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Abstract

The main focus of this thesis is to understand how congestion that is due to link failure propagates

to successive upstream links, and how well the network maintains system flow under abnormal

conditions. Alleviating network failures depends on how congestion propagates through the

network. In general, units of traffic can move from their origin to their destination quite rapidly,

but the change in flow rates tends to propagate slowly. We develop novel capacity collapse

propagation models that extends significantly the concept of cell-transmission used to partition

links into sections. The sampling is done in such a way that density wave propagates through a

section of the link in one time interval.

A general framework to model interaction between merging and diverging flow patterns is

developed. The models considered for the nodes take into consideration the different types of

intersections that may exist in the network. The capacity collapse propagation models can better

represent networks with substantial propagation delay. The speed of the capacity collapse waves

will be shown to depend on the magnitude of the failure. We integrate our models within the

multicommodity flow framework, in which each commodity (origin-destination pair) uses k ∈ N

link-disjoint paths to satisfy flow-rate demands. The congestion in the links is used to update

the prices of the links, thus affecting the cost of travelling. We solve several minimum-cost

linear-programming problems to control path flow-rate routing decisions triggered by the changes

in the cost coefficients. We conclude that proposed path flow-rate rerouting in response to

the congestion in the links could contribute significantly to network survivability. Numerical

simulations of the proposed models are used to illustrate the concepts.
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CHAPTER 1

Introduction

1.1 Flow Networks

Networks serve to deliver flow through a system of interconnected nodes and arcs. The

purpose of a flow network is the transportation of commodities from specific origins to specific

destinations in response to flow-rate demands. Flow usually refers to the amount or rate of traffic

associated with a route.

Many infrastructure networks can be modeled using concepts from graph theory. Consider

a network represented by a capacitated graph G(N,L), where N is a set of nodes, and L is a set of

unidirectional links. Nodes usually model origins, destinations or transshipment of commodities.

Links are direct, possibly directed, paths between nodes. A path is formed by a sequential

combination of one or more directed links in a network with no repetition of nodes. Every link in

a path is directed away from the origin towards the destination, and allows traffic flow in only one

direction. A network G is said to be connected if there exists at least one path for any node to any

other node in the graph. Basic definitions and elementary properties of graphs are treated in detail

in [1] and [2].

A flow is characterized by its source node and destination node. In general, a commodity

represents a traffic demand between a pair of one source node i ∈ N and one destination node

j ∈ N/{i}. In a practical network, not all nodes participate significantly in meeting a demand

pair; there are often transit nodes used solely for the purpose of routing. Let F represent the set of

all Origin-Destination (OD) pairs. An OD pair f ∈ F has a flow-rate demand df (t) from source i

to destination j. Flow rates are measured in number of traffic units per time interval. Most network

flow problems have to be modeled as multicommodity networks where the flow rates associated
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with an OD pair compete for the capacities of a typical link [3] and [4].

Disruption of network facilities (links/nodes) can considerably hinder the flow of services

through the network. Operational characteristics such as the level of system connectivity,

maximum flow capacity, and the cost of network transportation can be affected by facility damage.

The performance of the network in the event of link failures depends not only on the physical

characteristics of the network but also on the ability of the network to react to failures.

1.2 Flow Survivability

The location and role of network facilities, and the topological relation among them are

vital in the operability of network services. The impact of a link failure in network performance

is reflected in the concept of network vulnerability and reliability analysis. Several optimization

models, also known as interdiction models, have been developed to identify important facilities

with regard to impact on system performance [5] and [6]. A general framework for reliability

analysis in [3] highlights the importance of routing and rerouting in the reliability of flow

networks. Survivability, an emerging principle, extends vulnerability and reliability studies and

focuses on maintaining system flow even when the system has encountered undesired events [7]

and [8].

The concept of survivability as it applies to different types of network has gained in

importance in recent years. A general definition presented in [9] summarizes survivability as the

system’s ability to continuously deliver services in compliance with the given requirements in the

presence of failures and other undesired events. This capability should not depend on the survival

of a damaged facility. It is the compromised services, not any particular network component, that

must survive.
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1.2.1 Failures. A variety of threats, like attacks, accidents, and failures, may cause minor

or major service degradations. These undesired events can be broadly categorized as failures and

accidents. Accidents describe externally generated events such as natural disasters or targeted

attacks. On the other hand, failures represent internally occurring potentially damaging events that

are usually caused by deficiencies in the system due to traffic congestion, link/node failure and

repair.

Failures and accidents are included as part of survivability. With respect to system

survivability, the impact of the event is more important than the type of the event. The definitions

of survivability concentrate on the effect of a damaging event without any reference to the events

that caused it. In fact, for a network to survive, it must successfully recover from the failure

whether the cause is determined or not. A failure in the network can be represented as a specific

reduction of link capacity.

1.2.2 Essential services. Essential or critical services are defined as the functions of the

system that must be preserved when the network is exposed to undesired events, [7] and [9]. These

services have strict requirements for reliability. If an essential service is lost, it must be replaced

by another but equivalent service that satisfies the survivability requirements in a different way.

The service in flow networks can be to satisfy the flow demand between specified origin

and destination nodes. The availability of paths supporting OD pair flows is a requirement for

survivability. In [7], essential services are defined to include alternate set of mutually exclusive

essential services that need not be simultaneously available. So, to enhance the survivability of

a flow network, the shortest paths are equipped with alternative paths supporting OD pair flow

demands. In order to ensure the reliability requirements, a path that delivers flow through a failed

link can be replaced with another path that is link-disjoint to the first path but serves the same OD
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pair flow.

1.2.3 Reliability measures. A general framework for calculating a reliability measure

for several types of flow networks is presented in [3]. The approach emphasizes the importance of

routing on top of network connectivity and performability. Performability is defined in [10] as a

reliability measure that is commonly used to evaluate how well a flow network reacts to a failure.

Unlike connectivity measures, performability considers the flow nature of networks in evaluating

network reliability. Connectivity measures are related to the probability of conservation of the

graph structural properties in the event of failures, [5] and [9]. Flow rerouting, proposed in [3] as

a reliability measure in transportation systems, accounts not only for the probabilities of terminal

connectivity or the capacity of the network, but also the ability of the system to adjust its flow

after a failure.

1.3 Source Rate Control

Survivability of a system also depends on the routing and the congestion control schemes

in place [11]. The need for networks to operate in non-cooperative environments has stimulated

work on optimization approaches to rate control algorithms. There are several articles on rate

control algorithms. The important papers of Kelly [12] and [13] and Low [14] pinpointed

optimization approaches to flow-rate control schemes that have proved to be stable. The basic

algorithm requires communication of link prices to sources and source rates to links. The rate

control schemes addressed the issue of fairness, as there might be unfair network throughput

distribution in situations where a given scheme maximizes network throughput while denying

access to some users.

A common approach to flow control is to decompose the problem into a static optimization

problem and a dynamic stabilization problem. The former incorporates fairness, capacity
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constraints, and utilization. Its solution provides the desired steady-state operating point. The

source rate and link price update laws are then designed to guarantee stability and robustness of

the equilibrium.

The articles in [12]-[17] motivate the modeling of flow control by an optimization problem

and derive their control mechanisms as solutions to the optimization problem. The objective in this

approach is basically to maximize the aggregate source utility, and sources with different values

of bandwidth should react differently to network congestion. This is accomplished by means of

pricing signals transmitted from links to sources. The sources then adjust their transmission rates

accordingly. Two types of traffic are renowned in communication networks: elastic traffic and

inelastic traffic.

1.3.1 Elastic traffic. Elastic traffic adjusts its throughput between end hosts in response

to network condition. It has adaptive transmission rates generated by delay-tolerant traffic such

as file transfer or E-mail applications. In the context of data networks, the source flow control

models are designed to address flow demands of an elastic traffic. They have the advantage of

controlling the packet injection rates depending to the availability of bandwidth.

1.3.2 Inelastic traffic. The other important class of flows is inelastic with fixed flow

arrival rates. Inelastic flows usually model delay-sensitive and high-priority applications such as

video and audio streaming. The approach in [18] uses an optimization model for heterogenous

traffic that consists of both elastic and inelastic flows. The arrival rate of the inelastic flow is

assumed to follow a stochastic process that is identically and independently distributed (i.i.d.)

over time with a fixed mean rate.
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1.4 Traffic Evolution

The network flow control approaches did not consider queuing and propagation delay in

the network. They assumed that traffic units at the sources reach their destinations instantly. But in

reality, it takes some time to accomplish OD pair flows, i.e. links down in the path sense the flow

at the origin at a later time. The propagation delay is significant in most transportation networks.

In situations where there is latency, the concept of cell-transmission is introduced by

Daganzo in [19] and [20]. The cell-transmission model predicts the evolution of traffic flows

over time based on a simple macroscopic simulation of traffic flow. The cell-transmission model

promotes a discrete-time strategy where current conditions are updated every time as the clock

advances. The authors in [21] reduce the model into the single-destination dynamic traffic

assignment problem.

1.5 Problem Statement

We study the flow control of transport networks in the presence of inelastic traffic

requirements. This is the more difficult and general case and apply to other types of networks

such as highway networks. Much of the existing work [12]-[17] on flow control approaches

concentrates on elastic traffic. They are concerned with maximizing source transmission rates so

as to fully utilize the resources of the network while complying with capacity constraints in the

links. We will extend that and develop a flow control optimization approach for inelastic flow

demand requirement. To that end, we intend to carefully redistribute the OD pair flows into their

available routes.

For the sake of utilizing the network flow control approaches, we extend the cell

transmission model by assuming that congestion waves travel much more slowly than the traffic

to discretize the links of the network. Then we formulate capacity collapse propagation models at
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link level. We will also propose possible congestion propagation and conflict resolution models at

the merging and diverging nodes of a network.

Flow control algorithms differ in their choice of objective functions or their solution

approaches, and result in rather different flow control mechanisms to be implemented at the

sources and the network links. In our model, we treat inelastic flows that cannot be controlled

using utility functions. This leads systematically to refine the objective of the optimization based

flow control (2.2) to load balancing. For this purpose, our approach aims to minimize the cost of

network transportation as a measure of network performance.

The effectiveness of flow routing basically depends on the availability of alternative paths.

We consider the multicommodity flow problem, in which each commodity uses k ∈ N paths to

address Origin-Destination (OD) flow-rate demands. The k alternative path are ideally required to

be link-disjoint. To that end, we extend the k successively shortest link-disjoint paths generation

criterion in [22] to include paths that are first-link disjoint. As a result we have more versatility in

availability of substitute paths.

A linear program based controller is then used to assign the flow rates into alternative

paths with the objective of minimizing the cost of network transportation. The formulation of the

controller satisfies the flow demand requirements in addition to the capacity constraints. The price

signals reflect the intensity of traffic congestion in the links and have a hold up in calculating the

cost of travelling. The controller reassigns the traffic into relatively inexpensive paths in order to

avoid further backlog buildup in the network.

Incorporating rerouting capabilities into the network can substantially reduce the risk of

disruptions. Survivability can be further improved through restoration of compromised OD pair

flow rates following a damaging event.
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1.6 Synopsis

The thesis is organized as follows. In Chapter 2, we present background information that

will help to understand the material. The network flow control algorithms and cell-transmission

models will be discussed. Chapter 3 focuses on congestion propagation in links and conflict

resolution at intersection nodes. The models assumed for diverging and merging nodes are

compared and analyzed using numerical example. In Chapter 4 an LP-Based flow control

approach will be proposed. The applicability of the network flow models in flow survivability will

also be considered. In Chapter 5, numerical examples illustrating capacity collapse propagation

and the importance of flow rerouting for single and multiple link failure scenarios will be

discussed. Chapter 6 concludes the thesis and points to future research possibilities.
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CHAPTER 2

Background Information

2.1 Network Flow Control Schemes

2.1.1 The basic model. Consider a network that consists of a set of L links of

finite capacity cl, l ∈ L. The network is shared by a set P of routes. A route r ∈ P is a

non-empty ordered subset of L and it is associated with an OD pair, also called a source, or a

user. The interconnections between the links and the paths are defined through a routing matrix

R = (Rlr, l ∈ L, r ∈ P ). The link-path indicator variable Rlr is defined as

Rlr =

{
1 if l ∈ r, so that resource l lies on route r,
0 otherwise.

(2.1)

A rate xr is describes to the source r, and its utility is denoted Ur(xr). The utilization

function Ur(xr) is assumed to be increasing, strictly concave and continuously differentiable in

its argument over the range xr ≥ 0. The objective of the optimization problem is to maximize

the sum of the utilization functions Ur(xr) over all sources while complying with the capacity

constraints of the links:

SY STEM(U,R, c) : max
x≥0

∑
r∈P

Ur(xr) (2.2)

s.t. : y = Rx ≤ c, x ≥ 0 (2.3)

where y is the aggregate source rate at the links.

yl =
∑
r∈P

Rlrxr, l ∈ L. (2.4)

The constraint (2.3) enforces that the aggregate source rate at any link should not exceed the

capacity of the link. A unique optimizer exists since the objective function is assumed to be
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strictly concave and continuous.

By using the Lagrangian multiplier, p, the inequality constraint can be brought into the

optimization problem:

min
p≥0

max
x≥0

L(x, p) = min
p≥0

max
x≥0

∑
r∈P

Ur(xr)−
∑
l∈L

pl
∑
r∈P

(Rlrxr − cl) (2.5)

= min
p≥0
{max
x≥0

∑
r∈P

(Ur(xr)− xr
∑
l∈L

Rlrpl) +
∑
l∈L

plcl}

= min
p≥0
{
∑
r∈P

max
x≥0

(Ur(xr)− xr
∑
l∈L

Rlrpl) +
∑
l∈L

plcl}

Since the utilities U are unlikely to be known by the network, the approach taken in [12]

and [13] decomposes SY STEM(U,R, c) (2.2-2.3) into two simpler problems: a user subproblem

and a network subproblem.

The first term in (2.5),
∑

r∈P maxx≥0(Ur(xr) − xr
∑

l∈LRlrpl), is decomposed into |P |

separable subproblems. If pl represents the price per unit flow at link l, then qr represents the total

price per unit flow for all the links in path r,

qr =
∑
l∈L

Rlrpl. (2.6)

Hence, the user subproblem is to select transmission rates xr in order to maximize the

users total benefit at the given prices qr. If user r is charged an aggregate price qr per unit flow,

and is allowed to freely vary the flow xr, then the utility maximization problem for user r is

USER(Ur; qr) : max
xr≥0

Ur(xr)− xrqr (2.7)

The price vector p takes the role of a coordination signal that lines up the optimal value of USER

(2.7) to the optimal value of SY STEM (2.2).

If the network receives a revenue qr per unit flow from user r, and is allowed to freely vary
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the flows x, then the revenue optimization problem for the network is

NETWORK(R, c; q) : max
∑

qrxr (2.8)

s.t. : Rx ≤ c, x ≥ 0

Theorem 2.1: There exists a price vector q = (qr, r ∈ P ) such that the vector x =

(xr, r ∈ P ), formed from the unique solution xr to USERr(Ur; qr) for each r ∈ P , solves

NETWORK(R, c; q). The vector x then also solves SY STEM(U,R, c). The proof to the this

theorem is given in [12].

The objective function (2.2) is separable in the source rates xr which are coupled by the

constraints (2.3). As a result, solving the optimization problem (2.2-2.3) requires coordination

among the users.

The network’s optimization problem modeled in primal and dual forms proposed by Kelly

[12] and Low [14] lead to two classes of rate control algorithms: the primal algorithm and the

dual algorithm. These algorithms provide source and link update laws that are decentralized. The

sources do not have information about the utilization functions of other sources, and the links do

not have knowledge of the capacities of other links. The flow rates corresponding to a path can

only depend on the price of the path, and the price corresponding to a link can only depend on the

total flow in the link. The routing information contained in the routing matrix R are unknown to

the sources and the links.

2.1.2 The primal algorithm of Kelly [12]. In [12], Kelly developed a model in which a

user chooses the charge per unit time and the network determines the user’s rate. It is shown that a

system optimum is achieved when users’ choices of charges and the network’s choice of allocated

rates are in equilibrium. Later in [13], he proposed the primal algorithm using explicit rates based
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on link prices, that are shown to provide stability and fairness.

The primal algorithm consists of a first-order source update law and a static link penalty

function to keep the aggregate rate below its maximum capacity. Given the utility function for

each source, the source update law is given by

d

dt
xr = κ(U ′r(xr)− qr) (2.9)

where κ is a constant.

Equation (2.9) corresponds to a response flow-rate by user r to an increase in price by

adjusting the flow-rate on route r, xr. The network attempts to equalize the aggregate price per

flow of route r, qr, to the derivative of the utility of the user, for every r ∈ P .

When link l generates a price signal, it is interpreted as a congestion indicator requiring

each user whose route passes through the link to reduce some flow. Suppose that link l generates a

continuous stream of feedback signals at rate f(yl) when the total flow through resource l is yl, the

link update law is given as a penalty function that enforces the link capacity constraint yl ≤ cl,

pl = f(yl). (2.10)

2.1.3 The dual algorithm of Low [14]. Equations (2.9-2.10) present a system where rates

vary gradually, and prices are given as functions of the aggregate rates. The link rate constraint

enforced by using the penalty function fails to take the link queue dynamics into consideration.

A dual approach is also proposed in [13], where the links use a first-order dynamics of the price

update. Moreover, the source rate update is given as a function of the prices. The continuous-time

link update law where link prices vary gradually is given as

d

dt
pl(t) = κ(yl(t)− cl) (2.11)
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where κ is a constant.

A related approach has been developed in [14] to solve the same optimization problem

(2.2-2.3) based on discrete-time models. A gradient projection method is used to solve the

dual problem where link prices are adjusted in opposite direction to the gradient. In the special

case where Ur = wr log xr the two approaches were shown to provide equivalent results. The

discrete-time link update is

pl(t+ 1) = [pl(t) + γ(yl(t)− cl)]+ (2.12)

where γ > 0 and [z]+ = max{0, z}. The price adjustment rule in (2.12) is consistent with the law

of supply and demand: if the total flow at link l exceeds the supply capacity, the price increases;

otherwise the price decreases.

The static source rates are given by the primal solution (2.9) as a function of the path

price

xr = U ′−1
r (qr) (2.13)

Each source solves (2.13) and communicates its rate xr to links on its path. Given the total source

rate yl through link l, the links then update their prices pl in accordance with (2.12), and then

communicate the new prices to the sources contributing to the aggregate flows in the links.

The first-order link price update law (2.12) indicates that price pl integrates excess demand,

which is exactly what a backlog variable bl does

bl(t+ 1) = [bl(t) + yl(t)− cl]+. (2.14)

In other words, prices become proportional to backlogs, and thus an increase in price can only

be achieved by increasing the backlog. This deficiency has motivated the work in [15] to couple
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the congestion measure pl with the performance measure bl. Thus, the price update law (2.12) is

replaced by

pl(t+ 1) = [pl(t) + γl(αlbl(t) + yl(t)− cl)]+ (2.15)

where αl and γl are constants. This second-order price dynamics with an additional term involving

the backlog attempts to achieve high utilization while clearing the backlog. The extra integrator,

bl(t), guarantees that any equilibrium will have empty buffers as opposed to large buffers in

(2.12). The stability proof for this higher order system in continuous-time is given in [16].

Recent works in [17] extends the primal and dual control schemes to a broader classes of

flow control laws using the concept of passivity. The idea of a combined primal/dual flow control

with dynamic-source and dynamic-link update laws is also discussed in [17].

2.2 The Cell-Transmission Model

The behavior of multicommodity traffic flows over networks can be predicted over time,

based on a simple macroscopic simulation of traffic flow. The cell transmission model introduced

in [19], [20] is one such approach for modeling highway traffic flow using the hydrodynamic

analogy. The model assumes that every link is divided into small homogeneous sections called

cells.

The cell transmission model reduces the hydrodynamic model to simple difference

equations by assuming a piecewise linear relationship between flow and density at the cell level.

The relationship between traffic flow (y) and density (ρ) is of the form

y = min{vρ, ymax, vw(ρc − ρ)}, for 0 ≤ ρ ≤ ρc (2.16)

where v, ymax, w, and ρc are constants. v is the free flow speed measured in distance covered per

unit time, ymax is the maximum flow-rate (or flow-rate capacity), vw is the backward propagation
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speed, and ρc is the congestion density. The equation of state of the cell-transmission model can

be represented using flow-density graph as shown in Figure 2.1.

density

flo
w

wv

c

11
+

ρ

v w−

maxy

Cρ

Figure 2.1. The equation of state of the cell-transmission model.

The difference equations can further be reduced to simple linear relationships of flow and

occupancy at the cell level. The occupancy level is the product of the cell’s length and its density.

The length of each cell is chosen in [19] as the distance traveled by free-flowing traffic in one

time interval. Free-flowing traffic in a cell advances to the next cell with each clock tick. The time

interval is assumed to be 1. Suppose cells are numbered starting with the upstream end of the

road. For two consecutive sections s and s+ 1, the system’s evolution obeys

ns+1(t+ 1) = ns(t) (2.17)

where ns(t) is vehicle occupancy in cell s at time instant t. The recursion (2.17) holds unless

traffic is slowed down by congestion from a downstream bottleneck where flow exceeds capacity.

The state of the system at time instant t is given by the number of vehicles contained in
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each cell, ns(t). To capture the effect of congestion in each cell, the following parameters are

defined: Bs(t), the maximum number of vehicles that can be present in cell s at time t, and Cs(t),

the maximum number of vehicles that can flow into cell s when the clock advances from t to

t+ 1. These parameters can vary with time to capture time-dependent capacity and flow as per the

occurrence of transient traffic incidents. Bs(t) is defined to be the product of the cell’s length and

its congestion density.

The cell-transmission model is expressed by the following recursive relationship with the

state of the system being updated with every tick of a clock,

ns(t+ 1) = ns(t) + ys(t)− ys+1(t), (2.18)

where ys(t) is the inflow to cell s in the time interval (t, t+ 1). The flows in relation to the current

conditions at time t is given by:

ys(t) = min{ns−1(t), Cs(t), σ[Bs(t)− ns(t)]} (2.19)

where σ = w/v ≤ 1.

Since the number of vehicles that enter a cell, see (2.19), is only influenced by the current

conditions in the cell, the inflow to a cell is unrelated to the number of vehicles that will leave it.

The occupancy restriction ys(t) ≤ σ[Bs(t)− ns(t)] in (2.19) is due to the fact that empty slots for

vehicles can only travel backwards at a finite speed (the density wave propagation speed) unlikely

to be greater than the free flow speed. Therefore, the effects of the outflow should only be noticed

upstream after some time. For the cell-transmission model, this lag is one tick of the clock and it

is equivalent to assuming that density waves propagate backwards at the free flow speed.
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CHAPTER 3

Capacity Collapse Propagation

3.1 Link Discretization

In this section, we extend the cell-transmission model discussed in [19] and [20]. We will

refer to cells as sections throughout the remainder of thesis. The equation of state in (2.16) guides

the choices of the free flow speed v, the maximum flow-rate ymax, and the congestion density ρ.

The assumption in the cell-transmission model forces the density wave speed, vw, to match the

free flow speed, v. But, in reality, the waves propagate more slowly than free flowing traffic. This

changes the manner in which capacity collapse and density waves propagate in the network.

The backward propagating waves indicate the availability of downstream capacity and

occupancy. In [23], we considered the propagation of congestion over long links not including

intersection nodes. The model assumes that units of traffic can move from their origin to their

destination quite rapidly, but the change in flow rates tends to propagate slowly through the links

of the network. Here we will elaborate this model in much more detail. The individual units of

traffic move at a speed measured in distance travelled per unit time whereas the flow rates are

measured in number of traffic units passing during one unit time interval.

Suppose link Ln in Figure 3.1 is discretized into sections S1, S2, · · · S7. We designate T as

the set of discrete-time instants, i.e. T = {0, τ , 2τ , 3τ , · · · } where τ is the sampling time interval.

The discretization is done such that density waves propagate one section of a link within one time

interval. The length of each section equals the distance traveled by the wave in one time interval.

The free-flowing traffic is assumed to travel so fast that it traverses all the sections of a link in one

time step. Therefore, the effects of outflow should only be noticed upstream after some delay.
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Ln

S1 S2 S3 S4 S5 S6 S7

Figure 3.1. Link Ln discretized into sections S1, S2, · · · S7.

3.2 Congestion Propagation in Links

Let S be the set of sections in a link. To capture the effect of congestion in each section,

the following variables are defined. Let Cs[t] denote the maximum capacity of section s during

the interval [t, t+ τ) and Bs[t] is the maximum occupancy of section s at time t. These parameters

vary with time to model traffic incidents such as link failure.

Let ns[t] denote occupancy of section s at the beginning of the time interval [t, t+ τ). The

available-occupancy in section s, as[t], is the amount of empty space for incoming traffic in the

section. It is given as

as[t] = Bs[t]− ns[t]. (3.1)

Let cs[t] denote the rate capacity of section s; i.e., the maximum flow-rate that can depart the

section during the interval [t, t+ τ). A change in rate capacity and available-occupancy can occur

when a subsequent section is congested.

For two successive sections s and s+ 1, the capacity update for section s is defined as the

smaller of the maximum capacity of the section and the available-occupancy in the next section;

i.e.,

cs[t] = min{Cs[t],
as+1[t]

τ
}, s < |S|. (3.2)

The rate capacity update at the last section of the link, i.e. s = |S|, depends on the type of nodes
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and the assumed conflict resolution models at the intersections. This matter is treated in detail

in Section 3.4. The instantaneous rate capacity csl [t] and available-occupancy asl [t] capture the

time-dependent characteristics, and they depend on the congestion level [19]-[21].

The inclusion of the available-occupancy of the consequent section, as+1[t] in (3.2) models

the capacity collapse propagation to preceding sections at times of congestion. The capacity in a

section collapses when the downstream section is clogged. The excess traffic blocks the upstream

traffic, and thus the capacity collapse propagates to the beginning of the link. The speed of the

capacity collapse wave depends on the rate at which the sections are being filled. The closer the

flow-rate to the available-occupancy of a section during the time interval, the faster the section

will be occupied, and the faster the collapse will propagate. For very small flow rates it takes a

longer time to fill up the section and thus the collapse wave propagates slower.

Example 4.1: Suppose the available-occupancy is 30 units of traffic, and if the flow-rate is

30 units of traffic per time step, it takes only one time step to fully occupy the section. In contrast,

if the flow-rate is 5 traffic units per time step, it takes 6 time intervals for the available-occupancy

to be used up. In other words, the collapse wave is 6 times slower in the later case. Note that the

particle speed is irrelevant in this calculation, unless it is too small.

3.3 Flow-Rate and Occupancy

The flow-rate control algorithms in [12]-[17] essentially assume that traffic injected

into the source nodes arrive at their destinations instantaneously. In reality, traffic will reach

downstream nodes only after a queuing and propagation delay incurred in the intermediate nodes.

The congestion information travels slower than the speed of the actual traffic. The delay in

congestion propagation is significant in transportation networks and it is worth considering to

understand the buildup of backlogs at bottleneck links. For this reason, we keep track of the flow



22

rates in the individual sections of a link.

The flow-rate in excess of the capacity of a section will be backlogged and occupy the

section at least for one time interval. Let bs[t] be the traffic backlog in section s and it is defined

as

bs[t] = [ns[t] + ys[t]τ − cs[t]τ ]+ (3.3)

where [z]+ , max{0, z} and ys[t] is the flow-rate entering to cell s within the interval [t, t+ τ).

The occupancy of the section is updated at each clock tick as

ns[t+ 1] = bs[t]. (3.4)

Equation (3.3) models the backlog build-up process in which traffic in excess of the available-

occupancy of a section will spillover to the upstream section.

The links in a network are shared by a set of OD pair flows. The traffic units arriving at the

link join the first section and travel through the subsequent sections. Here, we have assumed that

units of traffic travel very fast and thus the inflow rate in the sections of the link is given by

ys+1[t] = min{ns[t]
τ

+ ys[t], cs[t]}. (3.5)

As it is indicated in (3.5), the inflow to a section is unrelated to the number of traffic that

will leave it. The outflow from a section cannot exceed its capacity which is determined by the

availability of empty space at the adjacent downstream section as defined in (3.2). The inclusion

of ys[t] in the total outgoing flow-rate,
bs[t−1]
τ

+ ys[t], models the assumption that the incoming

traffic units can leave the section within the same time interval.

Equation (3.3) models the backlog build-up process at the section level. The backlog in
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the link is therefore

b[t] =
∑
s∈S

bs[t]. (3.6)

The links then update their price according to the second-order dual algorithm in [15], and the

discrete time price update law is

p[t+ 1] = [p[t] + γ(αb[t] + y[t]− c[t])]+ (3.7)

where γ > 0 and α > 0 are price sensitivity constants, and c[t] is the rate capacity of the link.

Price is interpreted as a congestion indicator requiring some reaction in the flow

controllers. The links feed back the price signals to the flow sources that utilize the information to

compute the aggregate prices, qr[t], r ∈ P,

qr[t] =
∑
l∈L

Rlrpl[t], (3.8)

in order to facilitate the path choice decisions.

3.4 Congestion Propagation at Intersections

Section 3.2 discussed how backlog propagates along links. We are further extending the

cell-transmission model to model congestion propagation at intersection nodes. All links in a

network have starting and terminating nodes. A node serves as a junction where incoming and

outgoing links meet. The behavior of congestion propagation at junctions depends on the types of

interactions occurring at the nodes. The nodes in a network can be mainly categorized as merging,

diverging, or a combination thereof. A transit node can be considered as a special case with one

incoming link and one outgoing link.
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3.4.1 Merging nodes. Merging nodes are identified by one outgoing link and one or more

incoming links. In Figure 3.2, links L1, L2 and L3 are competing for the resource in Lout. Flow

disruption occurring in Lout affects all the links incident on the node. The scarcity of downstream

available-occupancy raises the issue of handling the contention of flow-rate demands amongst the

incoming links.

L3

L1

L2 Lout

Figure 3.2. A merging node.

Suppose there are m incoming links to a given merging nodes, which are denoted as

L1, · · · , Lm. Let the outgoing link be denoted by Lout. The effective capacity of the incoming

links combined together is constrained by the availability of the downstream link, Lout,

cL1 + cL2 + · · ·+ cLm ≤
aLout
τ

. (3.9)

A capacity loss in Lout will affect the flow in the incoming links and the failure propagates

accordingly. The capacity collapse becomes apparent when the available-occupancy in Lout falls

short of the total flow entering the node. This conflict can be resolved in many ways.

Following is a list of models that can be applied to determine the capacity distribution

among the incoming links at every instant of time t ∈ T.

Model M1: Equal sharing: The available-occupancy at outgoing link is shared equally
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among the incoming links at the merging node.

cl =
1

m
× aLout

τ
, l ∈ {L1, · · · , Lm}. (3.10)

Example 4.2: Suppose m = 3 as in Figure 3.2. The capacity of the incoming links is

therefore

cl =
1

3
× aLout

τ
, l ∈ {L1, L2, L3}.

Model M2: Random proportions: The available-occupancy in the outgoing link will be

randomly divided among the incoming links. The merging node simply generates a set of random

numbers [ϕL1 , · · · , ϕLm ], ϕl ∈ [0, 1], l ∈ {L1, · · · , Lm} and

∑
l∈{L1,··· ,Ln}

ϕl = 1 (3.11)

that determine the proportion of the downstream capacity going to each link. In that case,

cl = ϕl ×
aLout
τ

. (3.12)

Example 4.3: Suppose m = 3 as in Figure 3.2. Suppose the available-occupancy at

Lout be 20 units of traffic per time interval. The merging node generates three random numbers

[0.2, 0.7, 0.1] respectively for {L1, L2, L3}. Thus, the capacity apportionment will be

cL1 = ϕL1 ×
aLout
τ

= 4

cL2 = ϕL2 ×
aLout
τ

= 14

cL3 = ϕL3 ×
aLout
τ

= 2

Model M3: Based on priority: The merging node can set priorities to the incoming

links in several ways. The simplest way could be to set the priority ranking in advance or to do
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random ranking in every time interval. The priorities can also be defined using parameters and/or

measurements such as the amount of backlog, the number of supported paths, or the waiting time

in the incoming links. We concentrate on the case where the priorities are defined based on the

amount of backlog in the incoming links. The merging node assigns the highest priority to the link

with the largest backlog, and the link with the smallest backlog will have the least priority. The

traffic in the lower-ranking links will get a chance to clear out only after the traffic in the higher

priority links has flushed out.

Let the priorities be denoted by the permutation π = [π1, π2, · · · , πm] of 1, · · · ,m. Then

the links in descending priority order can be denoted as L′1, L
′
2, · · · , L′m with L′1 having the highest

priority. Then, the capacity update laws are

cL′1 = min
{
CL′1 ,

aLout
τ

}
(3.13)

cL′2 = min
{
CL′2 , [

aLout
τ
− (yL′1 +

nL′1
τ

)]+
}

...

cL′m = min{CL′m , [
aLout
τ
−

∑
l∈{L′1,L′2,··· ,L′m−1}

(yl +
nl
τ

)]+}

The backlog on the incoming links can be flushed in duration τ if there is enough available-

occupancy in the outgoing link.

Example 4.4: Suppose the set of priorities for the incoming links in Figure 3.2

{L1, L2, L3} be π = [1, 2, 3] and the sampling time τ = 1. The capacity distribution among the
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incoming links using the proposed model is therefore

cL1 = min{CL1 , aLout} (3.14)

cL2 = min{CL2 , [aLout − (yL1 + nL1)]
+} (3.15)

cL3 = min{CL3 , [aLout − (yL1 + nL1 + yL2 + nL2)]
+} (3.16)

Equation (3.14) captures the fact that L1 has the highest priority to flush out its backlog.

L2 comes 2nd in the rank and will flush off its content only after the traffic in L1 is cleared out

(3.15). Traffic in L3 has the least priority and it will move forward last.

Example 4.5: Suppose the occupancy in L1, L2, and L3 are 15, 10, and 5 units of traffic

respectively at t ∈ T . The priority ranking based on backlog will be [1, 2, 3]. Table 3.1 illustrates

the possible scenarios depending on the amount of available-occupancy in Lout. The link flow and

the maximum capacity variables are excluded in the discussion for the sake of simplicity.

Table 3.1

Merging node Rule 3 illustration

aLout/τ cL1 cL2 cL3 nL1 [t+ τ ] nL2 [t+ τ ] nL3 [t+ τ ]

30 15 10 5 0 0 0

20 15 5 0 0 5 5

15 15 0 0 0 10 5

10 10 0 0 5 10 5

0 0 0 0 15 10 5

Model M4: Fixed proportions: Despite the changes in capacity happening in the outgoing

link, the merging node statically allocates capacity based on proportions set beforehand. This

model is defined as in (3.12) with proportions [ϕL1 , · · · , ϕLm ] known in advance.
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Model M5: One link at a time: Among the links terminating at the merging node, one link

is selected based on a priority measure, and it will be allowed to use the entire capacity in the

outgoing link during the interval [t, t+ τ). Suppose the incoming links are arranged in descending

priority order denoted as L′1, L
′
2, · · · , L′m with L′1 having the highest priority. Then

cL′1 = min{CL′1 ,
aLout
τ
}. (3.17)

The traffic in L′2, · · · , L′m will be delayed till another selection takes place at the beginning of

the next time interval. This model is reminiscent of traffic policeman who prefers to flush a

backlogged traffic.

Example 4.6: For the merging node in Figure 3.2, suppose that L′1 = L2 and τ = 1. The

merging node implementing Model M5 assigns the downstream capacity to L2.

cL2 = min{CL2 ,
aLout
τ
}. (3.18)

Model M6: Through rotation: The incoming links to a merging node will be allowed to

use the entire downstream available-occupancy in turn at every clock tick on rotation basis. The

order of rotation needs to be determined ahead of time. Let the incoming links be arranged based

on their rotation order and denoted as L′1, L
′
2, · · · , L′m.

cL′1 = min{CL′1 ,
aLout
τ
}, during [t, t+ τ) (3.19)

cL′2 = min{CL′2 ,
aLout
τ
}, during [t+ τ , t+ 2τ)

...

cL′m = min{CL′m ,
aLout
τ
}, during [t+ (m− 1)τ , t+mτ).

This is reminiscent of traffic light. For simplicity we have only shown the case where
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every competing link gets equal time.

Example 4.7: Suppose in Figure 3.2, the sequence of rotation is L2, L1, L3.. Thus, L1 and

L3 must be on hold during the interval L2 is allowed full access to the capacity of Lout. During

the next time interval, traffic in L1 will have the privileged to advance to L4 while L3 and L2 wait

on hold for their turn. L3 transmits in the next time slot while traffic in L2 and L1 is stalled till a

later time.

All the models suggested for a merging node (3.10) - (3.19) can be used to represent transit

nodes where m = 1. For example, consider the model in (3.13) which reduces to

cL1 [t] = min
{
CL1 ,

aLout
τ

}
. (3.20)

The model in (3.20) represents capacity collapse propagation at transit nodes in harmony with

equation (3.2).

3.4.2 Diverging nodes. Diverging nodes are those nodes with one incoming link and

more than one outgoing links. Figure 3.3 shows a typical diverging node with incoming link Lin

and a set of outgoing links {L6,L7,L8}. Because all the outgoing links share a common node, a

failure in one of the links will affect the flow through the other links as well. The multicommodity

flow through the incoming link branches off into the different outgoing links towards their

destination.

Suppose there are m outgoing links L1, · · · , Lm from a given diverging node. The

incoming link is denoted by Lin and it carries a mix of flows of multiple destinations. The

propagation of capacity collapse to the incoming link and the response of a diverging node to

changes in occupancy in the branching links can be modelled in various ways. Every model
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L6

L8

Lin
L7

Figure 3.3. A diverging node.

should satisfy the continuity requirement

0 ≤ cLin ≤
∑

l∈{L1,L2,··· ,Lm}

al
τ
. (3.21)

If the available-occupancy of the the incoming link goes down to zero, the rate capacity of the link

will collapse; i.e.,

cLin = 0 if aLin = 0. (3.22)

In general, the maximum capacity of the incoming link is typically reduced as a function of the

backlog occupying the incoming link. Let C ′Lin denote the net maximum capacity

C ′Lin = [CLin −
β × nLin

τ
]+ (3.23)

where 0 ≤ β ≤ 1 is a constant that can be assumed or determined empirically.

The propagation of capacity collapse to the incoming link and the response of a diverging

node to changes in occupancies in the branching links can be modeled in various ways. All of the

assumed models implicitly enforce (3.21) and (3.22) in resolving conflicts at the diverging node.

Following are some possible models for diverging nodes.
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Model D1: The incoming link operates at full capacity.

cLin = C ′Lin , (3.24)

where CLin is the maximum capacity of Lin.

Model D2: The incoming link operates at a capacity that is the smallest of its maximum

capacity and the available-occupancies in the outgoing links,

cLin = min{C ′Lin ,
aL1
τ
,
aL2
τ
· · · , aLm

τ
}. (3.25)

Example 4.8: In Figure 3.3 m = 4. The incoming link capacity is therefore,

cLin = min{C ′Lin ,
aL6
τ
,
aL7
τ
,
aL8
τ
}. (3.26)

Model D3: The incoming link operates at a capacity that is the minimum of the maximum

capacity and the total available-occupancy in the outgoing links,

cLin = min{C ′Lin ,
∑

l∈{L1,L2,··· ,Lm}

al
τ
}. (3.27)

Model D4: The incoming link takes up the available-occupancies of the outgoing links on

rotation basis. The rotation orders are set in advance. Let the outgoing links be arranged based on

their rotation order and denoted as L′1, L
′
2, · · · , L′m.

cLin = min{C ′Lin ,
aL′1
τ
}, during [t, t+ τ), (3.28)

cLin = min{C ′Lin ,
aL′2
τ
}, during [t+ τ , t+ 2τ),

...

cLin = min{C ′Lin ,
aL′m
τ
}, during [t+ (m− 1)τ , t+mτ).
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Model D5: The incoming link operates at a capacity equal to the minimum of its maximum

capacity and the available-occupancy of an outgoing link that is chosen randomly.

cLin = min{C ′Lin ,
al
τ
}, l ∈ {L1, L2, · · · , Lm}. (3.29)

3.4.3 Complex nodes. Complex nodes are described by a many to many relationship

between sets of incoming and outgoing links. An illustration of a complex node shown in Figure

3.4 has a set of arriving links, {L1,L2,L3}, and a set of departing links, {L6,L7,L8,L9} sharing a

common node. The interaction of multicommodity flows at a complex node is manifold. Complex

nodes combine the features in merging and diverging nodes. Hence, it is not straightforward to

establish models that could resolve the conflict at the complex nodes when a change in occupancy

occurs in the outgoing links.

L3

L1 L6

L8

L2 L7

Figure 3.4. A complex node.

A simple but powerful approach is to apply a network transformation to split the complex

node in Figure 3.4 into a merging and a diverging nodes as depicted in Figure 3.5. The individual

nodes in the transformation are bridged with link L4 which is assumed to exhibit enough capacity

to channel the outbound flow.
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L2 L4
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Figure 3.5. A complex node transformed into a merging and a diverging node.

Model C1: Suppose there are m outgoing links at a given complex node, which are

denoted as L1, · · · , Lm. Let Lλ denotes the link that bridges the merging and the diverging nodes

in the transformed complex node. For the transformation to keep the properties of the complex

node, the maximum capacity of Lλ is set equal to the sum of the maximum occupancies of the

diverging links per time interval.

CLλ =
∑

l∈{L1,··· ,Lm}

Bl

τ
(3.30)

The instantaneous capacity of the bridging link, Lλ, is constrained by the capacities of

the outgoing links and it follows the models put forward for a diverging node (3.24-3.28). The

capacity sharing at the origin of Lλ follows the models posited for a merging node (3.10-3.19).

As a direct consequence, we can apply a combination of the merging and diverging models at a

given complex node. We have proposed 6 models for merging and 5 models for diverging nodes

and thus we can have a total of 30 combinations.

Example 4.9: One model for the complex node can be a combination of M1 of a merging

node and D4 of a diverging node.
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3.5 A Numerical Experiment As a Demonstration

We consider the network shown in Figure 3.6 which has 13 nodes and 14 links. Nodes N1,

N2 and N3 represent source nodes (colored green). N12 and N13 denote destination nodes (colored

red). There are four merging nodes (colored blue): N5, N8, N9, N11, and two diverging nodes

(colored yellow): N4, N7. Nodes N6 and N10 represent transit nodes (colored black).

N1

N2

N3N4

N5

N6

N7

N8

N9

N10

N11 N12

N13

L14

L13

L12
L11

L7

L3

L8

L9

L10

L6

L4

L1

L5

L2

Figure 3.6. An example network to illustrate congestion propagation.

The sections in the links have the same properties: maximum capacity of 30 units of traffic

per time interval, and maximum occupancy of 30 units of traffic. Table 3.2 shows the flow demand

between respective source and destination node pairs. The shortest path corresponding to each

OD pair is also shown.

A simulation of congestion propagation for a 50% capacity reduction in link L14 at t = 5,

and a repair at t = 80 is discussed below. The different models proposed for merging and

diverging nodes will be analyzed. A combination of 3 merging models (M1 - M3) and 3 diverging

models (D1 - D3) gives 9 merging-diverging model pairs whose performance will be compared.

The empirical constant β in (3.23) is chosen to be 0.9 at the diverging nodes.
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Table 3.2

OD pair flow demand, Example 1

Orig. Dest. Flow-rate Path

N1 N12 10 P9 : N1→ N4→ N6→ N9→ N11→ N12

N1 N13 5 P10: N1→ N4→ N5→ N7→ N13

N2 N12 5 P17: N2→ N5→ N7 → N10 → N11 → N12

N2 N13 15 P18: N2→ N5→ N7 → N13

N3 N12 5 P22: N3→ N8→ N9 → N12

3.5.1 Capacity collapse propagation in the sections of a link. The propagation of a

50% capacity collapse introduced at t = 5 in section S4 of link L14 to the preceding sections S3,

S2 and S1 is illustrated in Figure 3.7. To simulate the capacity failure, the maximum capacity of S4

is set to 15 units of traffic per time interval and the maximum occupancy set to15 units of traffic.
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Figure 3.7. Change in capacity of L14 propagating through the sections of the link.

Following the introduction of the fault, the capacities of S4 and S3 immediately reduced to

15 units of traffic per time interval, as depicted in Figure 3.7(a). The failure propagates upstream

and reaches S1 at t = 11. Because the change in capacity propagates slower than the speed of the
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traffic, it takes 6 more time steps for the link to feel the effect of the decrease in the capacity of

section S4.

Subsequently a repair is conducted at time t = 80. The maximum capacity and the

maximum occupancy are set to their initial values. The propagation of the change in the capacity

of S4 towards the first section, S1, is shown in Figure 3.7(b). It takes 3 time intervals for the link

to be affected by the capacity restoration. The difference in propagation time during failure and

recovery indicates that the density wave moves faster than the capacity collapse wave.

3.5.2 Comparison of merging models. The capacity diminution at L14 affects the

flows injected at nodes N1, N2 and N3 through links L1, L2 and L3. We choose L1 to demonstrate

the capacity collapse propagating from L14 to the flow sources using assumed capacity collapse

models. First every node is assumed to follow M1. Subsequently all nodes follow M2 and so

forth. A comparison of the merging models M1 (equal sharing), M2 (Random proportions) and

M3 (Based on Priority) is shown in Figure 3.8. The diverging model is set to D3.
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Figure 3.8. Comparison of merging models M1, M2 and M3.

Models M1 and M2 are affected by the failure at t = 5 more quickly than M3. They

also took longer to respond to the capacity repair at t = 80 to the extent that the full capacity

is not restored. On contrary, Model M3 is shown to respond very quickly to the repair and the
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full capacity is restored. This indicates that model M3 is more efficient and it increases capacity

utilization in the network.

3.5.3 Comparison of diverging models. A comparison of the different diverging models

is shown in Figure 3.9. All merging nodes are modeled using M3.

0 50 100 150
0

10

20

30

time

ca
pa

cit
y o

f L
1 D1

D2
D3

Figure 3.9. Comparison of diverging models D1, D2 and D3.

The diverging models produce similar results shown by the overlap of the lines in

Figure 3.9. This indicates that the common factor in the formulation of the models, i.e.

C ′Lin = [CLin −
β×nLin

τ
]+, is the limiting factor.
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CHAPTER 4

LP-Based Flow-Rate Control and Flow Survivability Using Rerouting

In this chapter, we utilize link congestion information to devise a flow control scheme that

carefully assigns traffic flows into alternative paths. The capacity collapse propagation model is

used to update the link prices which are factored in the objective of the optimization problem. The

ability of the network to reroute its flows as a survivability criterion will be shown to improve the

survivability of the network.

4.1 Network Flow Model

Network flow is governed by the interconnection between paths and links through a

routing matrix, R, as shown in Figure 4.1. We will follow in general the notation from [12], with

some changes that suit our development. The Network G(N,L) is shared by a set P of possible

paths serving a set F of OD pairs. Let Lr ⊆ L be a non-empty set of links that path r ∈ P spans.

This defines a link-path indicator binary matrix R = (Rlr, l ∈ L, r ∈ P ) of dimension |L| × |P |.

The lth link and the rth route of this matrix are related as defined in (2.1)

Rlr =

{
1 if l ∈ Lr
0 otherwise

(4.1)

Suppose that several paths through the network may substitute for one another and serve the same

OD pair; i.e., let Pf ⊆ P be a non-empty set of candidate paths that OD pair f ∈ F uses. This

defines an |F | × |P | OD pair-path indicator binary matrix H = (Hfr, f ∈ F , r ∈ P ). The matrix

entries are defined as

Hfr =

{
1 if r ∈ Pf
0 otherwise

(4.2)

A network can possibly have |N |(|N | − 1) unidirectional flow demands between every

pair of nodes in N . In a practical network, not all nodes in the network make up a demand pair;
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Figure 4.1. Network flow structure.

there are often transit nodes used solely for the purpose of routing.

During the time interval [t, t + τ), t ∈ T , an OD pair f ∈ F has a flow demand rate df [t]

from source i to destination j, where f ⇐⇒ (i, j), i ∈ N and j ∈ N/{i}. An estimate of the

traffic arrival rate df [t] for all demand pairs is used during network design in order to guarantee

a network with enough capacity and connectivity [2]. We assume this estimate incorporates the

additional capacity needed for rerouting at times of disruptions in the network, and external traffic

arrives at the beginning of each time slot.

Assuming that the inelastic flows are supported by the network such that there exists a

vector of nonnegative path flows, u[t], satisfying

∑
r∈P

Hfrur[t] = df [t], ∀f ∈ F, (4.3)

and

yl[t] ≤ cl[t], ∀l ∈ L (4.4)

where yl[t] and cl[t] are respectively the aggregate rate and flow capacity at link l. The condition
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(4.3) implies that there exists a rate division of the inelastic flow rates over their available routes

which can support the arriving traffic. The link capacity constraint (4.4) enforces the requirement

that the total flow-rate should not exceed the capacity of the link. The path flow-rate, ur[t] ≥ 0, is

measured in terms of the number of traffic assigned to path r at the beginning of the time interval

[t, t+ 1).

4.2 LP-Based Flow-Rate Control via Pricing

It is useful to treat practical flow control schemes simply as implementations of a certain

optimization algorithm. The optimization model then makes possible a systematic method to

design and refine these schemes, where modifications to a flow control mechanism are guided by

modifications to the optimization algorithm.

In many networks, as in the case of transportation networks and sometimes in

communication networks, we cannot control the source flow arrival rates. In the event of a link

failure, the price for a unit traffic through that link becomes prohibitively expensive, and that could

prevent the sources from transmitting. The solutions based on utility maximization will not be of

much help in this situation. If we do not have control over the transmission rates at the sources,

congestion can occur at various points in the network and network flow will be interrupted. This

justifies the use of for flow routing and rerouting schemes that would enhance the reliability of the

network.

Associated with each elastic flow there exists a utility function that determines the

equilibrium condition as a function of its transmission rate. On the contrary, the exogenous

arrival of each inelastic flow is an uncontrollable process which cannot be described using utility

functions. The amount of traffic generated by each inelastic flow is unknown and uncontrollable

by the network; however, the number of traffic injected into the network can be controlled by the
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network algorithm. Therefore, we propose a network optimization algorithm with an objective of

minimizing the total cost of network transportation.

The LP-Based network flow control is designed to control path flow rates by utilizing the

congestion information sent back to the controller. Let Lξ denote a set of links outgoing from

the source nodes where OD pair flows originate. Because Lξ ⊂ L, the routing matrix, R, will be

reduced to Q = (Qlr, l ∈ L, r ∈ P ), where

Qlr =

{
1 if l ∈ Lr ∩ Lξ
0 otherwise

(4.5)

The controller decides the amount of traffic routed through the paths based on the capacity

of the links in Lξ in addition to the total cost of travelling. The cost per unit flow of using path

r ∈ P at time t ∈ T , wr[t], is explained as a function of the aggregate link price

w[t] = w0 + q[t] (4.6)

where w0 is the initial cost when there is no congestion, and q[t] is the implied cost of unit flow as

defined in (2.6).

The design of the proposed network algorithm is well suited to be studied using techniques

of Operations Research. To use the available routes efficiently in a network of multiple OD pairs,

we formulate the problem as a linear programming that intends to minimize the total cost of using

the paths in the network. Adapting the path-flow multicommodity flow formulation in [2], the
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network flow optimization problem is

Objective : min
u[t]

∑
r∈P wr[t]ur[t] (4.7)

s.t. :
∑
r∈P

Qlrur[t] ≤ cl[t], ∀l ∈ Lξ (4.8)

:
∑
r∈P

Hfrur[t] = df [t], ∀f ∈ F (4.9)

: ur[t] ≥ 0, ∀r ∈ P (4.10)

The solution to the optimization problem (4.7-4.10) results in a vector of path flow

rates that minimizes the total cost of travel. The problem takes into consideration the capacity

constraint (4.8) at the onset of routing. The congestion information in the subsequent links is used

to compute the cost associated with the paths (4.6) in the network. Moreover, the problem has a

flow-rate demand-constraint (4.9) that reenforces the assumption made (4.3). All flow rates should

be satisfied through non-negative path flow rates (4.10).

Solution of this problem can reduce the requirement of complex coordination among

sources to only those links in Lξ. This solution adapts to changing network conditions through

flow rerouting, where the rerouting is achieved by means of pricing signals. Each link runs a

local algorithm to update its price and communicate its computation result to the sources. The

network solves the optimization algorithm (4.7-4.10) and determines the rate distribution. Since

the optimization problem has a linear objective (4.7), for any two routes r and r∗ serving the same

OD pair, if ur ≥ ur∗ , then necessarily wr ≤ wr∗ .

The flow control algorithms in [12]-[17] essentially assume that packets injected into the

source nodes by the flows arrive at the destination nodes instantaneously. In reality, packets will

reach downstream nodes only after a queueing and propagation delay incurred in the intermediate

nodes. For this reason, we track the link flow at each section of the links. The sampling interval is
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chosen in such a way that a free flow traffic traverses a link in one time interval.

Every link in a network can be shared by more than one set of OD pair flows. The

aggregate flow entering a link at t ∈ T , y[t], is given as the sum of the flows from upstream links

and the OD pair flows originating at the link.

yl[t] =
∑
j∈Λl

youtj [t− τ ] +
∑
r∈P

Qlrur[t], ∀l ∈ L (4.11)

where Λl is the set of links incident on link l. youtj is the amount of traffic leaving link j during the

time interval [t− 1, t). Qlrur is external traffic injected to the link l at the beginning of each time

slot.

4.3 Rerouting as a Recovery Technique

A framework in [3] proposes a reliability analysis based on the notion of routing and

rerouting after failure. The methodology underlines the importance of the routing in the reliability

of flow networks. Each inelastic flow demand is associated with a fixed set of routes. The routes

are required to be mutually exclusive if possible.

4.3.1 Span and path restoration. When a link fails, the corresponding flow restoration

should take place in a subgraph where the failed link is removed. Span restoration, or backlog

rerouting, reroutes flow rates over replacement path segments between the two nodes terminating

a span failure. It provides replacement paths originating at the node directly adjacent to the failed

link towards the destinations of the disturbed flows.

Given a path r made of consecutive links l1, l2, · · · ln serving OD pair O − D, a span

restoration corresponding to a fault in lj on r reroutes the flow on r to a path r′ made of

consecutive links l′1, l
′
2, · · · l′m such that:

1. r′ bypasses the fault and reaches destination D; and
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2. the origin of r′ is O′, a node on r, but where the link l′1 originating at O′ is not part of r.

In contrast, Path restoration can be achieved by rerouting each flow-rate demand affected

by the failure individually from its origin to its destination through a replacement path [22], [24].

4.3.2 Successively shortest first-link-disjoint paths. The creation of backup paths in a

network is an important network design problem. These paths are needed to restore connectivity

in the case of link failure and it is a convenient way to improve the reliability service delivery.

The ideal backup path for link failure would have no links in common with the original path for a

connection. In this case, a failure anywhere on the path will not disconnect the corresponding flow.

In certain topologies it is not possible to find two completely disjoint paths due to the network

structure. In such a case, it would be helpful to find the best partially-disjoint backup path.

One of the issues concerning flow survivability is the choice of criterion for rerouting: k

successively shortest link-disjoint paths (KSP) or Maximum flow (Max Flow). KSP is faster and

easier to implement, but not strictly optimal in terms of finding the maximal number of paths. A

theoretically optimal restoration capacity is obtained with a Max Flow criterion. A comparative

study of the two criteria shows that they produce extremely close results in span restoration and a

similar result could be obtained for path restoration [22].

We have considered the Dijkstra shortest path algorithm in MATLAB to obtain the set of

all paths P corresponding to the set of all OD pairs F using a variant of the KSP criterion. The

new criterion generates a set of k successively shortest first-link-disjoint paths between two nodes

first by finding the shortest path, then the second shortest alternative path that is first-link-disjoint

with the first path, and so on. The links used in a path would be assigned more weights so as

to discourage the alternative paths using them. First-link-disjoint paths form a set of paths that

originate from a given source node through divergent links going towards a given destination node.
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The set of paths generated using this criterion contain both partially-disjoint and totally-disjoint

alternate paths.

We are more interested in the links used by the paths and the OD pairs served by the

paths. The OD pairs and the corresponding paths are contained in H as defined in (4.2). The links

corresponding to the paths are held within R as defined in (4.1).

4.3.3 Phased recovery. A phased recovery model in [9] describes the life cycle of failure

and recovery in four phases: failure, rerouting, repair, and normal phases. The cycle starts in

failure phase and steps through all phases before it returns to failure free mode. The sequences are

summarized in Figure 4.2.

Normal

Failure

Rerouting

Repair

Survivability

Figure 4.2. Failure recovery model.

Immediately after the failure, congestion information in the form of an increase in link

prices will be fed back to the flow sources. In the meantime, the flows are routed according to the

original routing scheme. A recovery strategy to restore the essential services in the network will
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Figure 4.3. Temporal axis partitioning.

be initiated in the next phase. Recovery of services after failure is a key property that survivable

systems must exhibit.

In general, rerouting the demand after a failure gives better performance than curtailing

the demand when a component fails. A flow affected by the failure is routed to a link-disjoint

alternative path that bypasses the failed link. When rerouting is effective reliability enhancer, the

flow survives in the presence of the failure. At the end of the repair phase, the system returns to

failure free normal state with the original routing scheme put back in place.

4.3.4 A 3-phase model. The dynamics of failure and recovery is portrayed in [3] by

dividing the time axis into three phases. Figure 4.3 shows the temporal axis partitioned into three

stages that correspond to the normal, failure and recovery phases of the phased recovery approach

in Figure 4.2.

During T1 the system is in its normal state and has reached equilibrium. Once a failure

takes place at the beginning of T2, a congestion is formed in the failed link due to the reduction

of its capacity. During T2, a transient performance unfolds from the instant an undesirable event

occurs until steady state where an acceptable performance level is attained. During this phase,

the failure propagates and backlog accumulates on the links upstream from the failed link. The

increment of congestion in the links degrades the quality of services provided by the network

and requires a change in the flow routing scheme. Otherwise, the network will not survive the
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failure. In phase T3, a survivable system reroutes each flow demand to paths that are disjoint to

the original route, at least at the failed link.

Networks can exhibit large variations in survivability requirements. The time phase T2 in

Figure 4.3, also referred to as recovery time, differs from one system to another. In some networks

the recovery times can be measured in hours, whereas embedded command and control systems

may require recovery times to be in milliseconds. Survivability quantification models in [25] and

[9] analyze the transient performance of a network under stress.

The network algorithm we proposed in (4.7-4.10) intends to efficiently assign each flow

into the network to traverse each of the available paths. The links individually update their prices

(3.7) and the controller is fed back with the aggregate link price (3.8). In the event of link failures,

the increase in link prices will be communicated to the controller which in turn reroutes the flow

into available alternative routes.
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CHAPTER 5

Numerical Simulation of Active Rerouting

5.1 Capacity Collapse propagation

A network of 18 nodes and 21 links is shown in Figure 5.1. Nodes N1 and N10 are flow

origins. Nodes N17 and N18 represent destinations. Nodes N2, N7, N9, and N15 are diverging

nodes. Nodes N8, N11 and N16 are merging nodes. The sections in all the links have a maximum

occupancy of 30 units of traffic. The maximum capacity corresponding to each section is 30

units of traffic per time step. Nodes N8 and N9 represent a transformed complex node with a

bridging link L10. Thus the maximum occupancy and maximum capacity of L10 is the sum of the

corresponding parameters in the outgoing links.
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Figure 5.1. A network with 2 origins and 2 destinations.

The OD flow demand is shown in Table 5.1. The demand pairs, the flow demands and

the corresponding shortest paths are also shown. For example, the first demand pair has a flow

demand of 5 traffic per time from the origin node N1 to the destination node N17 through path P16.

In the following sections different failure scenarios will be discussed. The propagation of

capacity collapse is implemented using merging model M3 and diverging model D3, introduced

in Chapter 3. A gray scale color map is used to indicate the percentage of capacity collapse in the
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Table 5.1

OD pair flow demand, Example 2

Orig. Dest. Flow-rate Path

N1 N17 d16 = 5
P16: N1→ N2 → N3→ N5→ N7→ N10→ N11 → N13→ N15→ N17

N1 N18 d17 = 20
P17: N1→ N2 → N4→ N6→ N8→ N9→ N12 → N14→ N16→ N18

N10 N18 d170 = 5 P131: N10→ N11→ N13 → N15 → N16 → N18

links. The color map ranges from white representing a 0% capacity to black representing 100%

capacity. The empirical constant β at the diverging nodes is chosen to be 0.9.

5.1.1 A 25% capacity reduction in link L15. A 25% capacity reduction is introduced

into link L15 at t = 5. The flow-rate through the sections of link L15 is 20 traffic units per time

interval. A 25% capacity loss reduces the capacity of the section affected by the failure to 22.5

traffic units per time interval. So, the damage will not affect the flow through the section, and

therefore no congestion wave will propagate through the link.

5.1.2 A 50% capacity collapse in L15. Here half of the capacity of L15 is lost due to a

failure occurring at t = 5. The capacity change propagating into the network is shown in Figure

5.2. The capacity reduction in L15 propagates through the sections of the link towards L12.

The collapse further propagates through the sections of L12 and L10 within t ≤ 30.

Between t = 30 and t = 65, the collapse spreads through the sections of L7, L5 and L3. The

collapse wave took 63 time intervals to propagate all the way to L1. L10 has undergone through

a 75% capacity reduction from 60 traffic units per time step to 15. All the other links remain

unaffected by the failure.
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A closer look at L15 indicates that the first vertical line represents the capacity of the

link. The link has 5 sections whose capacities are represented by the other five lines. The

failure happened at the 4th section and propagated backward to preceding sections. The section

immediately after that is not affected by the failure.

First section
(incoming)

Last section
(outgoing)

Figure 5.2. Propagation of 50% capacity collapse in link L15 section 4 at t = 5.

The collapse is sensed by the last section of L8, but it is not propagated further as there

was no flow coming through the link. The capacity of L1 totally collapses as it is fully occupied

by the traffic originating at the link.

5.1.3 A 75% capacity collapse in L15. Suppose a 75% capacity reduction of link L15 has

occurred at t = 5. The capacity collapse propagating in the network is shown in Figure 5.3.

A capacity reduction of 70-80% is observed in the sections of links L3, L5, L7, L12 and L15.

A 80-90% capacity collapse is observed in L10. The sections in L1 undergo a capacity reduction

ranging from 60-80%, and the link has zero capacity to support OD pair flows originating at

N1.The collapse wave took 37 time steps to arrive at the farthest link, L1. This wave propagated

1.7 times faster than the wave with 50% capacity collapse.
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Figure 5.3. Propagation of 75% capacity collapse in link L15 section 4 at t = 5.

5.1.4 A 100% capacity collapse in L15. A total capacity damage is introduced to link

L15 at t = 5. The collapse in capacity propagating to preceding links in the network is shown in

Figure 5.4.

Figure 5.4. Propagation of 100% capacity collapse in link L15 section 4 at t = 5.

The capacities of L1, L3, L5, L7, L10, L12 and L15 are shown to disappear well before

t = 35. The collapse wave travels much faster in this scenario. It took 29 time steps for the

wave to arrive at the first section of L1. The wave travels 1.28 faster than the scenario with 75%

collapse, and it moves 2.17 times faster than the case with 50% failure. The larger the capacity

reduction, the faster the capacity collapse propagates in the network.
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5.1.5 A repair of the failed link. A repair restores the capacity of the link to its full

operation. To demonstrate how the capacity restoration is propagated, we choose a 50% capacity

collapse of link L15 at t = 5 and a repair at t = 80. The capacity change propagation due to the

collapse and later due to the repair is shown in Figure 5.5.

Figure 5.5. 50% capacity collapse in link L15 at t = 5, and a repair at t = 80.

Following the restoration of the capacity of L15, all the links that have been affected by

the capacity reduction start operating at their full capacity. The restoration wave takes 14 time

intervals to travel all the way to L1. The restoration wave is shown to be 4.5 times faster than

the collapse wave. The capacity swing in L15 during the recovery phase is due to the assumed

capacity collapse propagation model at the merging node N16. The allocation of capacity to the

incoming links, L17 and L18, is done based on the occupancy of the links. The link with the larger

backlog has a higher priority to claim the resource.

The backlog accumulated at L1 takes 58 time steps to clear out as shown in Figure 5.6.

The capacity of L1 is fully restored starting from t = 124.
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Figure 5.6. Capcity and backlog at link L1.

5.2 Span Restoration

Most of the node pairs in Figure 5.1 do not have flow demands associated with them at

the beginning. But, as the traffic proceeds in the assigned path, a capacity collapse in one of the

links would require the traffic to change its route in order to avoid the congested links. The need

to reroute the traffic going through a clogged path would reassign the backlog as a flow demand in

subsequent nodes. This leads to a span routing approach that reroutes backlogged traffic at a link

using alternative path segments starting at the end node of the link.

5.2.1 Capacity collapse in link L15. For the failure scenario where we introduced a 50%

capacity loss in L15, the backlog accumulated in the links of the network is shown in Figure 5.7.

The capacity collapse at L15 blocks the incoming traffic from N1 to N18 that has been

assigned to path P17 as shown in Table 5.1. The backlog in L1 keeps increasing because the

backlog in the downstream links is not rerouted.

In contrast, a backlog rerouting scheme at N9 reassigns the incoming traffic through

another path that is link disjoint to the failed link. Figure 5.8 shows that a flow demand between

N9 and N18 is being introduced to reroute the flow that was intended to pass through the failed
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Figure 5.7. Backlog continues to build up unless re-routed.
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Figure 5.8. Backlog re-routed as demand at intersection node.

The reassignment of the backlog in L10 as a new demand at N9, d153, has reduced the

overflow through L12 and L15 as shown in Figure 5.9. The excess flow that would have resulted in

backlog accumulation towards the source of the flow, as in Figure 5.7, is rerouted through P125 (

N9→ N11→ N13→ N15→ N17→ N18) that serves OD pair N9 to N18.
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Figure 5.9. Link overflow rerouted through P125.

Due to the backlog rerouting, the continuous increment of backlogs is averted as shown

in Figure 5.10. The capacity collapse at L15 propagates only through L12 and L15 and both links

continue operating at failed state. In comparison, all the other links that would have been affected

by the damage in L15 will now operate at full capacity.
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Figure 5.10. Backlog after re-routing.
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5.2.2 Capacity collapse in links L9 and L15. We introduce a 100% failure in L9 and a

50% capacity reduction in L15 at t = 5. The capacity collapse propagating to other links of the

network is shown in Figure 5.11.

Figure 5.11. 100% capacity collapse in L9 and 50% collpase in L15 at t = 5.

Next we compare Figure 5.11 with the situation in Figure 5.2. There we had a single link

failure, which was a 50% capacity reduction in L15. The comparison reveals that in Figure 5.11

the capacities of links L1, L2, L4 and L6 were reduced to a 90-100% failure before t = 100. The

traffic units in L1 intending to go through the failed links totally block the incoming traffic. This

is reflected in L3, L5, L7, L10, L12 and L15 as the capacities are restored.

The backlog accumulated in the links due to the failure in links L9 and L15 is depicted in

Figure 5.12(a). It has spread into many links and the backlog in link L1 is shown to be increasing

indefinitely. Figure 5.12(b) illustrates the backlog under backlog rerouting.

The rerouting of the backlogs into other paths to avoid the failure puts up new flow demand

requests at other junctions as shown in Figure 5.12(d). d118 and d153 denote OD pair flow-rate

demands from N7 to N17 and from N9 to N18 respectively. The traffic units in L9 will have to

wait until the failure in the link is repaired. Links L12 and L15 operate at reduced capacity with

some backlog till recovery. The rerouting has prevented backlog build up in all the other links and

improves network capacity utilization.
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Figure 5.12. Backlog with and with out re-routing.

5.3 Improving Flow Survivability via Routing

To illustrate further the importance of routing to reliability and survivability of flow

networks, we simulate the network of 21 nodes and 28 links shown in Figure 5.13. Note that

although this network has no cycles, our methodology does not require this assumption.

The nodes are categorized as diverging, merging and transit in Table 5.2. Nodes N1 and

N13 are flow origins. Nodes N20 and N21 represent destinations.

Table 5.2

The nodes grouped by their type

Type Nodes

Diverging N1, N2, N9, N10, N17, N18

Merging N5, N6, N15, N11, N16, N19, N20, N21

Transit N3, N4, N7, N8, N12, N13, N14
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Figure 5.13. A network to demonstrate path and span rerouting.

The sections in all the links are assumed to have identical properties: maximum occupancy,

Bs = 30 units of traffic, and maximum capacity, Cs = 30 traffic units per time step. Nodes N11

and N14 represent a transformed complex node with a bridging link L16. Thus the maximum

occupancy and maximum capacity of L16 is the sum of the corresponding parameters in the

outgoing links, L19 and L20.

The demand pairs, the flow demands and the corresponding first-link-disjoint shortest

paths are shown in Table 5.3. OD pair flow demand d19 has a flow-rate of 5 traffic units per

time step from origin node N1 to destination node N20 through paths P40, P41 and P42. P40 is the

shortest, and P41 and P42 are alternatives to P40.

There are also three paths serving OD pair demand d20 and only one path along demand

pair d260. The routing control algorithm takes link congestion information into account, in

addition to the shortness of a path, when selecting a path.

5.3.1 Capacity collapse in link L13. Suppose a 100% failure is introduced to link L13 at

time t = 5. The link has 5 sections, and the failure occurred at section 4. The failure affects OD

pair flow demands d19 from node N1 to N20 and d20 from node N1 to N21 whose flow has been

assigned to paths P40 and P43 respectively. The propagation of capacity collapse wave to upstream
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Table 5.3

OD pair flow demand, Example 3

OD pair

demand

Flow-rate OD pair Paths

d19 5

P40: N1→N2→N6→N9→N12→N16→N18→N20

P41: N1→N3→N5→N8→N10→N13→N15→N17→N20

P42: N1→N4→N7→N6→N9→N11→N14→N16→N18→N20

d20 20

P43: N1→N2→N6→N9→N12→N16→N18→N20→N21

P44: N1→N3→N5→N8→N10→N13→N15→N17→N19→N21

P45: N1→N4→N7→N6→N9→N11→N14→N15→N17→N20→N21

d260 5 P190: N13→N15→N17→N19→N21

links is shown in Figure 5.14.

The backward travelling wave moves through link L13 in the interval between t = 5 and

t = 10. The link failure spreads to links L9 and L5 in the interval 11 ≤ t ≤ 15. During the interval

t = 16 to t = 20, the collapse further diffuses through L1 towards the flow origin node N1. All the

other links remain immune to the failure at L13. The flow-rate assignment and the backlog in the
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Figure 5.14. Propagation of capacity collapse wave.
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links is shown in Figure 5.15.
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Figure 5.15. Path flow and backlog in the links of the paths.

The flow-rate demands of node pairs (N1,N20) and (N1,N21) will be continually loaded to

P40 and P43, respectively, unless rerouting is considered, as shown in Figure 5.15(a). The decline

in capacity has disrupted the flow through the links in the failed paths, P40 and P43. This results in

a backlog build up as depicted in Figure 5.15(b). The backlog in L13, L9, and L5 saturate but the

backlog in L1 keeps increasing because the incoming flow is not rerouted.

The uncontrolled increment of traffic backlog at L1 suggests rerouting the flow in paths

P40 and P43 to alternative paths. The alternate paths serve the same OD pair but pass through links

that are least affected by the damage in L13.

5.3.2 Flow restoration. The accruement of traffic backlog in the links affirms that

the network fails to survive the link failure. A simulation of flow restoration through path flow

rerouting is illustrated in Figure 5.16.

The failure in link L13 at t = 5 is communicated to the flow assignment controller at node
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Figure 5.16. Path flow rate and backlog in the links of the paths with path re-routing.

N1 through an increase in the prices of the links affected by the failure. The links update their

price at each time instant, and the controller computes aggregate prices every tenth time instant.

Based on the price information, starting from t = 10, the controller reroutes the flow

demands originating at N1 to paths P41 and P44 as depicted in Figure 5.16(a). Paths P41 and P44

are substitutes to P40 and P43 serving OD pair demands d19 and d20.

The backlog is prevented from further buildup towards L1 as portrayed in Figure 5.16(b).

But, the traffic accumulated in links L5, L9 and L13 will be backlogged until the failed link is

restored. Otherwise span restoration needs to be in place.

The LP-based controller responds to the link failure by rerouting the OD pair flow at

departure through path restoration. There will be some delay between the event of a failure and

the reaction of the controller in response to the failure. Meanwhile, the traffic that were assigned

through the failed links will not have a chance to avoid the failure unless we implement backlog
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rerouting.

Figure 5.17 demonstrates span routing that assigns the backlog into paths that bypass the

failed link. The traffic units backlogged in L9 reset the origin to N9 so that it will be routed along

with the traffic originating at N9.
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Figure 5.17. Flow demand and backlog with path and backlog re-routing.

The new flow demands, d179 from N9 to N20, and d180 from N9 to N21 are shown in Figure

5.17(a). They represent the traffic that would have been backlogged in L9 and L5. The span

restoration supplements the path flow restoration in diverting the traffic and clearing the backlog

in the network.

The introduction of flow rerouting into the network has restored the interrupted OD pair

flows in the presence of the failure. This feature contributes to flow survivability. The backlog

accumulated in link L13, Figure 5.17(b), will clear when the failed link is recovered.
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5.3.3 Failed link recovery. The capacity collapse in link L13 has compromised the OD

pair flows through paths P40 and P43. The LP-based flow controller has restored the flow through

alternative paths that carry out the tasks of P40 and P43. If the controller were not in place, the

blocked traffic would have waited until the failed link is rescued. Suppose that the capacity of L13

has fully recovered starting from t = 80. The backlog accumulated in the links during the failure

phase starts to dissipate following the flow restoration through L13 as depicted in Figure 5.18.
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Figure 5.18. Flow restoration across failed link, without and with re-routing.

The amount of time it took to clear the backlog with no rerouting scheme is shown in

Figure 5.18(a). It took 371 less time intervals for the backlog to clear out using rerouting as

depicted in Figure 5.18(b). This asserts the importance of flow rerouting in flow survivability.

After completing the backlog clearance, the controller restores the OD pair flows back to their

initial routes.

The rerouting controller responded more quickly to the changes in the network. The

network is shown to have better survivability with flow rerouting.
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5.3.4 Two link failure. In addition to the 100% capacity collapse in L13, a 50% capacity

reduction is now introduced to L21 at t = 5. Link L21 lies on the alternative paths P41 and P44. The

remaining capacity in L21 will accommodate the flow demand d260 originating at N13, but not the

rerouted traffic.

The total backlog build up in the network due to the link failures is shown in Figure 5.19.

The total backlog in the network with no rerouting, Figure 5.19(a), is observed to increase at a

higher rate when compared with path rerouting, as in Figure 5.19(b).
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Figure 5.19. Two link failure backlog build up.

The span restoration on top of the path restoration in Figure 5.19(c) further reduces the

backlog, thus keeping it within the occupancy limits of the links. The backlog is localized around

N15 with the traffic overflowing L21 has been confined in L15, L18 and L19 well before it spreads

towards the origin of the flows. Similarly, The backlog in L13 is well controlled before it spills

over to L9.This ensures that the disturbed flow survives with routing control employed in the

network in the presence of the failure.
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The failed links are restored at t = 80 to their initial capacities. The backlog clears out

quickly and the flow will be restored to their original routes if rerouting is in place as shown in

Figure 5.19(d). The network controller using no rerouting would have taken 17 times as much

time intervals for the compromised OD pair flows to fully recover.



66

CHAPTER 6

Conclusions And Recommendations

6.1 Conclusions

We assumed that a change in the capacity of a link travels slower than the traffic. The links

of a network were discretized into a number of sections so that the capacity collapse in a given

link travels a section of the link in one time interval. The nodes of the network are categorized as

either transit, merging, diverging, or complex depending on the number of links coming in and

going out of the node. Depending on the type of the node, specific capacity collapse propagation

models at intersections were proposed. Different models were assumed for merging and diverging

node types and evaluated using numerical simulation. Complex node types with more than

one incoming and more than one outgoing links were treated using merging-diverging models

combination. The propagation of capacity collapse for a range of capacity failures was discussed.

The network flow was formulated as path-based multicommodity flow problem with the

objective of minimizing the total cost of travelling. The LP-based optimization controlled the flow

assignment-decisions into k first-link-disjoint alternative paths. The aggregate prices of the paths

were factored into the decision making process. Recovery of disrupted OD pair flows using path

and span restorations was addressed.

The following observations and conclusions were made:

• A difference in propagation times during failure and restoration was observed. The time

for the upstream sections of a link to be affected by the fault in the downstream section

of the link was more than the time for the upstream sections to feel the effect of capacity

restoration.

• The comparison of the merging models M1 - equal sharing, M2 - Random proportions and
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M3 - Based on Priority revealed that

– Models M1 and M2 were affected by a failure in the network more quickly than M3.

They also took longer to respond to the capacity restoration.

– Model M3 was shown to respond very quickly to the capacity restoration. It was

superior to M1 and M2 that it improved the capacity utilization in the network.

• The different diverging models produced similar results for the simulation setup we

considered.

• The collapse wave was shown to increase faster with increase in magnitude of the fault.

The restoration wave was affirmed to be much faster than the collapse wave. For the

scenario of a 50% capacity failure, the restoration wave was 4.5 times faster than the

collapse wave.

• Multiple numerical simulations affirmed that the proposed controller with rerouting

efficiently rerouted the compromised OD pair flows satisfying flow-rate demand

requirements in addition to link capacity constraints. The proposed controller was also

shown to be applicable in flow network survivability in the presence of failures.

• The steady-state performance in the recovery phase was attained quickly with short

intervals of the recovery time.

• The network was shown to survive flow interruptions better with flow restoration schemes

in place. Otherwise, the traffic had been delayed until the failed link was recovered and the

accumulated backlog was cleared.

• Span restoration on top of path restoration further reduced the backlog in the network and

improved network capacity utilization. The rerouting techniques averted the buildup of

backlogs in many links. The failure was localized to the links whose flow could not be
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rerouted. The stacked traffic had to wait until the failure was removed.

• The time for the backlog to clear out using rerouting was much smaller than the case

with no rerouting. This asserted the importance of rerouting in flow survivability. The

controller restored the OD pair flows back to their initial routes once the backlogged traffic

was cleared.

6.2 Recommendations

There is a huge number of possible combination of options in the proposed control

algorithm and detailed numerical and experiment comparisons are needed. We believe the

outcome of this thesis will encourage research in adaptive real-time rerouting in transportation

networks. We recommend that the proposed controller and congestion propagation models shall

be further tested using existing networks and real-time data.
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