matrix properties and then infer the fiber values using a model. Two of these 

models were investigated to evaluate their applicability to this research. A simple thermal 

resistance model is given by (Chawla, 1998): 

    (  √  )   
  √  

  √           ⁄  
 (2.5) 

where k2C is the transverse thermal conductivity of the composite and k2f is the transverse 

thermal conductivity of the fiber. A model based on bounding principles and analogies to 

mechanical shear properties is expressed as (Hashin, 1983): 

       
  

 (      )⁄           ⁄
 (2.6) 
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Using both of these theories Wetherhold and Wang were able to calculate the transverse thermal 

conductivity of the fiber and the resulting value was the same for both techniques.  

Many models for predicting the transverse thermal conductivity of a composite work well 

and are robust if the fiber and matrix conductivities are similar (Wetherhold & Wang, 1994). In 

the research experiments and analyses referenced above the thermal conductivity values of the 

matrix and the fiber are of the same order of magnitude. This allows for calculations to be 

performed and reasonable results to be found. If the fiber conductivity substantially exceeds the 

matrix conductivity certain problems can arise (Wetherhold & Wang, 1994). In this research the 

thermal conductivity of the carbon fiber is an order of magnitude higher than that of the cyanate 

ester resin. Therefore this technique could not be applied to the composite materials used in this 

research.  

2.3 Experimental Methods for Determining Thermal Diffusivity of Composites 

Carbon composites are used in a wide variety of fields, and it is necessary to develop and 

retain a database of detailed thermal information about the material to ensure safe operating 

temperatures in factories and proper function in systems. Currently, there exists a number of 

research efforts to determine the mechanical properties but there is limited information on the 

thermal characterization of carbon-carbon. There is published information regarding different 

experimental methods used to determine thermal diffusivity to allow for the calculation of 

thermal conductivity. Iqbal et al. (2011) investigated the effect of heat treatment on thermal 

properties of carbon-carbon composites and Ohlhorst et al. (1997) generated a thermal 

conductivity database of selected carbon-carbon and graphitized carbon-carbon materials.  

The thermal diffusivity of a material can be measured in several different ways. Available 

techniques include Thermal wave Interferometry (TWI), Thermographic methods, the flash 
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method, and others. The most common of these is the flash method. This technique is so widely 

accepted that many countries consider it a standard. Specifically, it is defined by the American 

Society for Testing and Materials Standard E-1461 and has the versatility of using a lamp or 

laser as the energy source.  The two less popular techniques will be briefly described here and a 

detailed explanation of the flash method will be given later.  

Thermal wave interferometry (TWI) is used to measure the thermal diffusivity of 

coatings and thin slabs (Cernuschi et al., 2002). The method is able to successfully conduct 

measurements based on the fact that thermal waves with specific angular frequencies will 

propagate through layers of a material in a certain way. The waves are reflected and transmitted 

at the separation surface of the two different materials like conventional waves. The interference 

between propagating and reflected waves alters the phase and the amplitude of the AC 

component of the surface temperature (Cernuschi et al., 2002). The schematic is displayed in 

Figure 2.1 (Cernuschi et al., 2002). This method is somewhat complex due to its involvement of 

multiple waves of different frequencies. In comparison to the flash method it is not widely used. 

 

Figure 2.1. Thermal Wave Interferometry Experimental Set-up. 



12 

 

 

 

The thermographic method is based on the temperature on the rear surface of an infinite 

slab that has been instantaneously heated by a Gaussian shaped source. The temperature 

distribution analysis of this method assumes an infinite test specimen. This technique is used for 

the measurement of the in-plane thermal diffusivity, and the experiment is performed on a 

specimen with a much larger diameter in comparison to the flash method (Cernuschi, Bison, 

Figari, Marinetti, & Grinzato, 2004). A schematic of the thermographic method for the in-plane 

measurement is given in Figure 2.2 (Cernuschi et al., 2002). 

 

Figure 2.2. Experimental Set-up of the Thermographic Method for In-Plane Measurement. 

The investigation conducted by Iqbal et al. (2011) includes the effect of heat treatment on 

the through-the-thickness thermal properties of two directional (2D) pitch-based carbon fiber, 

and three dimensional (3D)  Polyacrylonitrile (PAN) based carbon fiber carbon-carbon 

composites. The samples were heat treated at 1800°C, 2100°C and 2400°C, and the thermal 

diffusivity, specific heat, and thermal conductivity were measured in accordance to the ASTM 

C1470 standard. When analyzing the thermal conductivity of the non-heat treated samples it was 

found that these specimens displayed the lowest thermal conductivity and the values decreased 
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exponentially as temperature increased (Iqbal et al., 2011). Additionally, the thermal 

conductivity increases substantially with heat treatment temperature. The increase in thermal 

conductivity is due to the increase in crystallinity of the heat-treated materials when compared to 

the non-heat treated material. In general, thermal conductivity of the carbon fiber carbon-carbon 

composites increased with heat treatment temperature, making it appear that high heat treatment 

has a beneficial effect on materials (Iqbal et al., 2011).  

Ohlhorst et al. (1997) recognizes that carbon-carbon composite materials possess 

characteristics that make them exceptional materials in the construction of advanced thermal 

protection systems. In order for the designers of these thermal systems to appropriately assign 

materials it is necessary that information about the constituent materials, fabrication technique, 

and thermophysical properties of the composites be known. To contribute to this need Ohlhorst 

et al. (1997) attempts to compile a consistent set of in-plane and through-the-thickness thermal 

conductivity values from room temperature to 1922 K for carbon-carbon composites. The 

materials were composed of a variety of combinations of fiber types and resins including but not 

limited to Amoco T-300 fiber, Amoco T-50 fiber, phenolic resin, and chemical vapor infiltration 

(CVI) deposited pyrolytic carbon. The different composite configurations were heat treated at 

temperatures ranging from 1173 K to 2423 K. The thermal diffusivity measurements were 

conducted using the flash diffusivity method. The through-the-thickness direction measurements 

were achieved using the traditional round specimens, while the in-plane measurements utilized  

square specimens. 

 For materials that were heat treated in the range given previously and that possessed a 

maximum fabrication temperature of 2373 K or below, the maximum in-plane thermal 

conductivity values were from 20 to 68 W/mK. In contrast, the through-the-thickness thermal 
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conductivity values of these materials were much lower ranging from 3 to 12 W/mK (Ohlhorst 

et al., 1997). These results are in concurrence with conclusions found in many other studies that 

the in-plane thermal conductivity values of composite materials are greater than the through-the-

thickness values because of fiber orientation distribution on thermal properties (Mutnuri, 2006); 

(Iqbal et al., 2011); (Klett & Conway); (Adams, Katzman, Rellick, & Stupian, 1998).  Though a 

significant amount of thermal property data was given in this research, no non-heat treated 

samples were investigated.  
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3 CHAPTER 3 

Methodology 

3.1 Thermal Diffusivity – The Flash Method 

Thermal diffusivity measures how quickly heat can travel through a material. It 

determines the working temperature levels of the material and plays a critical role in the 

performance of materials in high temperature applications. It is an important property required in 

purposes where there are transient heat flow conditions. Some of these include the design of 

thermal systems, determination of safe operating temperature, process control, and quality 

assurance (ASTM Standard E-1461, 2007). The thermal diffusivity of a material can be 

measured in several different ways. There are steady-state methods as well as transient 

techniques. Available procedures include Thermal Wave Interferometry (TWI), Thermographic 

methods, the flash method, the Hot-wire method, and others (Patrick & Saad, 2012). Recently, 

transient techniques have been preferred in measuring thermal properties of materials, the most 

common of these being the flash method (Nunes dos Santos, 2007). 

W. J. Parker founded the flash method in 1961, and it is the most frequently used 

transient photothermal technique and has the versatility of using a lamp or laser as the energy 

source. In many countries it is considered a standard for thermal diffusivity measurement of solid 

materials (Cernuschi et al., 2004). This method is highly regarded owing to the small test 

specimen, rapid measurement speed, and high precision (Wei, 1989). As adopted by the United 

States, the laser flash method is a standard test method and is defined by the American Society 

for Testing and Materials standard E-1461. It involves a small cylindrical, thin disk specimen 

being heated in a closed environment to a desired temperature, usually between 20 and 500°C. 

Once the disk and the environment have reached the specified temperature, the front face is 
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subjected to quick radiant energy pulse as shown in Figure 3.1. The energy source can be a laser 

or a lamp. The front face absorbs the energy pulse, and a detector measures the resulting 

temperature change with respect to time on the rear face of the sample. The data acquisition 

system then records the temperature change of the rear face of the specimen versus time. In 

general, the thermal diffusivity value is calculated from the specimen thickness and the time 

required for the rear face temperature rise to reach certain percentages of its maximum value 

(ASTM Standard E-1461, 2007). A graphical representation of this data is called the thermogram 

of the flash. Figure 3.2 displays the theoretical model thermogram. The time in which it takes the 

rear face of the specimen to reach half the maximum temperature rise is called the halftime, t1/2. 

 

Figure 3.1. Schematic of the Flash Method. 

Utilizing the equation for the temperature distribution within a thermally insulated solid 

of uniform thickness, L, developed by Carslaw and Jeager (1959), a mathematical expression to 

calculate thermal diffusivity was derived (Parker, Jenkins, Butler, & Abbott, 1961). An 

abbreviated version of this derivation is given as (refer to Appendix for complete derivation): 
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where α is the thermal diffusivity in cm
2
/s. If a pulse of radiant energy, Q (J/cm

2
), is 

instantaneously and uniformly absorbed into a small depth referred to as g, at the front face (x=0) 

of the thermally insulated solid material (Clark & Taylor, 1975), the temperature distribution at 

the initial condition is given by: 

       
 

 𝐶 𝑔
     for      <  < 𝑔 (3.2) 

             for     𝑔 <  <   (3.3) 

where ρ is the density and cp is the specific heat capacity of the material. With the above initial 

conditions, equation 3.1 can be expressed as:  
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After integration equation 3.4 can be written as:  
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For materials that are opaque to the energy pulse, the adsorption depth, g, is a very small 

number. It then it follows that  
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Figure 3.2. Flash Method Thermogram. 

Once these are applied, the temperature distribution at the rear face (x=L) is expressed as (Parker 

et al., 1961): 
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Setting 
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where Tm is the maximum temperature at the rear face, (Parker et al., 1961) then defined two 

dimensionless parameters, V and ω as: 
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 (3.11) 

Combining equations 3.8, 3.10, and 3.11 yields (Parker et al., 1961): 
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Setting V = 0.5 allows for the determination of ω at the time required for the rear face to reach 

half of the maximum temperature rise. Substituting ω = 1.36975 into equation 3.11 allows for a 

mathematical equation for thermal diffusivity to be stated as (Parker et al., 1961): 

          
  

   ⁄
 (3.13) 

W. J. Parker’s derivation is a theoretical model of the flash method and is the ideal case. It 

assumes that the specimen is mostly homogeneous and isotropic, that there is one dimensional 

heat flow, that there are no heat losses from the specimen, and that the absorption of the pulse 

energy into the specimen is in a very thin layer (ASTM Standard E-1461, 2007). It also assumes 

that energy pulse is uniformly subjected across the front face of the specimen and that the pulse 

is instantaneous. Because of this, since Parker’s original derivation, many researchers have 

developed correction factors. These include but are not limited to Cowan, Clark and Taylor, 

Koski, and Heckman (Beck & Dinwiddie, 1995). Each of these correction factors use different or 

a combination of methods to reanalyze the theoretical model and impose additional parameters. 

Some of these correction factors account for finite pulse time effect, but the pulse duration in this 

research can be considered infinitesimally short due to the use of a commercial apparatus, where 

the pulse energy absorption at the front face of the sample can be assumed uniform.  The Clark 

and Taylor (1975) correction factor accounts for radiation heat losses and is used in the research. 

This correction factor was deemed suitable for implementation in this research because radiation 

heat loss is apparent in this experiment. In addition, Clark and Taylor examined the thermogram 

at different points before the maximum temperature rise was reached and developed a correction 

factor. The correction factor is computed using the following equation: 
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Specifically, they analyzed the time to reach 25 percent and 75 percent of the maximum 

temperature change. The corrected thermal diffusivity equation as defined by Clark and Taylor is 

           
   

        
 (3.15) 

3.2 Specific Heat – Differential Scanning Calorimetry 

Specific heat signifies how much heat per unit mass is required to raise the temperature 

of a material one degree Celsius. Differential Scanning Calorimetry (DSC) is a common 

technique used to measure the specific heat of materials. This technique is based upon the 

measurement of the change of the difference in the heat flow of the unknown material to that of a 

reference sample, while they are being subjected to a controlled temperature sequence (H hne, 

Hemminger, & Flammersheim, 2003). Utilizing the measured heat flow rate of the unknown 

sample, Differential Scanning Calorimetry can determine how a material’s heat capacity varies 

with respect to temperature.  

Differential scanning calorimetry (DSC) is a thermo-analytical technique that is widely 

used for the measurement of specific heat. As accepted by the United States, its methodology is 

defined by ASTM standard E-1269. To conduct a differential scanning calorimetry 

measurement, a test specimen and reference sample are placed on a metallic block with high 

thermal conductivity and are enclosed in a furnace within the calorimeter. The metallic block 

ensures a good heat-flow path between the specimen and reference. The sample and the 

reference are subjected to an identical temperature program. The heat capacity changes in the 

specimen, which leads to a difference of temperature and heat flux relative to the reference. The 

calorimeter measures the temperature difference and calculates heat flow from calibration data. 



21 

 

 

 

As a result, the specific heat of the sample can be calculated using the heat flow results. To 

calculate the specific heat of an unknown material, the heat flux of the unknown and a reference 

must be measured using the differential scanning calorimeter. Using the measured heat flux 

values and the known specific heat of the reference, the specific heat of the unknown material 

can be calculated using the ratio method technique. Since the differential scanning calorimeter is 

at constant pressure, the change in enthalpy of the reference is equal to the heat absorbed or 

released by the reference (ASTM Standard E-1269, 2005). This is depicted mathematically as:  

       (3.16) 

Dividing both sides of the above equation by time leads to the following relationship: 

 ̇   
  

  
  

  

  
 (3.17) 

where dq/dt is the heat rate and dh/dt is the change of enthalpy with respect to time. At constant 

pressure, the relationship for specific heat can be written as: 
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where 

    ∙    (3.19) 

Using the chain rule the equation can be rewritten as: 
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From equations 3.17 and 3.20, the specific heat can be written as: 
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where E is the calibration constant and dt/dT is the inverse temperature distribution over time. 

Using the ratio method, equation 3.21 can be written for the reference material as: 
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Rearranging, the calibration constant can be expressed by: 
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The specific heat for the unknown material can be given by substituting equation 3.23 in 3.21 
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Reducing like terms in equation 3.24, the specific heat of the unknown material can be written 

as: 
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3.3 Thermal Conductivity 

Thermal conductivity is a fundamental property of solid materials as it described their 

ability to conduct heat. Understanding and controlling the thermal conductivity plays an 

important part in the design of power-dissipating devices and systems (Srivastava, 2006). When 

the density and specific heat of a material are known or can be determined, it is a consolidated 
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practice to experimentally evaluate the thermal diffusivity by transient methods and to calculate 

indirectly the thermal conductivity by the following equation (Cernuschi et al., 2004): 

       (3.26) 

The density values were provided by the developer of the materials. The thermal diffusivity and 

specific heat values were obtained by employing the methods described previously.  
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4 CHAPTER 4 

Experimental Technique 

4.1 The Flash Method – Thermal Diffusivity Measurement  

4.1.1 Experimental Apparatus. In general, the ASTM E-1461 test standard delineates 

the minimum requirements for the apparatus used to determine thermal diffusivity. The key 

components are the flash source, specimen holder, temperature response detector, recording 

device, and an environmental enclosure when testing above and below room temperature (ASTM 

Standard E-1461, 2007) The flash source can be any device able to emit a quick energy pulse, 

usually a lamp or laser.  

Figure 4.1. Flash Line ™ 2000 Thermal Properties Analyzer and Data Acquisition System. 

  The apparatus used in this research was purchased from the Anter Corporation and is 

commercialized. The thermal property analyzer is the Flashline ™ 2000 and is shown in Figure 

4.1. It utilizes a High Speed Xenon Discharge lamp with safety interlocks as the pulse source 

(Anter). The pulse duration time should be less than 2% of the halftime of the specimen to be 

measured in order to keep the error due to finite pulse less than 0.5%. The apparatus is automated 

and capable of testing up to four specimens in each run, and its automatic sequencing of multiple 
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tests ensures high statistical reliability for the data obtained (Anter). Overall this indexed system 

has increased repeatability when compared with configurations that only allow one specimen to 

be tested at a time. The thermal property analyzer also contains a vacuum-capable environmental 

enclosure, in which nitrogen gas is used to evacuate the chamber. The detector should be any 

sensor that can measure a linear electrical output proportional to a small temperature rise. It 

along with its amplifier must have a response time of no more than 2% of the half-time. The 

temperature response InSb infrared detector outputs a linear electrical signal proportional to a 

small temperature change experienced by the rear face of the specimen after the pulse. The data 

acquisition system can be pre-programmed within one time period for the acceptable resolution 

of at least 1% for the quickest thermogram the system can deliver (ASTM Standard E-1461, 

2007).  

  The Flashline ™ 2000 apparatus adheres to all of the described requirements given by the 

ASTM testing standard E-1461, the standard test method for thermal diffusivity measurement by 

the flash method, as guaranteed by the manufacturer (Anter). Additionally, as provided by the 

manufacturer specifications, the following statements can be made. Thermal diffusivity 

measurements can be conducted from room temperature to 330°C. The flexibility of the 

apparatus allows for this range to be extended by the addition of supplemental furnaces or 

cooling chambers. The thermal diffusivity measurement range is 0.001 to 10 cm
2
/s with a 

repeatability of 2% and an accuracy of 4% . The Flashline ™ 2000 also has the capability of 

measuring the specific heat of materials and directly calculating thermal conductivity when 

provided the density data. This feature was not used in this research. The initial cost of the device 

is approximately $30,000 and there is little cost associated with each test run performed.  
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4.1.2 Test Specimen Preparation. The test specimens were prepared to be thin circular 

disks of 10 to 30 mm in diameter, whose front face surfaces are less than that of the energy pulse 

beam (ASTM 2007). According to ASTM E-1461 each specimen should be thick enough to be 

representative of the test material but remain close to the 1 to 6 mm range. Overall, the optimum 

thickness depends upon the magnitude of the estimated thermal diffusivity and should be chosen 

so that the time to reach half of the maximum temperature falls within the 10 to 1000 ms range. 

In order to accomplish these specified dimensions, a drill press equipped with a diamond plated 

drill bit was used to cut the material to the appropriate diameter. When necessary, the specimens 

were milled to achieve the preferred thickness.  

Both the rear and front faces were flat and parallel within 0.5% of their thickness to 

maintain pulse uniformity. The standard suggests that a thin, uniform layer of graphite be applied 

to both faces of the specimens. The coating may be applied by spraying, painting, sputtering, etc 

(ASTM Standard E-1461, 2007). This will improve the capability of the specimen to absorb the 

energy applied, especially in case of highly reflective materials. For transparent materials, a layer 

of gold, silver, or other opaque material must be deposited first, followed by the graphite coating 

(ASTM Standard E-1461, 2007).  

 

Figure 4.2. Schematic of Bulk Carbon-Carbon with Cylindrical Specimens. 

Through-the-Thickness Specimen 

In-Plane Specimen  
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None of the materials tested in this research are transparent; therefore no opaque coating was 

required. Applying the graphite coating was not necessary for all the experiments performed in 

this work due to the material nature of the plain weave 1K x 1K T300 carbon-carbon. However, 

the plain weave 3K x 3K T300 carbon-carbon samples were sprayed with a thin graphite coating 

due to their slightly reflective appearance. This preparation was executed for the in-plane (i-p) 

and through-the-thickness (t-t-t) test specimens as displayed in Figure 4.2. The average 

specifications of the flash method test specimens are given in Table 4.1. 

Table 4.1 

Average Specifications of Flash Method Test Specimens  

Material 
Diameter 

(mm) 

Thickness 

(mm) 

Mass 

(g) 

Density 

(g/cm
3
) 

Orientation Fiber Tow 

Carbon- Carbon 26.610 2.562 2.175 1.59 t-t-t 1K x 1K 

Graphitized 

Carbon-Carbon 
24.657 2.159 1.690 1.62 t-t-t 1K x 1K 

Carbon-Carbon  12.510 1.737 0.335 1.63 t-t-t 3K x 3K 

Carbon-Carbon 12.467 3.200 0.635 1.63 i-p 3K x 3K 

 

4.1.3 Experimental Procedure. The experiments were conducted following the ASTM 

E-1461 test standard. 12.7 mm (0.5 inch) and 25.4 mm (1 inch) diameter samples prepared 

utilizing the definitions given previously.  The diameter, thickness, mass, and density were 

measured and recorded. Using tweezers, each sample was placed in the specimen holder housed 

inside a sealed environmental enclosure. The environmental enclosure was purged using nitrogen 

gas to form an inert environment for the samples. A Dewar flask housed the liquid nitrogen to 

maintain its integrity. Approximately 1 L of liquid nitrogen was manually poured in the 

receptacle of the IR detector with the assistance of a funnel in order to prevent spilling. The 
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thickness, diameter, and mass parameters of each test specimen were input into the FlashLine™ 

2000 System software, and the test temperature program was defined. For the experiments in this 

research the testing began at room temperature (25°C). Each sample was tested to a maximum 

temperature of 315°C. At each designated temperature, three flashes were performed at a time. 

The data acquisition system recorded the measurement from the three flashes and the average of 

these was used to define the value at each temperature. The results were compiled, analyzed, and 

necessary correction factors were applied. An equipment validation was conducted in order to 

verify the results obtained by the FlashLine™ 2000 device. The thermal diffusivity of the 

standard material, thermographite, was measured and the values were compared to published 

literature data.   

4.2 Differential Scanning Calorimetry (DSC) – Specific Heat Measurement  

 4.2.1 Experimental Apparatus. The ASTM E-1269 test standard defines the testing 

conditions and essential apparatus capabilities for the specific heat measurement. The 

configuration must have a DSC test chamber equipped with a furnace, temperature sensor, 

differential sensor, and test chamber environmental enclosure. Additionally, there must be a 

temperature controller, signal recording device, crucibles, and a cooling capability (ASTM 

Standard E-1269, 2005). The calorimeter used to conduct the specific heat measurement in this 

research is a commercial apparatus, and it uses a technique in which the difference in the heat 

flow to a sample and to a reference is monitored as a function of time or temperature, while the 

sample and reference are subjected to a controlled temperature program (NETZSCH, 2008).  

The DSC 200 F3 Maia®, Differential Scanning Calorimeter is manufactured by 

NETZSCH and is a heat flux system that combines high stability, high resolution, and fast 

response time throughout a extensive temperature range (NETZSCH, 2008). The apparatus is 
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equipped with a furnace block, sample chamber, cooling system, heat flux sensor, and a purge 

gas capability. Figure 4.3 depicts a cross-section schematic of the DSC 200 F3 Maia® measuring 

cell (NETZSCH, 2008) and Figure 4.4 displays the device. The furnace block contains a 

miniature, jacketed heater that provides uniform and controlled heating to the contents of the 

sample chamber. The heating rate can be defined between 0.001 K/min to 100 K/min. The 

furnace temperature is measured by a thermocouple integrated into the furnace wall (NETZSCH, 

2008). The sample chamber is sealed within the instrument’s lid, and has two additional lids to 

prevent impurities from the outside environment contaminating the test. The Intracooler 40 

serves as the cooling system, and it allows for the apparatus to cool quickly from elevated 

temperatures and to achieve and sustain subambient temperatures (ASTM Standard E-1269, 

2005). The Intracooler 40 also can attain cooling rates of 0.001 K/min to 70 K/min, and it 

extends the testing temperature range of the DSC 200 F3 Maia® from room temperature to 

cryogenic values yielding a spectrum of -40°C to 600°C.  

 

Figure 4.3. Cross-Section Schematic of the DSC. 
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The calorimeter utilizes a high sensitivity heat flux sensor and robust thermocouple wires 

as its differential and temperature indicators, respectively (NETZSCH, 2008). The purge gas 

capability of the apparatus can sustain the test chamber environment in an inert static or dynamic 

purge gas flow at rates of 10 to 50 mL/min. The device has a temperature controller that can 

execute specific temperature programs containing isothermal heating and cooling with a 

temperature accuracy of ± 0.1 K and an enthalpy accuracy of less than 1% (NETZSCH 2008). 

The digital recording device and the Proteus® Software allow the data acquisition system to 

record and display the heat flow signal as a function of time and temperature and can perform 

automatic baseline corrections (NETZSCH, 2008). Additionally, the measurement range is 0 to ± 

600 mW.  

 

Figure 4.4. Differential Scanning Calorimeter – DSC 200 F3 Maia®. 

 4.2.2 Test Specimen Preparation. When conducting the specific heat measurement 

using DSC, an adequate thermal contact between the heat flux sensor and the test specimen is 

essential for optimum results. In order to attain this condition, the specimen should be oriented 

such that it lays as even as possible with the bottom of the aluminum crucible. A 4-mm or 6-mm 

diameter and 1-mm thick sample can be used with this equipment using the corresponding 

crucible size. A cutting tool was used to achieve these sample dimensions. If necessary the flat 
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face of the sample was filed to the desired 1 mm thickness. Because the mass of the specimen is 

very important, all samples were carefully weighed three times on a balance of accuracy              

± 0.00001g and the average mass was recorded. Table 4.2 describes the typical dimensions and 

mass for the DSC test specimens used in this research.  

Table 4.2  

Typical Dimensions of DSC Test Specimens  

Material Mass (mg) Diameter (mm) 

Carbon-Carbon (1K x 1K)  48.29 6 

Graphitized  

Carbon-Carbon (1K x 1K) 
44.69 6 

Carbon-Carbon (3K x 3K) 25.86 4 

 

Utilizing tweezers each sample was positioned into the center of the crucible pan, and the lid was 

situated on top of the crucible pan to ensure the sample was completely encased. An empty 

crucible pan and lid were also prepared in order to serve as the reference. Figure 4.5 displays a 

specimen centered inside the aluminum crucible pan with the accompanying lid. 

  

Figure 4.5. DSC Test Specimen Inside Open Aluminum Crucible with Lid. 
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4.2.3 Experimental Procedure. The differential scanning calorimetry experiments were 

conducted following the guidelines in the ASTM E-1269, standard test method for determining  

specific heat. The DSC 200 F3 Maia® Measuring Cell and data acquisition device were turned 

on and allowed to initialize, while the Proteus® Software was opened. The argon gas was then 

turned on to allow the system to be purged. To attain an inert testing environment within the 

measuring cell the gas rate was set to 40 mL/min. A review of the device configurations via the 

software allows for the user to verify that the temperature calibration for the apparatus is up to 

date. In order to execute the specific heat measurement three tests are performed. 

The first of the three tests is considered the baseline experiment. Because aluminum 

crucibles are used to house the test samples during the tests, there is an additional contact 

resistance present. The baseline run is deemed a correction for this contact resistance and 

increases the accuracy of the results. A baseline must be executed for the desired temperature 

program for each material. The software is set to correction and the temperature program is 

defined. Using tweezers, lids are affixed on two empty crucible pans. The empty crucibles are 

then carefully placed on the reference and sample locations of the heat flux sensor making sure 

the crucibles are centered on the sensors as shown in Figure 4.6 (Saad et al., 2011).  The program 

begins at 20°C and is then cooled at a rate of 2 K/min to 5°C. At 5°C the samples are held 

isothermally at this temperature for 5 minutes. The cell is then heated to 320°C at a rate of 15 

K/min and held isothermally for 5 minutes. To conclude the program the measurement cell is 

cooled to 40°C and held in standby mode and then to a final ambient temperature to protect the 

integrity of the apparatus. The apparatus transmits the heat signal to the data acquisition system 

and a thermal curve results. The thermal curve is representative of the thermal resistance versus 

temperature or time. 
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After the apparatus has reached ambient conditions the standard test can begin. Without 

removing the crucible from the heat flux sensor, the lid is removed and a sapphire reference 

material is placed inside. The crucible lid is returned and the software resets the apparatus. For 

this test run the parameters are set for correction and sample. 

 

Figure 4.6. Crucibles Centered on the Heat Flux Sensors. 

Now, the baseline correction will automatically be implemented into the data for the 

standard test run in order to correct the contact resistance added by the crucible. The identical 

temperature program is executed, this time for the empty crucible and the sapphire reference. 

Following this test, the sapphire is removed and replaced with the test specimen and the same 

temperature program is run for the third time. The device transmits the DSC signal to the data 

acquisition system where it is recorded. The heating segments of the sapphire and test specimen 

experiments are compared to the documented information for the sapphire reference, which is 

pre-programmed into the software. The ratio method is then used to determine the specific heat 
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of the material. This procedure was repeated for each sample material. In order to validate the 

measurements made by the DSC 200 F3 Maia® Measuring Cell device, temperature calibrations 

were preformed every four months and the carbon-carbon specific heat results were compared to 

published data in literature for poco-graphite. The poco-graphite is used as comparison because 

its specific heat characteristics are similar to those of the carbon-carbon. 
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5 CHAPTER 5 

Results 

5.1 Thermal Diffusivity 

The flash method was used to determine the in-plane and the through-the-thickness 

thermal diffusivity of the carbon-carbon composites. Three types of through-the-thickness 

samples were investigated, non-graphitized carbon-carbon (1K x 1K), graphitized carbon-carbon 

(1K x 1K), and non-graphitized carbon-carbon (3K x 3K). In addition, in-plane specimens of the 

non-graphitized carbon-carbon (3K x 3K) were analyzed.  

An equipment validation was conducted in order to verify the results obtained by the 

FlashLine™ 2000 device. The thermal diffusivity of the standard material, thermographite, was 

measured and the values were compared to data published in literature.  The measurements made 

by the device were deemed valid because the error varied only from approximately 0.105% to 

5.35%. The comparison of the published and experimental data of the thermographite is shown 

in Figure 5.1. The published literature data was obtained from the International Journal of 

Thermophysics (Maglić & Milošević, 2004). 

 

Figure 5.1. Published and Experimental Thermal Diffusivity Data of Thermographite.  
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The thermal diffusivity of the carbon-carbon composites was measured between room 

temperature and 330°C. This range was selected due to the temperature limitations of the 

apparatus. Figure 5.2 displays a magnified view of the error bars of the thermal diffusivity values 

of the carbon-carbon composite. In general, temperature has a minimal effect on the thermal 

diffusivity of carbon-carbon, where the values drop approximately 10% over the temperature 

range.  

 

Figure 5.2. Through-The-Thickness Thermal Diffusivity of Carbon-Carbon (1K). 

In contrast, the thermal diffusivity of the graphitized carbon-carbon dropped nearly 50% 

from room temperature to 315°C as shown in Figure 5.3. The thermal diffusivity of the 

graphitized carbon-carbon was more influenced by the temperature because of the large 

difference in the coefficient of thermal expansion between the matrix resin and fiber. At higher 

temperatures this expansion difference between the thermal behavior of the resin and fiber 

becomes more apparent, resulting in a sharp decrease in thermal diffusivity (Iqbal et al., 2011). 
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Heat-treating the graphitized material has already caused a permanent change on the matrix and 

fiber. This effect is increased when the material undergoes testing above room temperature.  

A comparison of the graphitized and non-graphitized 1K x 1K carbon-carbon trend lines 

in Figure 5.3 further shows that the diffusivity values of the graphitized carbon-carbon are 8.9 

times those of the non-graphitized composites. The large difference between the thermal 

diffusivity values is due to the effect of graphitization on the composite.  

 

Figure 5.3. Through-The-Thickness Thermal Diffusivity of Graphitized Carbon-Carbon (1K).  

Graphitization is the transformation of a standard carbon structure into a higher ordered 

graphite structure. The order increase can be observed as a shift from an amorphous carbon 

structure to a sequence of stacked parallel plates. The graphitization process takes place at 

temperatures greater than 2500°C. The structural shift begins slowly near 1800°C and then 

occurs at a more rapid rate as temperature increases. Hydrogen, sulfur, and other impurities 
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decrease and density increases. It is observed that a decreased structural order will tend to 

significantly reduce the thermal conductivity of a material (Saad et al., 2011). Because the 

structural order of the graphitized samples is increased this causes them to have a significantly 

higher thermal diffusivity than the non-graphitized composites as apparent in Figure 5.4. The 

maximum thermal diffusivity occurs at room temperature. The measured experimental values of 

thermal diffusivity in this research are similar to those found for comparable materials in 

investigations reported in a NASA Technical Memorandum (Ohlhorst et al., 1997) 

 

Figure 5.4. Comparison of Through-The-Thickness Thermal Diffusivity of Carbon-Carbon.  

The non-graphitized 3K x 3K carbon-carbon material was tested in order to compare the 

in-plane and through-the-thickness thermal diffusivity values. These samples also allowed for the 

evaluation of the effect of coating samples with graphite. The thermal diffusivity measurements 

of these samples were also conducted from room temperature to 330°C. Figure 5.5 exhibits the 

through-the-thickness thermal diffusivity values of the 3K x 3K carbon-carbon composite.  
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Figure 5.5. Through-The-Thickness Thermal Diffusivity of Carbon-Carbon (3K). 

The diffusivity decreases as temperature increases, and the trend in the data is nearly linear.  In a 

comparison of the room temperature measurement to the highest temperature tested, the 

diffusivity quantity reduced approximately 15%. As shown in Figure 5.6, the in-plane thermal 

diffusivity of the 3K x 3K carbon-carbon also has a linear trend and there was nearly an 11% 

decrease from room temperature to 315°C. Coinciding with the results of the diffusivity 

measurements of the 1K x 1K non-graphitized carbon-carbon, the thermal diffusivity is not 

greatly influenced by an increase in temperature. Consistent with the findings in the NASA 

Technical Memorandum, for both in-plane and through-the-thickness directions, thermal 

diffusivity values are maximum at room temperature and decrease with increasing temperature 

(Ohlhorst et al., 1997) 

A comparison of the in-plane and through-the-thickness thermal diffusivity 

measurements of the 3K x 3K non-graphitized carbon-carbon is displayed in Figure 5.7. Here it 

can be found that the in-plane values are approximately 3.7 times higher than that of the through-

the-thickness quantities. 
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Figure 5.6. In-Plane Thermal Diffusivity of Carbon-Carbon (3K). 

During the in-plane propagation of heat through the material, the heat can travel quickly along 

the fiber. For the through-the-thickness case, the heat must travel across the fiber and through the 

resin where the resin has a much lower thermal diffusivity resulting in a lower thermal 

diffusivity of the composite.   

 

Figure 5.7. In-Plane and Through-The-Thickness Thermal Diffusivity of Carbon-Carbon (3K).  
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An additional and final thermal diffusivity experiment was conducted in order to analyze 

the effect the graphite coating has on the measurement. Figure 5.8 displays the coated and not 

coated in-plane thermal diffusivity of 3K x 3K carbon-carbon trend lines. The trend lines overlap 

at some points and the greatest percent difference existing between the lines is only 1.75%. The 

trend lines based on the coated and not coated through-the-thickness thermal diffusivity of the 

3K x 3K carbon-carbon are shown in Figure 5.9. The lines neither intersect nor overlap and the 

percent difference is nearly 23.2%. From a comparison of these coated and not coated results it 

can be concluded that the graphite coating has a minimal effect on the in-plane measurements 

while it has a greater influence on the through-the-thickness values.  

 

Figure 5.8. Effect of Coating on In-Plane Thermal Diffusivity of Carbon-Carbon. 

According to the ASTM E-1461 test standard, the graphite coating improves the capability of the 

specimen to absorb the energy flash. Thermal diffusivity of the specimen describes how quickly 

it can conduct heat through its thickness. Since the in-plane values are significantly higher than 

the through-the-thickness values, this means the in-plane samples are better conductors. 
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A better conductor will show less improvement when coated as compared to a material with a 

lower thermal diffusivity. Overall, there is smaller percent difference between the in-plane 

coated and not coated specimens than between the t-t-t coated and not coated specimens because 

i-p samples have a greater thermal diffusivity and are better conductors of heat.    

 

Figure 5.9. Coating Effect on Through-The-Thickness Thermal Diffusivity of Carbon-Carbon.  

Experimental results provide the statistical estimates known as the population mean value 

and the population standard deviation defined by (Figliola & Beasley, 2011) 
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The results from each temperature tested are considered as a population, where N is the total 

number of measurements, ai represents a single i
th

 measurement, and ā is the mean value of the 

data at each temperature. Additionally, the margins of errors were calculated for each 

temperature using standard deviation of the mean as shown in equation 5.2. 
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√ 
 (5.2) 

The critical value from the normal distribution chart based on 95% confidence is 1.96, and the 

margin of error or confidence interval, e, is determined by the following 

        ∙    (5.3) 

After these values have been determined for a set of data, it can be stated that there is a 95% 

confidence that the true mean value of the data will lie within the mean quantity plus or minus 

the margin of error. For example, when the room temperature thermal diffusivity measurement is 

conducted on a through-the-thickness 1K x 1K carbon-carbon composite, 95% percent of the 

time the measured value will be with the range of 0.016250 ± 0.000121 cm
2
/s. Additionally, the 

percent error can now be found using equation 5.4. 

        (
 

     
)         (5.4) 

The error was calculated at each temperature, and the error bars shown in Figures 5.2, 

5.3, 5.5 and 5.6 indicate a two standard deviation range about the associated data. This range 

depicts the interval of values in which 95% of the thermal diffusivity measurements should lie. 

Summaries of the error results at selected temperatures for each type of thermal diffusivity 

specimen are given in Tables 5.1, 5.2, 5.3, and 5.4.   

Table 5.1 

Thermal Diffusivity Results for Carbon-Carbon (1K-ttt)  

Temperature 

(°C) 

Mean 

(cm
2
/s) 

Standard Deviation 

(cm
2
/s) 

Margin of Error 

(cm
2
/s) 

Percent Error (%) 

25 0.016250 

 

0.000513 

 

± 0.000121 

 

1.459 

 
125 0.015851 

 

0.000558 

 

± 0.000239 

 

1.505 

 
315 0.013865 

 

0.000860 

 

± 0.000344 

 

2.480 
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An analysis of the results given in Tables 5.1 and 5.2 will reveal that the percent error 

associated with the 1K x 1K fiber tow graphitized carbon-carbon composites is less than the 

error experienced by the non-graphitized 1K x 1K fiber tow carbon-carbon composites. This 

occurs because the graphitized carbon-carbon is much more conductive than the non-graphitized 

carbon-carbon, allowing heat to travel much faster with less losses and therefore less error. 

Table 5.2 

Thermal Diffusivity Results for Graphitized Carbon-Carbon (1K-ttt) 

Temperature 

(°C) 

Mean 

(cm
2
/s) 

Standard Deviation 

(cm
2
/s) 

Margin of Error 

(cm
2
/s) 

Percent Error (%) 

25 0.144686 

 

0.002865 

 

± 0.001621 

 

0.001621119 

 

0.001621119 

 

0.001621119 

 

1.120 

 
125 0.104120 

 

0.002036 

 

± 0.000941 

 

0.903 

 
315 0.069505 

 

0.001182 

 

± 0.000473 

 

0.681 

 
 

The increased diffusivity of the graphitized composites allows the energy pulse to propagate 

through the material much faster resulting in less radiation heat loss from the sample and 

therefore less error. Similarly, comparing the in-plane and through-the-thickness 3Kx 3K fiber 

tow carbon-carbon composites, the in-plane samples experience less error because of their higher 

thermal diffusivity as shown in Tables 5.3 and 5.4. 

Table 5.3 

Thermal Diffusivity Results for Carbon-Carbon (3K-ttt)  

Temperature 

(°C) 

Mean 

(cm
2
/s) 

Standard Deviation 

(cm
2
/s) 

Margin of Error 

(cm
2
/s) 

Percent Error (%) 

25 0.006578 

 

0.000057 

 

±0.000064 

 

0.975 

 
125  0.006179 

 

0.000021 

 

±0.000021 

 

0.340 

 
270 0.005744 

 

0.000009 

 

±0.000018 0.310 
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Table 5.4 

Thermal Diffusivity Results for Carbon-Carbon (3K-ip)  

Temperature 

(°C) 

Mean 

(cm
2
/s) 

Standard Deviation 

(cm
2
/s) 

Margin of Error 

(cm
2
/s) 

Percent Error (%) 

25 0.024500 

 

0.000178 

 

± 0.000202 

 

0.824 

 
125 0.023689 

 

0.000057 

 

± 0.000064 

 

0.271 

 
270 0.022289 

 

0.000031 

 

± 0.000036 

 

0.160 

 
 

According to the ASTM E-1461 (2005) testing standard, the optimum thickness of the 

test specimen should be selected such that the time to reach half of the maximum temperature 

(half-time), t1/2 falls within the 10 to 1000 ms (0.01 to 1 s) range. To verify that the samples were 

fabricated to the proper thickness, an initial test was performed to analyze the half-times of the 

test samples. The half-times reached at each temperature during this experiment were recorded 

and can be found in Figure 5.10. The documented half-times for each material at the specified 

temperature were within the acceptable range as defined by the testing standard and are shown in 

Figure 5.10 with dashed lines. This signifies that appropriate thicknesses were chosen for the test 

samples. It can be observed that the half-times of the graphitized carbon-carbon composite are 

nearly an order of magnitude lower than those of the carbon-carbon composite. The graphitized 

carbon-carbon composites have shorter half-times because they are more conductive which 

allows the energy pulse to propagate through the material much faster than in the non-graphitized 

carbon-carbon. Similarly, for the 3K x 3K carbon-carbon composites, the in-plane half-times 

were shorter than the through-the-thickness half-times because heat travels much quicker along 

the fiber resulting in less radiation heat losses.  
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Figure 5.10. Half-Times of Tested Materials Compared to Allowable Limits. 

  The temperature and time data can also be analyzed using thermogram curves. 

Normalized thermograms can be developed by incorporating the half-time and maximum 

temperature values into the data. The normalized thermogram curves can be compared to the 

theoretical model in order to depict and explain shape differences. Figure 5.11 shows the 

thermogram temperature curves for the 1K x 1K carbon-carbon composite and the theoretical 

model. As the ratio of time to halftime increases and the ratio of temperature change to 

maximum temperature approaches unity, it can be observed that the experimental temperature 

curves differ more and more from the theoretical model. Figure 5.12 displays a comparison of 

the normalized theoretical thermogram to a thermogram of experimental data that experienced 

radiation heat losses (ASTM Standard E-1461, 2007). Using this figure from the ASTM E-1461 

testing standard it can be concluded that the deviations in Figure 5.11 are due to radiation heat 

losses. It can be observed that at lower temperatures (i.e. cryogenic), there are significant losses 

in comparison to those losses experienced as higher temperatures.   
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Figure 5.11. Comparison of the Carbon-Carbon Thermograms to the Theoretical Model. 

Overall there is an inverse correlation, the higher the test temperature the lower the 

amount of radiation heat loss (T
4
(t) - T

4
∞) where T(t) corresponds to the temperature of the 

sample after the instantaneous energy pulse. Figure 5.11 shows the thermograms for T∞ = -40 ˚C, 

50 ˚C, 250 ˚C. T∞ represents the initial temperature of the sample as well as the ambient 

temperature immediately before the flash occurs. 

 

Figure 5.12. Rear Face Temperature Rise: Mathematical Model versus Experimental Result. 
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Therefore at a higher temperature testing environment the radiation heat loss is less than the 

radiation heat loss at a lower test environment temperature (Patrick & Saad, 2012). Analysis of 

these results also led to the selection of an appropriate correction factor. The Clark and Taylor 

correction factor contains adjustments for radiation heat losses and is therefore suitable for the 

materials in this research. 

 

Figure 5.13. Graphitized Carbon-Carbon Thermograms Versus the Theoretical Model. 

The 1K x 1K graphitized carbon-carbon thermograms are shown in Figure 5.13 and, the 

radiation heat loss is minimal for all of the temperatures tested. The graphitized test specimens 

experienced less radiation heat loss because the energy pulse travels very quickly through the 

material allowing less radiation losses from the material. This rapid travel of heat through the 

graphitized samples is verified by Figure 5.10, depicting low half-times for these specimens at all 

temperatures. Similar results were also found for the 3K x 3K carbon–carbon composite material 

as shown in Figure 5.14. As temperature increased radiation heat losses decreased.  
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Figure 5.14. Carbon-Carbon (3K) Thermograms Versus the Theoretical Model. 

5.2 Specific Heat 

Differential scanning calorimetry was utilized to measure the specific heat of the carbon-

carbon composites. Three types were investigated, non-graphitized carbon-carbon (1K x 1K), 

graphitized carbon-carbon (1K x 1K), and non-graphitized carbon-carbon (3K x 3K). In order to 

validate the measurements made by the DSC 200 F3 Maia® Measuring Cell device, temperature 

calibrations were preformed every four months and were checked with data for the standard 

indium material. Additionally, the carbon-carbon specific heat results were compared with a 

reference material. In this research poco-graphite was used as the reference material, and the 

published data was obtained from Poco-Graphite, Incorporated (Poco-Graphite, 2001). The 

values measured by the DSC device were deemed valid because the poco-graphite and carbon-

carbon have good agreement as shown in Figure 5.15.  
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Figure 5.15. Specific Heat of Carbon-Carbon Versus Poco-Graphite. 

The specific heat measurements of the carbon-carbon (1K x 1K), the graphitized carbon-

carbon (1K x 1K), carbon-carbon (3K x 3K) composites all show trends that are extremely close 

to linear. A comparison of the results can be found in Figure 5.16. For all three types of samples 

tested there is a direct correlation. As the testing temperature increases, the specific heat of the 

material increases. The specific heat of graphitized carbon-carbon is approximately 2.5 % higher 

than that of the non-graphitized carbon-carbon. Additionally, the specific heat trend line of the 

carbon-carbon (3K x 3K) composite is not parallel to the trend lines of the other materials 

because of the difference in the carbon fabric. The decreased slope of the carbon-carbon (3K x 

3K) composite specific heat curve occurs because its specific heat is less dependent upon 

temperature change than the carbon-carbon (1K x 1K) composites. 

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

0 50 100 150 200 250 300 350

Sp
ec

if
ic

 H
ea

t 
 (

J/
(g

·K
) 

Temperature  (˚C) 

Carbon-Carbon (Experimental)

Poco-Graphite (Literature)



51 

 

 

 

 

Figure 5.16. Specific Heat of Tested Materials. 

5.3 Thermal Conductivity 

Utilizing the density, specific heat, and thermal diffusivity data, the thermal conductivity 

values of the composite materials were calculated using the following equation: 

       (5.5) 

The resulting thermal conductivity values of the 1K x 1K carbon-carbon and graphitized carbon-

carbon composites are compared in Figure 5.17. The thermal conductivity of the graphitized 

carbon-carbon composite is an order of magnitude higher than that of the non-graphitized. The 

increase in thermal conductivity is due to the increase in the crystallinity of the graphitized 

material when compared to the non-graphitized material (Iqbal et al., 2011). Additionally, 

impurities such as hydrogen and sulfur are no longer present in the material. The removal of 
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impure substances from the material and the shift of the carbon layers to a more closely packed 

arrangement further contribute to the increase in the thermal conductivity. The thermal 

conductivity results obtained in this investigation are similar to those found for analogous 

materials in the investigation conducted by Ohlhorst et al. (1997). 

 

Figure 5.17. Thermal Conductivity Comparison of Carbon-Carbon (1K). 

 The thermal conductivity results of the in-plane and through-the-thickness 3K x 3K 

carbon-carbon are displayed in Figure 5.18. The in-plane thermal conductivity is higher than the 

through-the-thickness conductivity because the heat is able to transfer longitudinally along the 

fiber much better than across the fiber. Additionally, in the through-the-thickness direction the 

heat must also transfer across the resin, which has a much lower thermal conductivity; this 

results in a lower overall thermal conductivity of the composite.  

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300 350

Th
e

rm
al

 C
o

n
d

u
ct

iv
it

y 
[W

/(
m

·K
)]

 

Temperature (˚C) 

Carbon-Carbon

Graphitized Carbon-Carbon



53 

 

 

 

 

Figure 5.18. Thermal Conductivity of In-Plane and Through-The-Thickness Carbon-Carbon. 

The thermal property results found in this research were compared to those obtained 

using the laser flash device at Oak Ridge National Laboratory and the findings were in good 

agreement. Additionally, Table 5.5 gives a summary of the thermal property results at room 

temperature (25˚C) for all the materials tested in this research.  

Table 5.5 

Thermal Property Results at Room Temperature 

Material 
Density 

(g/cm
3
) 

Specific 

Heat 

(J/g·K) 

Thermal 

Diffusivity 

(cm
2
/s) 

Thermal 

Conductivity 

(W/m·K) 

Orientation 

Carbon- Carbon (1K) 1.59 0.7130 0.0163 1.84 t-t-t 

Graphitized  

Carbon-Carbon (1K) 
1.62 0.7354 0.1447 17.2 t-t-t 

Carbon-Carbon (3K) 1.63 0.9433 0.0066 1.01 t-t-t 

Carbon-Carbon (3K) 1.63 0.9433 0.0245 3.77 i-p 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 50 100 150 200 250 300 350

Th
er

m
al

 C
o

n
d

u
ct

iv
it

y 
[W

/(
m

·K
)]

 

Temperature (˚C) 

In-Plane

Through-the-Thickness



54 

 

 

 

CHAPTER 6 

Discussion and Future Research 

6.1 Discussion 

An examination of the through-the-thickness and in-plane thermal properties of carbon-

carbon composites from room temperature to 330°C was conducted in this research. The thermal 

diffusivity was measured using the flash method. Analyses were performed to validate the 

accuracy of the thermal diffusivity results. The DSC was used to measure the specific heat of the 

materials. The specific heat of the composites was determined using the heating curves of the 

differential scanning calorimeter. The thermal conductivity was determined using the density, 

specific heat, and thermal diffusivity of the composites. The graphitized material exhibited 

different thermal properties than the non-graphitized material due to the effect of the heat 

treatment. Due to the increased crystallinity of the graphitized material during the heat treatment 

the thermal conductivity of the graphitized material is greater than that of the non-graphitized. 

The in-plane thermal conductivity of the 3K x 3K carbon-carbon is higher than the through-the-

thickness conductivity because heat transfers more readily along the fibers than it does across the 

fibers and through the resin. 

6.2 Future Research  

 There are several recommendations for future research.  

 The in-plane thermal diffusivity measurements on the graphitized carbon-carbon 

should be conducted.  

 Develop an equation to calculate the through-the-thickness thermal conductivity 

of a composite using the volume fraction and conductivity values of the 
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constituents when the conductivity of the fiber and resin are not similar. These 

theoretical values could then be compared to the experimental results.  

 The thermal properties database should continue to be developed by adding data 

for other composite materials and foams. 

 Examine the effect that the other correction factors have on the thermal diffusivity 

measurements. 
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Appendix 

The following flash method mathematical analysis is provided in order to give a complete 

derivation of the thermal diffusivity. 

Utilizing the equation for the temperature distribution within a thermally insulated solid 

of uniform thickness, L, developed by Carslaw and Jeager (1959), a mathematical expression to 

calculate thermal diffusivity was derived (Parker et al., 1961).  
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where α is the thermal diffusivity in cm
2
/s. If a pulse of radiant energy, Q (J/cm

2
), is 

instantaneously and uniformly absorbed into a small depth referred to as g, at the front face (x=0) 

of the thermally insulated solid material (Clark & Taylor, 1975), the temperature distribution at 

the initial condition is given by: 
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where ρ is the density and cp is the specific heat capacity of the material. With the above initial 

conditions, equation 1 can be expressed as:  
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For materials that are opaque to the energy pulse, the adsorption depth, g, is a very small 

number. It then it follows that  

sin
  𝑔

 
≅

  𝑔

 
 (11) 

cos           (12) 

 

Once these are applied, the temperature distribution at the rear face (x=L) is expressed as (Parker 

et al., 1961): 
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Setting 
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where Tm is the maximum temperature at the rear face. (Parker et al., 1961) then defined two 

dimensionless parameters, V and ω as: 
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Substituting equation 18 into 15 yields: 
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Now equation 17 can be substituted in for the left side of the equation 

(20) 
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Setting V = 0.5 allows for the determination of ω at the time required for the rear face to reach 

half of the maximum temperature rise.  
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At n=3 
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Excel was used to calculate values of the right side of the equation at different ω values. The 

following figure shows that after three iterations (n = 3) the value of ω converges at 1.36975.  

 

Substituting ω = 1.36975 into equation 18 and making t = t1/2 (since V = 0.5 was used) allows for 

a mathematical equation for thermal diffusivity to be stated as (Parker et al., 1961): 
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where t1/2 is the time required for the rear face to reach half of its maximum temperature. 
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