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ABSTRACT 

 

Chowhan, Tushar. STATE AND PARAMETER ESTIMATION WITH A 
SEQUENTIAL MONTE CARLO METHOD IN A THREE DIMENSIONAL 
TRANSPORT MODEL. (Major Advisor: Dr. Shoou-Yuh Chang), North Carolina 
Agricultural and Technical State University. 

Due to the inherent randomness and heterogeneity of the transport process, 

macrodispersion, non-fickian motion, and ergodicity, general assumptions of linearity 

and Gaussian distribution do not hold for the real field. Therefore, a state-space transport 

model for the non-linear and non-Gaussian system is proposed in this study. In this study, 

the state variable (concentration vector) and parameter (first-order decay) are updated 

with the available measurements. The probabilistic state-space formulation and updating 

of information on receipt of new measurements is formulated in the Bayesian framework. 

particle filter, a sequential Monte Carlo method, provides a rigorous general framework 

for dynamic state estimation problems in the Bayesian scheme. Here the reactive 

contaminant transport in subsurface is treated as a dynamic state and parameter 

estimation problem. A type of particle filter, commonly called Sequential Importance 

Resampling (SIR) is used for this subsurface transport problem. The model estimation is 

compared with a reference true random field. A promising improvement of the estimation 

accuracy is attained with the SIR particle filter while compared with a traditional 

deterministic approach. The standard deviations of the residuals were calculated for the 

comparison purpose. The particle filter data assimilation scheme reduces the prediction 

error by 48% in estimation accuracy. In case of having fixed parameters in the model, a 



xi 
 

standard technique to perform parameter estimation consists of extending the state with 

the parameter to transform the problem into optimal filtering problem. This approach 

requires the use of special particle filtering techniques which suffer from several 

drawbacks. An alternative statistical approach was adopted here to combine parameter 

estimation with the particle filter scheme. The concept of Euclidian norm was introduced 

in order to address the sequential weight assignment to the parameter estimation. The SIR 

particle filter scheme successfully estimated the parameter (first-order decay). With the 

use of the updated parameter in the state prediction, prediction error of the SIR particle 

filter data assimilation scheme became 78% smaller than the error from the deterministic 

model.  
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CHAPTER 1 
 

INTRODUCTION 

 

Groundwater accounts for approximately 20% of the total water usage: 53% of 

the population drink groundwater, 80 billion gallons of groundwater is withdrawn daily, 

and 90% of the freshwater supply is groundwater (MDEQ 2003). Contamination of the 

subsurface environment is pervasive, with pollutants ranging in source from 

manufacturing, mining, agriculture, municipalities, energy, and defense industries (Yeh et 

al. 2010). The transport of different types of contaminants has long been one of the 

greatest concerns to environmental engineers. The contaminant usually enters the 

groundwater system from the land surface, percolating down through the aerated soil and 

unsaturated or vadose zone (Pye and Jocelyn 1984). Prevention and control of 

groundwater contamination can better be understood if the sources of contamination, type 

of contaminant, and movement of contaminant through porous media are taken into 

consideration.  

Mathematical modeling of the contaminants in the subsurface is important to 

predict the spread of the plume as well as for risk assessment. This prediction is also 

sometimes largely dependent on the parameters used in the model.  Deterministic model 

is traditionally used to study this complex subsurface environment. Numerical modeling 

provides a viable means of analyzing contamination problems before a remediation 

option is chosen and implemented. Many techniques that are widely used for forecasting 

contaminant movement and their resulting risks to the linked ecosystems are composed of 
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mathematically based subsurface models. Finite element methods (Ren and Zheng 1999, 

Kim and Parizek 1999) are the most popular for one-dimensional and two-dimensional 

problems. They often make use of Galerkin`s method of weight residuals, and their 

complex geometries are easily handled by creating polygons from the node points 

(Schnoor 1996). The finite element techniques are useful in keeping the numerical 

dispersion at a minimum, which is important because the reaction terms are concentration 

dependent. Large concentration gradients arise in subsurface remediation problems due to 

the sharp boundaries of contamination. Also the techniques are complicated by non-

linearities and stiffness. However, the errors arising from the numerical model can bring 

unavoidable prediction deviations from the real world; which is associated with 

increasing uncertainty. The numerical model may include numerical errors from model 

mechanisms, time and space limits of numerical schemes, and boundary conditions.  

Methods of probabilistic prediction and data assimilation (DA) for quantification 

and reduction of state uncertainty have been extensively explored in the atmospheric and 

oceanic sciences. Their application in the hydrological sciences is relatively new, 

although deterministic hydrological prediction and parameter estimation have become 

reasonably mature. Most of the current interests in simulation-based methods of 

sequential Bayesian analysis of dynamic models have been focused on improved methods 

of filtering for time-varying state vectors. Researchers have been using discrete numerical 

approximations to sequentially updated posterior distribution in various “mixture 

modeling” frameworks. Simulation-based methods were developed in the late 1980 (Pole 
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and West 1990, Pole et al. 1988). Parallel developments in the early 1990`s, further led to 

the publication of many different but related approaches (West 1993; Gordon et al. 1993).  

During the  past  decade,  particle  filters  have  developed  rapidly  and  have  

been  successfully  applied  in  a number of different areas (Arnaud et al. 2001). There 

have been limited applications of particle filters in process engineering. Examples  

include  the state estimation of a non-linear dynamic process (Chen et al. 2004a, Han and 

Li  2008), and the state  estimation with  initial  condition  rectification, which was  

implemented  using  a Markov chain Monte Carlo approach (Chen et al. 2004b). 

Parameter estimation has been conducted mainly by using deterministic (manual 

or automatic) calibration techniques that tend to ignore model structural errors and 

measurement errors (Duan et al. 1992). Recently, stochastic data assimilation methods 

have been developed and applied to parameter estimation problems (Thiemann et al. 

2001). 

In order to predict the real field scenario in a subsurface contaminant transport, 

the objectives of this study are as following: 

• Construct a Sequential Importance Resampling (SIR) particle filter scheme to 

interpret the contaminant transport with a instantaneous input in a three-dimensional 

subsurface model. 

• Estimate the unknown parameter using the SIR particle filter algorithm. 

• Examine the effectiveness of the SIR particle filter scheme with and without the 

parameter estimation process.  
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 CHAPTER 2 
 

LITERATURE REVIEW 

 

Typically, the source of the hydraulic parameters and data initialization in 

environmental transport models are field observations, such as hydraulic conductivities 

from tracer tests and data network systems, such as the geographic information system. 

However, laboratory and field observations indicate that a high degree of heterogeneity 

may exist for hydraulic properties in natural subsurface flow system. This variability is 

unavoidable (Heuvelink and Webster 2001). In order to address uncertainty in hydrologic 

modeling, there are three distinct yet related aspects to be considered: understanding, 

quantification, and reduction of uncertainty. Arguably, understanding uncertainty is an 

integral part of any application of uncertainty quantification and/or reduction.  

The hydrologic literature has seen various applications of data assimilation and/or 

uncertainty analysis in hydrology ranging from characterization of soil moisture and/or 

surface energy balance. One critical issue for hydrologic modeling is how the DA 

methods used in atmospheric and related sciences can best be adapted and combined with 

hydrologic methods to cope with the uncertainties arising from hydrologic modeling in a 

cohesive, systematic way to maximally reduce and adequately quantify the predictive 

hydrologic uncertainty (Liu and Gupta 2007).  

There are three main areas where actions can be taken toward reducing 

uncertainty in hydrologic predictions: (1) acquisition of more informative and higher 

quality hydrological data (including data of new types) by developing improved 



5 
 

measurement techniques and observation networks; (2) development of improved 

hydrologic models by incorporating better representations of physical processes and 

using better mathematical techniques; and (3) development of efficient and effective 

techniques that can better extract and assimilate information from the available data via 

the model identification and prediction processes.  

 While hydrologic science has witnessed astonishing advances in the availability 

of hydrologic data (area 1) and the complexity/reliability of hydrological models (area 2), 

there is an urgent need for techniques that effectively and efficiently assimilate important 

information from the data into the models to produce improved hydrological predictions 

(area 3). Such techniques  are  generally referred to as data assimilation (DA) methods, 

which is defined as procedures that aim to produce physically consistent representations 

or estimates of the dynamical behavior of a system by merging the information present in 

imperfect models and uncertain data in an optimal way to achieve uncertainty 

quantification and reduction (Liu and Gupta 2007).  

     It is worth mentioning that this description of the DA problem is broadly 

encompassing, not being limited only to problems of ‘‘state estimation’’ as the term is 

often applied to in the literature. Instead, it describes the more comprehensive problem of 

‘‘merging models with data’’ and therefore includes the three related problems of system 

(structure) identification, parameter estimation, and state estimation, which are all critical 

to the reduction of uncertainty in model predictions. 

Many uncertainty analysis frameworks have been introduced in the hydrologic 

literature, including the generalized likelihood uncertainty estimation (GLUE) 
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methodology, the Bayesian recursive estimation technique (BaRE), the Shuffled 

Complex Metropolis algorithm (SCEM) , the multi-objective extension of SCEM, the 

dynamic identifiability analysis framework (DYNIA), the maximum likelihood Bayesian 

averaging method (MLBMA), the dual state-parameter estimation methods and 

simultaneous optimization and data assimilation algorithm (SODA) (Liu and Gupta  

2007). However, few of these methods completely address all the above three critical 

aspects of uncertainty analysis in an explicit and cohesive way.  

One of the most successful and popular approximation techniques is Sequential 

Monte Carlo (SMC), which is referred to as particle filtering (PF) in the Bayesian 

filtering domain. State estimation can be considered as an optimal filtering problem 

within a Bayesian framework.  If the state equations are linear and the posterior density ( 

at every  time step) is Gaussian, the Kalman filter  (KF)  is  an  optimal  solution  to  the  

state  estimation  problem.  However, when these assumptions do not hold, there exists no 

analytical solution and therefore approximations need to be made.  For  example,  the  

extended Kalman  filter  (EKF)  has  been widely  applied  to  estimate  non-linear state 

space models (Kiparissides et al. 2002, Kozub and MacGregor 1992). The EKF assumes 

a Gaussian posterior density and adopts a first-order Taylor series expansion to provide a 

local approximation to the current state. However, when state equations are highly non-

linear and the posterior density is non-Gaussian, the EKF may give a high estimation 

error. To  avoid  the  Gaussian  assumption,  one  approach  was  to approximate the 

posterior density by discretizing the continuous state variables  into grids  (Terwiesch and 

Agarwal 1995, Bucy and Senne 1971).  This methodology was termed point-mass filters 
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or probability-grid filters. However, the computational cost of point-mass filters was 

found to increase exponentially with the state dimension, thus limiting its widespread 

application in process engineering. All such approaches involved methods of evolving 

and updating discrete sets of sampled state vectors, and the associated weights on such 

sampled values as “particles.” 

Particle filters are an extension of point-mass filters.  The basic idea is that a large 

number of samples (particles) are generated using Monte Carlo methods to approximate 

the posterior probability of the states. Thus, the particles are adaptively concentrated in 

regions of high probability.  This is in contrast  to point-mass  filters which  adopt  a pre-

defined discretization  approach  to  the  state  space problem, resulting in the particles 

being assumed to be uniformly distributed over all the space. Chen et al. (2004a) 

estimated the state of a non-linear dynamic process with initial condition rectification 

using a Markov Chain Monte Carlo approach. They used a particle filter to the highly 

non-linear batch process by developing a benchmark batch polymerization process.  

Yu and Cheng (2006) developed the particle filter for mobility tracking. The 

model was used to describe the maneuvering target tracking problem.  Li et al. (2004) 

proposed the use of a Rao-Blackwellised particle filter to estimate parameters in a linear 

state-space model. A particle filter based on the sequential Monte Carlo method was used 

to estimate both the state and parameter (Chen et al. 2004a). A novel sequential 

hydrologic data assimilation approach was explored to estimate model parameters and 

state variables by using a sequential importance resampling (SIR) particle filter. The 

particle filter approach was used to model the behavior of chlorobenzene leaching from a 
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landfill into a soil environment at discrete time intervals in a one-dimensional space 

(Chang and Li 2006). A two-dimensional subsurface contaminant transport modeling was 

used to generate numerical and particle filter results spatially and temporally (Li 2006).  

She estimated BOD and decay using the boot- strap particle filtering approach.  A three-

dimensional subsurface transport model was used by Cheng (2000) to generate the 

analytical, numerical, and Kalman filter results spatially and temporally under continuous 

contaminant input conditions.  

Parameter estimation has been conducted mainly by using deterministic (manual 

or automatic) calibration techniques that tend to ignore model structural errors and 

measurement errors (Duan et al. 1992). Recently, stochastic data assimilation methods 

have been developed and applied to parameter estimation problems (Thiemann et al. 

2001). The particle filters approach was used for data assimilation in a high-dimensional 

non-linear ocean model (Kivman 2003). Kivman estimated three state variables and two 

parameters in the Lorennz model by using the particle filter data assimilation method. In 

situation where the model has fixed parameters, a standard technique was developed to 

perform parameter estimation. This technique consists of extending the state with the 

parameters to transform the problem into optimal filtering problem (Doucet and Tadić 

2003).  This approach requires the use of special particle filtering techniques which suffer 

from several drawbacks. In this research, newly emerged stochastic data assimilation 

method has been used for parameter estimation due to the limitation of the traditional 

deterministic model calibration methods. Such method operates within Bayesian updating 

framework for estimation of predictive uncertainty.  
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CHAPTER 3 
 

METHODOLOGY 

 

3.1 Three-Dimensional Contaminant Transport Model  

The conceptual model or governing equation most widely used to represent solute 

transport in hydrologic systems is the advection–dispersion reaction equation. The three-

dimensional solute transport equation for a conservative solute in a uniform, saturated 

groundwater flow field with the direction of flow parallel to the x-axis is: 

2 2 2

2 2 2
yx z

DD DC C C C V C kC
t R x R y R z R x

∂ ∂ ∂ ∂ ∂
= + + − −

∂ ∂ ∂ ∂ ∂     
  (1) 

where C  =solute concentration, ML-3 

 t =time, T 

 zyx ,, =cartesian coordinates, L 

 zyx DDD ,, =dispersion coefficient in x, y and z directions respectively, L2 T-1 

 V =linear velocity of flow field in the x direction, LT-1 

 =k first-order degradation rate constant, T-1 

 R= dimensionless retardation factor. 

The retardation factor is defined as: 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

η
ρb

dKR 1       (2) 

where bρ  = bulk density of the porous medium, ML-3, 

     η  = effective porosity, dimensionless, and 
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          dK = distribution coefficient, L3M-1. 

The initial condition is assumed as: 

                      ),,(),,( 00000
zyxCzyxC

t
=

=
                   (3) 

 

3.2 Analytical Solution for Subsurface Model 

For the instantaneous input subsurface transport model, the analytical solution is 

obtained based on the literature in the subsurface area (Cheng 2000). The analytical 

solution for a pollutant with an initial mass, Mo, that is injected (Figure 3.1) 

instantaneously at t=0 is: 

   ),,,( tzyxC =
( ) ( )

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−−

−
− kt

tD
Rz

tD
Ry

tD
RRVtx

DDDt

RM

zyxzyx

o

444
/exp

8

222

2
123

2
3

πη
            (4) 

 

 

 

 

 

 

 

Figure 3.1. Three-dimensional contaminant transport with an instantaneous input 
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 3.3 Subsurface Transport Scheme 

In order to incorporate the particle filter scheme, we are going to use the state-

space form to represent a mathematical model that simulates the dynamic process of the 

transport phenomenon. Owen (1984) compared several mathematical modeling methods 

used in coastal and estuarine regions. Owen found that the Forward-time and Central-

Space (FTCS) method is always applicable for the advective transport of salinity. 

Jin (1996) used the basic FTCS differences to develop the state-space form of the 

system equation for a two-dimensional transport model. Zou and Parr (1995) also used 

this finite-difference method (FDM) in their research to predict the pollutant transport in 

a two-dimensional aquifer. For this three- dimensional scheme, the term in vertical 

direction (z-axis) is introduced. Let i j kC(i, j, k, t) = C(x , y , z , t) , the form of equation 

based on the FTCS method is:  

C(i, j, k, t + 1) =
1 2 3

b C(i -1, j, k, t) + b C(i, j, k, t) + b C(i + 1, j, k, t)                             

4 5
+b C(i, j -1, kt) + b C(i, j + 1, k, t)

6 7
+b C(i, j, k -1, t) + b C(i, j, k + 1, t)          (5) 

The matrix form based on these equations is, 

    C(t +1) = A C(t)                           (6) 

where C(t) =  the vector of contaminant concentration at all nodes at time (t)Δt ,      

C(t + 1) =  the vector of contaminant concentration at all nodes at time( )t+1 Δt , 

A = State Transition Matrix.  

For this three dimensional scheme, A  is constructed with the seven coefficients 

1 2 3b ,b ,b , 4 5 6b , b , b  and 7b .  The seven coefficients represents that the concentration 
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effects of one node at time ( )t+1 Δt come from the concentrations at time (t)Δt  in six 

directions and itself (seventh terms). The concept of effect (as mentioned above) 

represents the concentration flow between two nodes. 

The boundary condition adopted here is used in the FTCS model to control the 

operation of the State Transition Matrix. For each time periodΔt , the concentration 

distribution vector is improved at one step by multiplying the matrix. The concentration 

vector is built using the concentrations from the whole plume. Thus, the boundary 

condition is applied before each multiplication to eliminate the effects between nodes 

which are not adjacent to each other, such as two boundary nodes. However, for the 

nodes located on the boundary, there are no six-direction effects available since some of 

the directions are the boundary of the sample aquifer. For example, in the top layer of the 

plume, only five-direction effects exist because there is no higher node on this one. In 

this case, the State Transition Matrix has to be modified to re-count the effects eliminated 

during the operation of the boundary condition such as the nodes in the top layer; the 

concentration effect with coefficient 7b  for higher node is disappeared after the 

multiplication. Therefore, we have to change 2b  to 2 7b + b  to recount the lost 

concentration. 

 

3.4 Bayesian Estimation of State Space Model 

At least two models are required to analyze and make inference about a dynamic 

system. The first model is needed to describe the evolution of the state with time (the 

system model). The second model is needed to relate the noisy measurements to the state 
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(the measurement model). Here it is assumed that these models are available in a 

probabilistic form. The probabilistic state-space formulation and the requirement for 

updating of information upon receipt of new measurements are ideally suited for the 

Bayesian approach. In the Bayesian approach to dynamic state estimation, the posterior 

probability density function (pdf) of the state is constructed based on all available 

information, including the set of received measurements. A pdf embodies all available 

statistical information and then represents the complete solution to the estimation 

problem. In principle, an optimal (with respect to any criteria) estimate of the state may 

be obtained from pdf (Arulampalam et al. 2002). Also the measure of the accuracy of the 

estimate may be obtained from the pdf. A recursive filter is a convenient solution in this 

case. This filter processes data sequentially rather than as a batch so that it is not 

necessary to store the complete data set nor to reprocess existing data if a new 

measurement becomes available. This kind of filter consists of essentially two stages: 

prediction and update. In the prediction stage system model is used to predict the state 

pdf forward from one measurement time to the next. As the state is usually subject to 

unknown disturbances (modeled as random noise), the prediction generally translates, 

reforms, and spread the state pdf.  In the update operation the measurement is used to 

modify the prediction pdf. All these are achieved by the Bayesian theorem, which is the 

mechanism for updating the knowledge about the target state in light of extra information 

obtained from the new data.  

Consider the following state space model with non-linear state and measurement 

functions, kf  and kh , respectively:  



14 
 

     ( )1 1,k k k kx f x v− −=                                          (7) 

       ( ),k k k kz h x n=                                      (8) 

where k  is the time index, x is a state vector, and z  is the measurement vector. v  and n  

are independent and identically distributed noise for the process and measurements, 

respectively.  

The objective of state estimation is to sequentially calculate the state vector, kx  

using the given measurements kz . In real processes, some states are very difficult to 

measure on-line, such as the molecular weight of polymers and the concentration of 

reactant, while others are unmeasurable. Therefore, one of the challenges in state 

estimation is to infer all the states from limited measurements. 

From a Bayesian perspective, the aim of state estimation is to infer the probability 

function of the state kx  given the measurement sequence { }1: , 1,  ... , k iz z i k= =  

i.e., ( )1:k kp x z . Assuming the initial conditions (expressed in the form of a probability 

distribution function ( ) ( )0 0 0p x z p x≡ ) are available, ( )1:k kp x z can be obtained 

sequentially through prediction.  

Suppose that the required pdf ( )1 1: 1k kp x z− −  at time 1k − is available. The 

prediction stage will then involve using the system model Equation (7) to obtain the prior 

pdf of the state at time k  via the Chapman-Kolmogorov equation: 

( ) ( ) ( )1: 1 1 1 1: 1 1 k k k k k k kp x z p x x p x z dx− − − − −= ∫   
          (9) 

and then update it as follows: 
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( )
( ) ( )

( )
1: 1

1:
1: 1

k k k k
k k

k k

p z x P x z
p x z

p z z
−

−

=
                               (10)

 

where ( )1: 1k kp z z −  is a normalizing factor independent of the state kx . 

 Equations (9) and (10) are the optimal solutions from a Bayesian perspective to 

the non-linear state estimation problem. In general, the posterior probability, ( )1:k kp x z , 

cannot be determined analytically. Thus approximate filters are used to provide 

suboptimal solutions. The widely used EKF may work poorly for highly non-linear 

systems because of the Taylor approximation. In addition, even if ( )1 1k kp x z− − is 

Gaussian, ( )k kp x z is no longer Gaussian due to the non-linear state function, which 

invalidates the underlying assumption of the EKF. An alternative approach is through 

particle filters, when the posterior pdf is non-Gaussian. 

 

3.5 Sequential Importance Sampling (SIS)  

The sequential importance sampling (SIS) algorithm is a Monte Carlo (MC) 

method that forms the basis for most sequential MC filters developed over the past 

decades   (Arnaud et al. 2001, Doucet et al. 2000). This sequential MC (SMC) approach 

is also known variously as bootstrap filtering (Gordon et al. 2002), and particle filtering 

(Carpenter et al. 1999). It is a technique for implementing a recursive Bayesian filter by 

MC simulations. The key idea is to represent the required posterior density function 

through a set of random samples with associated weights and then to compute estimates 

based on these samples and weights. As the number of samples become very large the 



16 
 

MC characterization becomes an equivalent representation to the usual functional 

description of the posterior pdf, and the SIS filter approaches the optimal Bayesian 

estimate. 

  The basic idea of SIS filters is to approximate ( )1:k kp x z  through using a set of 

random samples (also called particles)  { }, 1,.....,i
kx i N=  with associated 

weights{ }, 1,.....,i
kw i N= ,  where 

1
1

N
i
k

i
w

=

=∑  

     
( ) ( )1:

1

N
i i

k k k k k
i

p x z w x xδ
=

≈ −∑                   (11) 

where,  is an indicator function which is equal to unity if  ; otherwise it is 

equal to zero.  

The key step is to generate random samples from ( )1:k kp x z . However, as 

( )1:k kp x z  is not of the conventional form of a probability density function, such as 

Gaussian or Cauchy, direct sampling is not possible. Therefore importance sampling 

(Bergman 1999, Doucet et al. 2000) is then used to obtain the particles and their 

associated weights. The first step in importance sampling is to define an importance 

density ( )1:k kq x z from which samples i
kx   can be drawn (e.g. a standard Gaussian 

distribution function). Thus the weights are defined as:  

                                            ( )
( )

1:

1:

i
k ki

k i
k k

p x z
w

q x z
∝                                                 (12) 
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For the sequential estimation problem, at time point k , the particles which 

approximate ( )1 1: 1k kp x z− −  will be passed through the state function and updated with a 

new measurement, kz to approximate ( )1:k kp x z . It was shown (Arulampalam et al. 2002) 

that if the importance density is only dependent on the current measurement, kz , and the 

past state, 1kx − , the weights can be updated as: 

                                                
( ) ( )

( )
1

1
1,

i i i
k k k ki i

k k i i
k k k

p z x p x x
w w

q x x z
−

−

−

∝       (13) 

Using these particles and associated weights, the estimated state vector, kx
∧

, is the 

mean of ( )1:k kp x z  and is calculated as: 

                                       1

N
i i

k k k
i

x w x
∧

=

= ∑                       (14) 

 

3.6 Sequential Importance Resampling (SIR) 

A common problem with the SIS particle filter is the degeneracy problem 

phenomenon, as after a few iterations, all but one particle will have negligible weight. It 

has been shown (Doucet et al. 2000) that the variance of the importance weight can only 

increase over time, and thus, it is impossible to avoid the degeneracy phenomenon. This 

degeneracy implies that a large computational effort is devoted to updating particles 

whose contribution to the approximation to ( )1:k kp x z
 

is almost zero. Alternative
 

solution to this problem can be achieved by any of the two methods: 1) a good choice of 

importance density and 2) the use of resampling. Here we will limit our discussion to the 

resampling method only. 
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A suitable measure of the degeneracy of the algorithm is the effective sample size 

effN   introduced in (Bergman 1999) and defined as: 

*1 Var( )
s

eff i
k

NN
w

=
+        (15) 

where, 
*w i
k

   
is referred as the “true weight” and sN   

is the number of samples. 

 As this
 
cannot be evaluated exactly,  an estimate effN

∧
of effN  can be obtained by:  

2

1

1

( )
s

eff N
i
k

i

N
w

=

∧
=

∑
             

         (16) 

 where w i
k  is the normalized weight obtained using Equation (13).  

Notice that when
 eff sN N

∧
≤ , a small value of effN indicates severe degeneracy. 

Therefore, when effN falls below some threshold TN , the SIR is used (Arulampalam et al. 

2002). The basic idea of resampling is to eliminate the particles that have small weights 

and to concentrate on the particles with large weights. The resampling step involves 

generating a new set of { }*

1

sNi
k i

x
=

 by resampling (with replacement) sN  times from an 

approximate discrete representation of ( )1:k kp x z
 
given by: 

( ) ( )1:
1

sN
i i

k k k k k
i

p x z w x xδ
=

≈ −∑
    

(17)  

where ( )*Pr i j j
k k kx x w= = .  
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The resulting sample is in fact an i.i.d. sample from the discrete density.  

Therefore, the weights are now reset to w 1/i
k sN= .  The operation of SIR particle filter is 

represented in Figure 3.2.  

 

 

 

 

 

 

 

 

 

Figure 3.2. Operation of SIR particle filter 

 

3.7 Coupling Parameter Estimation with Sequential Monte Carlo Method 

Parameter estimation has been conducted mainly by using deterministic approach. 

Recently, stochastic data assimilation methods have been developed and applied to 

parameter estimation problems. One of our main objectives of the research is to estimate 

the parameter (decay) along with the state (concentration). For this research, particle filter 
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No 

Initialize PF Parameters 

Propose Initial Population, (X0, W0) 

Propagate Particles using State Model, 

X k-1 X k

Update weight, W k-1  W k 

Weight degenerated? 
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state (concentration) estimate, $ ,i -1 t-1cd  at time 1t - , and observation (concentration) tz  at 

time, t  ,  and the particle filter estimate of the parameter $ −t 1d , at time 1t -  are available.  

The primary objective is to find the particle filter estimate of parameter at time t . Then 

this estimated parameter is used to find the particle filter estimate of the state, $ ,i tcd  at 

time t .  

3.7.1. Derivation of Weight for Parameter Estimation 

In state estimation, the traditional way of assigning weight to the samples at each 

time step is based on the boot-strap particle filter method. Due to the limitation of the 

traditional approach in parameter estimation process, a new statistical approach was 

proposed in our study. The basic assumption for this approach is: 1probability
norm

∝ , 

where, norm is the distance from the origin to the point of interest. For a sample size n , 

the parameter −t 1
$d  can be sampled as a normally distributed sample. The form of the 

distribution can be written as: [ ]2
1 2 3( , )− =$d d d d dσt 1 n t

Ν , , ,........  

Using Equation (6) the state equation for concentration can be written as:  

, 1 ,
ˆ ˆ
−

⎡ ⎤ ⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦i ik t t k tA C C
      

   (18)  

From the observation, tz  at time step ,t   the error matrix can be formulated as: 

ˆ⎡ ⎤ ⎡ ⎤
⎣ ⎦⎣ ⎦ dd -

ii t ,t,tε = z c
    

(19)
 

For the
 
n  number of samples the

 
error matrix is a column vector of size n .
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1

2

.

.

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎡ ⎤ ⎢ ⎥
⎢ ⎥⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎣ ⎦n

di ,t

ε
ε

=

ε

ε      (20) 

Using the concept of Euclidean norm, the norm for id can be written as: 

1=
⎡ ⎤ ∑⎣ ⎦ϒ

n

d ji j

2
,t ε=

       
(21) 

Using the assumption of, 1
weight

norm
∝ , the weight can be formed as : 

ϒ ϒ∑
′

ϒ∑

ii

i

i

d

d

d
i

d

i

w

n

=1
n

=1

-
=                    (22) 

After normalizing, the final weight for id can be written as: 

′

′

∑
i

i

i

d

d

d

i
ω

ω
ω n

=1

=      (23) 

The weights for all the samples are calculated using Equation (23). With these 

weights, the parameter estimation process enters the update stage of the traditional SIR 

particle filter method (Figure 3.2) and moves to the next time step. 

 

3.8 Filter Effectiveness Measurement 

The effectiveness of the SIR particle filter can be is demonstrated by comparing 

the results from the numerical (FTCS) model and the SIR particle filter model. Although 
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different indices can be compared, we chose relative-root-mean-squared error (RRMSE). 

The expression of RRMSE is as following:  

[ ]

[ ]

∑

∑

N
2

m m
m=1

N

m
m=1

1 x (t) - z (t)
N -1RRMSE(t) =

z (t)

N

         (24) 

where,  RRMSE(t) =  the residuals at time step t ;  

mx (t) =  the simulated observation of node m  at time step t ;  

(m) (t)z = the estimation of node m  at time step t ;  

N = the total number of nodes.  

The numerator of Equation (24) is also known as RMSE. The RMSE is 

normalized by the mean of the estimated concentrations of all the nodes at a time step to 

generate the RRMSE. 
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CHAPTER 4 
 

RESULTS AND DISCUSSION 

 

4.1 Model and Parameter Description 

 With the deterministic transport model and particle filter algorithm described in 

the previous section, a three-dimensional contaminant model is constructed to simulate 

the contaminant transport processes and predict the contaminant plumes` evolution. The 

system parameters are assumed on the basis of the research of Cheng (2000). He assumed 

the horizontal dispersion, 2
xD 1.00 m day= , 2

yD 0.50m day= , the vertical dispersion 

2
zD 0.70 m day= , porosity=0.30, velocity= 0.8m day , retardation R 1.5= and 

degradation rate k 0.3 day= .  We set the model grid size, dx dy dz 2.00m= = = . Each 

time step is 0.75 day and the number of total simulation time steps is .30  The number of 

grid points in x  direction =10, number of grid points in y direction=9, and number of 

grid points in z  direction =6. The number of all nodes in the transport scheme is 

10*9*6=540. The initial condition is a instantaneous contaminant source of 10,000 ppm 

seeping into a location with the central coordinates C (1, 5, 1). In this study, the 

conception of “layers” was introduced to indicate the horizontal sections in the different 

vertical depth. That is to say, the “first layer” represents the top aquifer plane (z =1), the 

“second layer” represent the next aquifer plane (z = 2), and so on.  
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4.2 Prediction from Numerical Scheme  

At the first stage of experiment, the deterministic model with the specified initial 

condition described in Equation (3) was formed. A program coded in MATLAB was 

developed to solve the model and to estimate the concentration. Figure 4.1 shows the 

model prediction at t=15 days. The pollutant contour lines from the numerical model 

simulated the theoretical advection–dispersion–reaction transport process. As shown, the 

pollutant distribution from the model is symmetrical due to the numerical dynamics and 

the assumed velocity in the x direction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1. Numerical concentrations (mg/L) at different layers after 15 days 
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            The relatively smooth shape of the contaminant plume is a result of the 

approximation made to the numerical model used. The numerical scheme is characterized 

with error coming from the assumptions made on the parameters and the model used in 

estimation. The parameters used in this approach were assumed to be constant.  

 

4.3 Simulated True Field Prediction  

Figure 4.2 depicts the analytical field scenario for time step 20, i.e. after 15 days 

of the contaminant transport. The prediction of the analytical scheme was made using the 

Equation (4). Afterwards, a randomly distributed noise of was chosen and added to the 

analytical solution to simulate the true states. 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Analytical concentrations (mg/L) at different layers after 15 days 
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4.4 Observation Data Generation 

A random Gaussian error was added to the true field to obtain simulated 

observation data or measurement (Figure 4.3) for all time steps.  The observation error 

introduced reflects the randomized nature of real-life field data of contaminant 

concentrations owing to human and instrument errors. An observation error of 5% was 

chosen and added to the true value to simulate the dynamic observation states. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.3. Simulated true field concentrations (mg/L) at different layers 
      after 15 days 
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4.5 SIR Particle Filter Estimate 

By using both the numerical and the SIR particle filter scheme, the model 

dynamics were assimilated with observation data at each time step to give the estimated 

value for the contaminant concentration. The numerical model serves as a guide in 

estimating the state of the model. The contours of the particle filter results are relatively 

closer to the true value than the numerical solution shown previously. The particle filter 

results are directed by the observation data hence the closeness in results.  Figure 4.4 

shows the contaminant plume evolution by using the particle filter at time step 20. 

 

 

 

 

 

 

 

 

 

Figure 4.4. SIR particle filter concentrations (mg/L) at different layers after 15 days 
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4.6 Effectiveness of Numerical and SIR Particle Filter Scheme 

The effectiveness of the numerical and SIR particle filters scheme is determined 

by comparing both the results with the simulated true value for each time step. The 

changes in the RRMSE (Figure 4.5) indicate that as the assimilation progressed, the 

estimated value for the concentration is getting closer to the reference true value, which 

results in the smaller RRMSE over time. The bigger error is largely attributable to the 

linearity of the model used, initial averaging of samples and the random noise introduced 

into the filtering scheme.  

 

 

 

 

 

 

 

 

 

 

Figure 4.5. RRMSE for the numerical model and the SIR particle filter model 
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From the RRMSE profile, the numerical scheme shows more errors at all time 

steps. The approximation and assumptions made to the model introduced a certain 

amount of error. The SIR particle filter scheme reduces the RRMSE to 1.2 from 2.3. This 

is about 48% improvement of the particle filter over the deterministic FTCS model 

prediction results.  

 

4.7 Parameter Estimation 

In our experiment one parameter (first-order decay) was estimated and used to 

update the state (concentration) predictions at every time step. The main challenge was to 

develop weights for the parameter to couple with the particle filter at every time step. The 

problem was resolved using the statistical concept of Euclidean norm to generate weights 

for the particles. Initial sampling of decay was done based on an assumed mean of 

0.3/day and a variance of 10% of the mean, which is randomly distributed with 300 

samples. At every time step, norm was generated using the error from observation and 

particle filter estimate. Assuming that norm is proportional to weight, weights of all the 

particles were calculated. With the updated decay the state estimation was done to predict 

the concentration plume`s evolution. The assimilation result of a single run is shown in 

Figure 4.6.  The results show the adaptation of the process with the reference true value. 

As the parameter estimation was a random process, the curve started from the vicinity of 

0.3/day and finally converges towards the reference true value of 0.05/day.  
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Figure 4.6.  First-order decay vs. number of time steps with random noises 
                 (single run) 

 

4.8 Effectiveness of Numerical and SIR Particle Filter Scheme with Parameter       
      Estimation 

Figure 4.7 shows the RRMSE for the numerical model (FTCS) and the SIR 

particle filter model with and without the parameter estimation.  The SIR particle filter 

with the parameter estimation reduced the RRMSE to 0.50 from 2.3. The improvement of 

the new method is about 78% compared to the deterministic FTCS method while the 

earlier PF method without the parameter estimation has a 48% improvement. 
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Figure 4.7. RRMSE for the Numerical model and the SIR particle filter model with 
         and without parameter estimation 

 

4.9 Sensitivity Analysis of the Parameter Estimation 

To test the sensitivity of the parameter estimation, 10 run of the parameter 

estimate was made. The result from the runs is shown in Figure 4.8. The trend of the 

figure clearly shows improvement of the parameter estimation accuracy with time. Here 

the initial sampling of decay was done based on an assumed mean of 0.3/day and with a 

variance of 10% of the mean. Due to this initial sampling the estimation started from the 

assumed mean of 0.3/day and eventually merges towards the true value of 0.05/day after 

30 time steps. The result indicates the new method of weight assignment to the 

parameter`s samples work efficiently in the particle filter scheme.   
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Figure 4.8. First-order decay vs. number of time steps with random noises (10 run) 

 

As the observation value of the parameter was not available, the state observation 

and particle filter state estimate were used in the parameter estimation process. Weights 

of samples were formulated by taking inference from these two states. To investigate the 

effect of the simulated observation on the parameter estimation process, two different 

kinds of noises were used in the reference true solution. The first set of noises was 

created by using fixed random noises in the reference true solution.  The idea was to use 

the same random noises for every time step. Without using different random noises at 

every time step, we generated these noises only once and used it for all the following 

time steps.  
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The second set of noise used in the sensitivity analysis was fixed noise. Rather 

than using random noise, a fixed noise was added to the simulated true field. The main 

theme of this experiment was to add a fixed noise at every time step which is a 

percentage of the true solution obtained from the previous time step. In this study, the 

concentration for each of the 540 nodes was increased by 10% to generate the simulated 

true field. Figure 4.9 shows the sensitivity analysis of the parameter estimation process. 

Figure 4.9. First-order decay vs. number of time steps with variable noises 
    (single run) 

0 5 10 15 20 25 30
0.05

0.1

0.15

0.2

0.25

0.3

Time Step (each time step=0.75 day)

D
ec

ay
(1

/d
ay

)

 

 

Random Noise
Fixed Random Noise
Fixed Noise



34 
 

CHAPTER 5 
 

CONCLUSIONS 

 

In Bayesian state-space theory, the system model, which might start with a very 

weak knowledge about the initial state, can achieve more and more accurate information 

about the state through assimilation with the observation data. In the three-dimensional 

prediction model the particle filter reduces the deviation in each time step by combining 

observation data within model dynamics.  In this study, the effectiveness of the proposed 

Monte Carlo scheme was demonstrated based on a three-dimensional numerical platform. 

An advection–dispersion–adsorption subsurface transport model was constructed in 

MATLAB to predict contaminant plume. A randomly generated noise scheme was 

designed to represent the real world groundwater contaminant transport.  A Sequential 

Importance Resampling (SIR) particle filter with 300 samples was constructed and 

operated as a data assimilation scheme with the stochastic system. The relative root mean 

square error (RRMSE) results indicate that the prediction error of the SIR particle filter 

data assimilation scheme is 48% smaller than the error from the deterministic model. By 

comparison of the plume contour figures, the SIR particle filter scheme also has the 

ability to give predictions that are much closer to any irregular contour shapes of true 

realities than the deterministic model does. 

 Parameter estimation was a significant part of the research. We adopted a 

different statistical approach towards coupling parameter estimation with the sequential 

Monte Carlo method. The main challenge was to develop a fitness function for weights 
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generation. The problem was resolved using the statistical concept of Euclidean norm to 

generate weights for the particles.  Using the SIR particle filter unknown parameter 

(decay) value was predicted successfully.  With the use of the updated parameter in the 

state prediction, prediction error of the SIR particle filter data assimilation scheme 

became 78% smaller than the error from the deterministic model.  Future works include 

the use of the developed fitness function in Genetic Algorithm and Neural Network 

frameworks.  
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