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Abstract 

In order to increase productivity and yield of the edible shiitake mushroom, Lentinula edodes 

(Berkley) Pegler, monokaryons from each of six strains, in the culture collection of the 

Mushroom Biology and Fungal Biotechnology Lab were inter and intra bred to produce 566 

novel strains. The objective of this study was to breed and characterize progeny strains for 

superior mycelial growth and temperature tolerance. Parental strains, monokaryons and their 

progeny were evaluated for mycelial growth rate at 10-30oC. The mating type of monokaryons 

and dikaryotic progeny was determined. Five of six parents were found to have homozygous 

mating type alleles indicating limited genetic diversity between these strains. The B2 mating 

allele was significantly limited (x2 (1) = 41.33, p < .001) in monokaryons from four of these 

parents. A weak relationship was observed between dikaryotic and constituent monokaryotic 

growth rates at 15-30oC (p < .001- p = .0137, R2 = .01 – .02), leading to the recommendation that 

monokaryotic growth rate should not be a selection criterion when choosing L. edodes 

monokaryons as breeding stock for growth rate. Strains produced by interbreeding were found to 

have higher growth rates than those produced by intrabreeding (p < .0001) from 15-30oC. Strains 

with significantly faster growth rates (p < .05) than both their parents were identified. This 

research works towards one goal of the mushroom program at NC A&T State University, to 

develop strains of shiitake targeted for use in different climates, specific seasons, and 

temperature specific applications in North Carolina and beyond.  
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CHAPTER 1 

Introduction 

1.1 Overview 

Lentinula edodes (Berkley) Pegler, known commonly as the shiitake mushroom, is a 

choice edible mushroom with good nutritive value which produces medicinally and biologically 

active compounds. L. edodes is a saprobic white rot fungus decomposing hemicelluloses and 

lignin along with cellulose (Leatham, 1985; Moyson & Verachtert, 1991; A. Philippoussis & 

Diamantopoulou, 2011). It is found in the wild on the wood of broadleaved hardwood tree 

species (D. Pegler, 1983; Stamets, 1993). Wild populations have been reported in China, Japan, 

Korea, Taiwan, Thailand, Burma, North Borneo, the Philippines, and Papua New Guinea (Arora, 

1986; Wasser, 2005). 

Cultivation of L. edodes fruiting bodies first started in China between 960-1127 BCE 

(Przybylowicz & Donoghue, 1988). Cultivation began and has continued using hardwood logs as 

substrate on which to produce mushrooms. More recently, mushroom cultivation has been 

accomplished using steam sterilized/pasteurized hardwood sawdust and woodchip blocks as well 

as wheat straw supplemented with cereal grains, bran and/or combinations of many types of 

lignocellulosic agricultural wastes (A. Philippoussis & Diamantopoulou, 2011; Przybylowicz & 

Donoghue, 1988). Cultivation of mycelia in liquid media for medicinal and biologically active 

compounds has been an emerging area of interest as well (Lindequist, Niedermeyer, & Jülich, 

2005; Wasser, 2005). 

L. edodes mushrooms are the second most cultivated species of mushroom worldwide 

after Agaricus bisporus, the white button, brown crimini and portabella mushrooms (S. Chang, 
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1999; Gold, Cernusca, & Godsey, 2008). The popularity of L. edodes is increasing as the 

economic benefits to cultivators and knowledge of its nutritional and medicinal value become 

more widely known (Marshall & Nair, 2009). It is necessary to develop novel strains of L. 

edodes in order to continue to have productive strains for traditional cultivation on logs as well 

as to efficiently exploit newer methods of cultivation on supplemented sawdust/woodchip 

blocks, agricultural and agroindustrial residues as well as other various biotechnological 

products. This is especially important knowing that most strains used in industrial production in 

the US today were imported from Asia.  

Development and identification of strains which have high mycelial growth rates at the 

extremes and across the functional temperature range of L. edodes can increase yield and 

profitability of production operations. Strains with higher growth rates can establish themselves 

more quickly on a given substrate, outcompete other microorganisms and decrease crop loss due 

to contamination. Savings of energy and time are realized when incubation time, the longest 

stage in production, can be reduced. The reduced incubation time shortens the crop cycle and 

increases annual yield. The reduced time spent in incubation lessens the associated heating and 

cooling costs of an incubation room. These savings may be increased by selecting strains which 

grow rapidly at a temperature closer to ambient climatic conditions, reducing the need to raise or 

lower the temperature in the incubation room and thus reducing the amount of energy used for 

heating and cooling. These savings increase revenue, decrease overhead and reduce the overall 

energy footprint of a production system with the associated benefits to the environment. 

L. edodes has been found to have a bifactorial tetrapolar mating system (Ursula Kües, 

James, & Heitman, 2011). This system, common to Basidiomycetes, has been researched using 

the model organisms of Schizophyllum commune and Coprinus cinereus (Raper, 1966). 
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Organisms with a tetrapolar mating system have two mating loci referred to as A and B loci or 

mating types. In order for successful mating to occur gametes must have heterozygous alleles at 

both mating loci. These A and B loci have been found to be multiallelic and are comprised of 

subloci which can recombine to form functionally different mating types (L. A. Casselton, 1997; 

Erika Kothe, 1996). It is estimated that there are 121 A mating types and 151 B mating types in 

wild L. edodes populations in China and 40 A mating types and 63 B mating types in wild L. 

edodes populations in Japan (Li, Xu, Lin, Cheng, & Lin, 2007).  

Research has indicated that in China and Japan L. edodes strains used in commercial 

production of fruiting bodies are genetically similar indicating a high level of relatedness (Chiu, 

Ma, Lin, & Moore, 1996; Terashima, Matsumoto, Hasebe, & Fukumasa-Nakai, 2002; Zhang et 

al., 2007). This genetic bottleneck must be addressed in order to create a robust population of 

commercial strains for use in the expanding market of shiitake cultivation. Adding genetic 

diversity to a breeding program will allow for development of strains targeted for use at 

temperatures higher and lower than the optimum temperature for L. edodes as well as strains 

suited for use in supplemented sawdust fruiting blocks, solid state fermentation of agricultural 

byproducts and liquid state fermentation. Adding genetic diversity to the commercial production 

stock aids the producer in addressing the continuous problem of strain deterioration due to an 

accumulation of genetic mutations during continuous use and storage (Chakravarty, 2011).  

It has been suggested that accumulated deleterious mutations can have an effect on the 

distribution of mating types among germinated spores (Fox, Burden, Chang, & Peberdy, 1994). 

A theoretical model of the tetrapolar mating system indicates that the ratio of the mating types of 

spores will have all four of the possible mating types from a given parent in a 1:1:1:1 ratio. Two 

of the four mating types are identical to the parents’ nuclei and the other two are the product of 
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recombination during meiosis. The tetrapolar mating system facilitates the successful mating 

between monokaryotic colonies originating from the spores of parents with different sets of 

mating types. Successful intrabred matings and interbred matings between monokaryotic cultures 

from spores originating from parents with the same set of mating type alleles will be limited to a 

25% success rate. Successful matings between monokaryotic cultures originating from spores of 

parents each with unique sets of mating type alleles will be much higher, with up to a 100% 

success rate (Kendrick, 2000; E. Kothe, 2001; Raper, 1966). 

L. edodes, as with other Basidiomycetes, can live and grow vegetatively in its gametic 

stage. The presence of and ability to maintain this vegetative gametic stage in vitro has lead to 

the idea that phenotypic traits of the gametic, more properly monokaryotic, stage are heritable to 

the dikaryotic fertile stage of development as reported in Pleurotus sapidus (S. S. Wang & 

Anderson, 1972). With regard to growth rate, the extension of this theory is that combining 

monokaryons with high mycelial growth rates will produce dikaryons with high mycelial growth 

rates. This theory is not supported in studies with Lentinus squarrosulus by O. S. Isikhuemhen, 

Adenipekun, and Ohimain (2010) or in studies with Schizophyllum commune by Simchen and 

Jinks (1964). Working with L. edodes, Miyazaki (2008) found a relationship between 

monokaryotic growth rates and their dikaryotic progeny in 4 of 5 groups studied but stated that 

monokaryotic growth rates should not be used as a selection criterion for choosing monokaryons 

for mating. Determining the validity of this theory for L. edodes will be useful in breeding 

programs to decrease the time and materials spent on selection of monokaryons. 

Genetic diversity between different strains of L. edodes in commercial and wild 

populations has been correlated with two different quantifiable traits by comparative analysis 

with molecular genetics techniques. The first is the phenotype of fruiting temperature optima. 
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The second is the genotype of mating type alleles. Strains with either different fruiting 

temperature optima or different mating type alleles have been found to be more distantly related 

than those with similar fruiting temperature optima or mating type alleles (Fox et al., 1994; 

Fukuda & Mori, 2003; E. Kothe, 2001). 

The traditional temperature based system for classification of L. edodes strains uses 

fruiting temperature optima to classify strains into cool temperature, warm temperature, mid 

temperature and wide temperature groupings (Chen, 2001). Rather than using the traditional 

system for classification of L. edodes strains a classification system based on the statistical 

analysis of respective mycelial growth rates on PDA media at 15oC, 20oC, 25oC and 30oC is 

outlined in this work. The proposed system uses mycelial growth rate data, analyzed by ANOVA 

followed by Duncan’s multiple range tests, to construct a growth rate temperature profile. This 

profile is based on the statistically significant (p < .05) differences in mycelial growth rates at 

15oC, 20oC, 25oC and 30oC. 

 The primary goals of this research were to breed novel strains of L. edodes with high 

growth rates for use at specific temperatures and across temperatures from 10-30oC, lay the 

foundation of a strain improvement program and increase the number of novel L. edodes strains 

in the Mushroom Biology and Fungal Biotechnology Lab (MBFBL) culture collection.  

1.2 Objectives 

1. Determine mating compatibility, mating type allele frequency and distribution among 

monokaryotic isolates of six strains of L. edodes. 

2. Determine the relationship between dikaryotic mycelial growth rate and the mycelial growth 

rates of their constituent monokaryons for L. edodes. 
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3. Characterize mycelial growth rates of progeny from mating compatibility tests at 10oC, 15oC, 

20oC, 25oC and 30oC. 

1.3 Hypotheses 

Due to the ability to culture gametic monokaryons and keep them in vitro the idea of 

using monokaryotic growth rate as a selection criterion for breeding dikaryons with increased 

mycelial growth rates is captivating. Mycologists have studied the effect of monokaryotic growth 

rates on the growth rates of dikaryotic progeny of different species and have found a relationship 

in some species (S. S. Wang & Anderson, 1972) and a little to no relationship between these 

growth rates in other species (O. S. Isikhuemhen et al., 2010; Simchen & Jinks, 1964). This 

relationship has been investigated for L. edodes by Miyazaki (2008) with the report that there is a 

relationship between the mycelial growth rates of dikaryotic progeny and the mycelial growth 

rates of their constituent monokaryons but that this relationship should not be used as a selection 

criterion for monokaryons. This finding while clear is available in English only as an abstract. In 

order to elucidate the findings of Miyazaki (2008), this issue is investigated with the hypothesis 

that the breeding of monokaryons with faster growth rates will result in progeny with faster 

growth rates and the breeding of monokaryons with slower growth rates will result in slower 

growing progeny.  

Based on the concept of heterosis, improvement of a given trait by crossbreeding 

individuals which are not related, and the specific report by Yan and Jiang (2005) of heterosis 

leading to increased mycelial growth rates in Stropharia rugoso-annulata at different incubation 

temperatures it is hypothesized that novel strains with increased mycelial growth rates will be 

produced by interbreeding of monokaryons from different L. edodes strains. It is hypothesized 



9 
 

that novel strains produced by interstrain crosses will have higher mycelial growth rates than 

those produced from intrastrain crosses. Based on the same concept, it is hypothesized that 

strains with mycelial growth rates superior to their parents for each of the temperatures studied 

and across several of these temperatures will be produced by interstrain breeding. 
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CHAPTER 2 

Literature Review 

2.1 Taxonomy and species description 

Lentinula edodes (Berkley) Pegler is a choice edible mushroom native to Southeast Asia. 

Wild populations have been reported in China, Japan, Korea, Taiwan, Thailand, Burma, North 

Borneo, the Philippines, and Papua New Guinea (Arora, 1986; Wasser, 2005). The current 

taxonomic position of L. edodes, according to Index Fungorum, is shown in Figure 2.1 

(indexfungorum.org, 2012). L. edodes was moved from the genus Lentinus to Lentinula based on 

the hyphal morphology and gill arrangement in 1975 by Pegler, though the genus name Lentinus 

is still used by some commercial growers and field guides. Lentinula edodes has monomitic 

hyphae and more or less parallel gills while members of Lentinus have dimitic hyphae and 

irregular, interwoven gills (D. N. Pegler, 1975; Stamets, 1993). This taxonomic change has been 

supported by rDNA analysis (Hibbett & Vilgalys, 1993). 

Lentinula edodes has a dark brown to light brown pileus (cap) which is convex to plane at 

maturity. The margin is even to irregular, beginning as in-rolled with an under-curved lip, but 

becoming flattened and irregular as the fruit body ages. Remnants of the partial veil may remain 

visible along the margin especially when young. The stipe (stem) position is variable. It may be 

almost lateral, eccentric, or central depending on environmental factors. The stipe is light brown 

to tan in color and is tougher and more fibrous in texture than the pileus. The gills are white to 

off white as is the flesh, but both may bruise to a brown color. With regard to cystidia, sterile 

cells found between spore forming basidia cells, L. edodes does not have pleurocystidia, cystidia 

found on the sides of gills, but does have cheilocystidia, cystidia found on the edge of gills. 
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Figure 2.1. Taxonomic position of L. edodes. 

The spores of L. edodes are 5-6.5 x 3-3.5 μm, asymmetrically ellipsoid, white to buff in color, 

smooth with an obvious apical pore. L. edodes basidia bear four basidiospores. As mentioned 

above, hyphae are monomitic and dikaryotic hyphae have clamp connections. Mycelia are white 

turning tan to brown in older cultures and can be appressed to aerial, sometimes forming hyphal 

knots (D. Pegler, 1983; Stamets, 1993) 

Functionally L. edodes is a saprobic white rot fungus, preferentially decomposing 

hemicelluloses and lignin over cellulose and preferring broadleaved hardwood tree species. The 

preference for degrading lignin over cellulose leaves the wood bleached in appearance due to the 

presence of the white color of cellulose and the depletion of dark brown colored lignin, hence the 
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term white rot. In its native habitat of China, Japan and Korea L. edodes is found growing on 

Castinopsis cuspidate, Pasania spp., Quercus spp. and Betula spp. In these regions L. edodes has 

been cultivated for centuries, where it is commonly called shiitake in Japan and shiang-gu in 

China (Stamets, 1993). 

2.2 Cultivation and history of L. edodes 

Cultivation began in China during the Sung Dynasty (960-1127 BCE) and is credited to 

Wu San Kwung. Wu San Kwung described a method of cultivation including site selection, log 

choice, and a scoring of the bark with a hatchet, followed by covering the log with soil and 

keeping the logs moist. After 1 year the soil would be removed and the logs covered with leaves 

and branches and periodically beaten with clubs to stimulate mushroom formation (Przybylowicz 

& Donoghue, 1988; Wasser, 2005).  These early methods relied on spores from nearby fruiting 

mushrooms to inoculate the logs. Logs with fruit bodies would be placed near freshly cut logs so 

the spores would more easily be dispersed to the freshly laid logs (Przybylowicz & Donoghue, 

1988).   

Modern log cultivation uses a wide variety of hardwoods inoculated with a pure culture 

of mycelia made into spawn. The fungus is encouraged to colonize the log and generally 

becomes productive within 6-12 months.  After a suitable incubation period these logs can be 

stimulated to produce sporocarps (mushrooms) by manipulation of their environmental 

conditions. This is commonly accomplished by soaking the logs in water or otherwise producing 

a change in humidity, temperature, or a combination of both. Some farmers beat the logs with 

sticks, mallets or shock them with electricity to stimulate fruit body production. Alternatively the 

logs may be left in a suitable shady location and when ambient weather conditions are favorable 



13 
 

fruit body production will occur. In temperate climates production is typically heaviest in the 

spring and the fall (Przybylowicz & Donoghue, 1988).   

Log cultivation has been shown to provide a modest supplemental income for some with 

ready access to hardwood logs, but there are challenges to the outdoor cultivation business 

model. Log production is often seasonal with gaps in production during the coldest and/or hottest 

months. Market gluts driving down price can occur as the logs of other growers produce 

mushrooms synchronously. Another disadvantage to log cultivation is that it requires a large 

amount of labor. The grower is working with dense, wet, hardwood logs. There is hard work 

involved in felling trees, bucking logs, transportation, inoculation and setting the log yard.  

Additionally, there is a lag between the initial investment and revenue as log production requires 

a 6-12 month incubation period before any return is seen (Gold et al., 2008). 

Other modern cultivation techniques use sterilized sawdust based substrate with various 

combinations of cereal grain, bran, calcium sulfate (gypsum), and/or other lignocellulosic 

materials to make supplemented sawdust fruiting blocks sometimes called synthetic logs or 

simply fruiting blocks. Supplemented sawdust fruiting blocks are prepared by mixing sawdust, 

woodchips, grain, bran, and gypsum. Water is added until the mixture is 60-75% water on a 

weight/weight basis. This mixture is then packaged into polypropylene bags in preparation for 

sterilization or pasteurization. Once processed in this way, the fruiting blocks are allowed to cool 

and are then inoculated with spawn (grain, sawdust or a combination of both and gypsum which 

has been colonized by a pure culture of the intended fungus). After inoculation, the fungal 

mycelia are allowed to colonize the fruiting block during an incubation period, in the dark at 

approximately 21-27oC (Stamets, 1993). Towards the end of incubation the outside of the 

fruiting block becomes covered with white mycelia and takes on a bumpy appearance. This stage 
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is commonly referred to as the blister or popcorn stage. The initial stage of fruit body formation 

begins with the formation of aggregations of hyphae called hyphal knots. These knots have the 

potential to become primordia, which later develop into fruit bodies (U. Kües & Liu, 2000). 

Indoor production on sawdust based substrate has been shown to provide higher annual revenues 

than log cultivation. There is very little lag time between inoculation and harvest when compared 

to log production. Indoor cultivation with consistent, year-round, harvests lends itself to the 

demands of many larger produce distributers, retail stores and restaurants.  Production may be 

standardized in order to meet demand and attain year-round availability. The disadvantages to 

producing L. edodes on sawdust blocks are the higher associated startup costs, a greater 

ecological footprint in the form of energy/fossil fuel consumption and often the quality of the 

finished product. These issues may be mitigated by the shortened time between inoculation and 

harvest, the use of waste products such as hardwood sawdust, wood chips and agricultural 

residues followed by good management practices. Strain improvement and development strains 

targeted for indoor sawdust block production and seasonal/regional temperatures offer further 

solutions for improving profitability, sustainability quality and of L. edodes grown using sawdust 

block production systems. 

2.3 Market share 

L. edodes is one of the five most widely cultivated mushrooms in the world (Wasser, 

2005).  L. edodes mushrooms are the second most cultivated species of mushroom worldwide 

and in America after Agaricus bisporus, the white button and portabella mushroom, as reported 

by S. Chang (1999) and has remained in that market position as reported in by Gold et al. (2008). 

China and Japan are the primary producers of shiitake in the world market place. Popularity of L. 

edodes is increasing as its superior taste, texture and knowledge of its nutritional and medicinal 
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value become more widely known. Establishment of a diverse stock of L. edodes for use in 

America would help farmers increase production and become better able to serve local and world 

markets.  

2.4 Nutritive value and medicinal compounds  

In general on a dry weight basis L. edodes mushrooms contain 58-60% carbohydrates, 

20-23% protein (80-87% of which is digestible), 9-10% fiber, 3-4% lipids, and 4-5% ash. L. 

edodes is a source of vitamin D, B vitamins and minerals Fe, Mn, K, Ca, Mg, Cd, Cu, P, and Zn 

(Wasser, 2005). Medicinally L. edodes is the source of lentinan and other water soluble 

polysaccharides with anti-tumor/anti-cancer properties. L. edodes has also been found to reduce 

cholesterol, lower blood pressure, and boost the effectiveness of the immune system, including 

fighting viral infections (Rogers & Wasser, 2012; Stamets, 1993; Wasser, 2005). Nutraceutical 

supplements are produced from mycelium as well as the fruiting bodies of L. edodes (Wasser, 

2005). Development and identification of strains which have high mycelial growth rates as well 

as high concentrations of nutritive and medicinally active compounds would be valuable in the 

production of these products. 

2.5 Life cycle of L. edodes  

In order to breed an organism one must understand its life cycle. Many basidiomycetes, 

including L. edodes, can exist as either monokaryotic gametic colonies or dikaryotic colonies at 

different points in their life cycle. A generalized version of a basidiomycete life cycle follows 

and is schematically illustrated in Figure 2.2. A basidiospore germinates resulting in 

monokaryotic hyphae. These hyphae grow and form a monokaryotic colony. The colony can live 

in this state for an extended period of time and will do so as long as biological requirements are 
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met. When two monokaryotic colonies of the same species encounter each other the reaction will 

be based on the mating type of the two individual monokaryons. If their mating type alleles are 

heterozygous, they will be compatible, if they are homozygous, the organisms will be 

incompatible. This is known as a heterothallic mating system. Cells of compatible monokaryons 

will fuse with each other forming a dikaryotic colony. This cellular fusion is called plasmogamy. 

After plasmogamy the cells are in an n + n arrangement with two unfused haploid nuclei from 

the participating monokaryotic hyphae present in each hyphal cell.  

 

 

Figure 2.2. Generalized nuclear life cycle of Basidiomycetes. 

An important and notable morphological feature of dikaryotic colonies is the clamp 

connection. Clamp connections segregate the two haploid nuclei during mitosis and cell division 

insuring that one copy of each of the two nuclei is in the each cell. Clamp connections can be 
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viewed microscopically and are an observable indication of dikaryotization. A schematic 

diagram showing the function of clamp connections during mitosis is shown in Figure 2.3. A 

dikaryotic colony is fertile and is able to form a sporocarp, although the timing of the formation 

of the sporocarp is often a triggered response to environmental conditions. The layer of tissue on 

the sporocarp, called the hymenium, is where karyogamy quickly followed by meiosis both 

occur during the preliminary stages of spore production. Cells in the hymenium produce unique 

terminal hyphae, called basidia, which are the specific location of meiotic events. Meiosis results 

in haploid spores which are dispersed and begin the cycle anew. (Brown & Casselton, 2001; L. 

Casselton & Challen, 2006; Raper, 1966).  

 

Figure 2.3. Schematic diagram of Basidiomycete clamp connection formation, hyphal extension 

and mitosis progressing in stages 1-5. 
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The generalized life cycle holds true for L. edodes, however the specifics of mating 

compatibility must be explained in more detail. Mating in heterothallic basidiomycetes, like L. 

edodes, has historically been broken into two categories based on the existence of one or two 

mating loci synonymously referred to as incompatibility loci. If there is only one mating locus 

then the organism is referred to as bipolar. If there are two loci then the organism is known as 

tetrapolar. The single locus in bipolar organisms is labeled the A locus and the two loci in 

tetrapolar organisms are respectively labeled the A and B loci. The specific alleles which 

comprise the loci are typically assigned numerical designations. This nomenclature system 

results in mating types with an A and B each followed by a number e.g. A1 B1. A closer look at 

this system finds that the A and B loci are multiallelic and are comprised of subloci which can 

recombine to form functionally different mating types (L. A. Casselton, 1997; Erika Kothe, 

1996). Some species have this bipartite structure for both the A and B loci and in some species it 

is only the B loci that has been found to be subdivided in this manner (James, Liou, & Vilgalys, 

2004; L. M. Larraya et al., 2001). This system of subloci and their recombination is the rationale 

behind the observed abundance of mating type alleles (James et al., 2004). These subunits 

readily recombine to form new mating types (Cheng & Lin, 2008; Fox et al., 1994; James et al., 

2004).  

The number of functional mating types is unique to each species of heterothallic fungi. 

Estimates of the percentage of homobasidiomycetes species with tetrapolar mating systems are 

49-65%. Those with bipolar mating systems are estimated at 25% and those with homothallic 

mating systems are 10-15% (L. Casselton & Challen, 2006). L. edodes is a heterothallic 

tetrapolar basidiomycete. It has been estimated that there are 121 A mating types and 151 B 
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mating types in L. edodes populations in China, and 40 A mating types and 63 B mating types in 

L. edodes populations in Japan (Li et al., 2007). 

The tetrapolar mating system allows for up to 100% successful mating between of 

gametes from non-related individuals of the same species, those with a different set of A and B 

mating alleles, but positive mating is reduced to 25% between sibling strains and those of the 

same species with common A and B alleles (Kendrick, 2000; E. Kothe, 2001; Raper, 1966; 

Stamets, 1993). The high outcrossing rate and low inbreeding rate ensure that natural populations 

will more often than not outcross, adding to genetic diversity within a population. This may be 

advantageous in wild populations but can cause breeders trouble by making backcrossing to 

conserve a desired phenotype time consuming and laborious (E. Kothe, 2001). Identification of 

mating types produced by given strains and identification by way of uniform tester strains speeds 

up the backcrossing process (S. T. Chang, Buswell, & Miles, 1993). Conversely outcrossing may 

provide added vigor in the resulting hybrid strains when compared to the parents and is another 

laudable goal of breeding programs. Mating type identification can be used as a simple method 

for evaluating the relatedness of strains which may be used in a breeding program (Fox et al., 

1994; E. Kothe, 2001). There are two reasons why unique mating types may be observed 

between strains: 1. there are high numbers of mating types in the species being studied, 2. the 

strains are more distantly related (O. S. Isikhuemhen, Moncalvo, Nerud, & Vilgalys, 2000; 

Raper, 1966). 

Coprinus cinereus and Schizophyllum commune have been used as the primary model 

organisms to study the bifactorial tetrapolar mating system of heterothallic homobasidiomycetes 

(Raper, 1966). Study of these organisms has determined that the A and B loci control different 

physiological responses during plasmogamy of monokaryotic mycelia. For these two model 
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organisms it has been determined that the A and B loci have unique concerted roles which work 

by triggering downstream signaling cascades (E. Kothe, 2001; Raudaskoski & Kothe, 2010). The 

A mating locus codes for transcription factors which control clamp connection formation, 

synchronized nuclear division, and possibly septa dissolution and formation. The B mating locus 

codes for pheromones and pheromone receptors which control plasmogamy, nuclear migration, 

and fusing of the clamp to the cell (E. Kothe, 2001; Raudaskoski & Kothe, 2010). In addition to 

clamp formation, it has been found that the B mating genes are responsible for the formation of a 

subapical peg which protrudes behind the septa of the apical cell and rises to meet and fuse with 

the clamp. Peg formation has been observed in L. edodes as well as other basidiomycetes 

(Badalyan, Polak, Hermann, Aebi, & Kües, 2004; L. Casselton & Challen, 2006).  

The A locus has been found to have linked subloci which are redundant with regard to 

their function in the model organisms of C. cinereus and S. commune (E. Kothe, Gola, & 

Wendland, 2003). The subloci are capable of activating common signaling pathways (E. Kothe, 

1996). The B locus is also composed of multiple subloci with redundancy built in by way of the 

pheromones which can activate multiple receptors and receptors which may be triggered by 

multiple pheromones though not by one produced by subloci on the same primary locus (L. A. 

Casselton, 1997; E. Kothe et al., 2003). It is not known what specific proteins and peptides are 

involved in this system or how large the categories of active proteins and peptides are (L. 

Casselton & Challen, 2006).   

A third model organism for the bifactorial tetrapolar mating system is Ustilago maydis, 

the corn smut. When the mating system for U. maydis was originally described, the mating loci 

were labeled in the opposite manner as C. cinereus and S. commune with regard to their roles in 

the mating process. With U. maydis the A mating locus codes for pheromones and pheromone 
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receptors and the B mating factor codes for transcription factors (Brown & Casselton, 2001; L. 

Casselton & Challen, 2006; L. M. Larraya et al., 2001). This is an unfortunate historical situation 

and while originally somewhat arbitrary convention now favors the labeling of the A and B 

mating loci using the system exemplified by C. cinereus and S. commune. Though the specifics 

have not been worked out for most of the species with heterothallic tetrapolar mating systems the 

general model is accepted. Molecular sequencing has been used to identify a pheromone receptor 

gene on the B locus of L. edodes suggesting that the C. cinereus and S. commune model is 

applicable to this species (Li et al., 2007).  

For this work mycelial fusion and the presence of abundant clamp connections is used as 

an indicator of a positive mating between two monokaryotic cultures with heterozygous mating 

types at both mating loci. Lack of mycelial fusion and the absence of abundant clamp 

connections is used as an indicator that the monokaryotic strains being crossed have at least one 

mating type allele in common.  

2.6 Spore germination 

Spore germination and pairing of monokaryons, although an old technique for breeding is 

still an effective method of creating hybrid strains (Chakravarty, 2011). Protoplast fusion is also 

used but is more time consuming and requires greater technical expertise and resources 

(Chakravarty, 2011). Spore isolation as outlined by Cheng and Lin (2008) is accomplished by 

suspending discharged spores in sterile water and using a serial dilution to get to a concentration 

where single L. edodes spores can be isolated from a agar based media plate. These cultures are 

then confirmed to be monokaryotic cultures by the absence of clamp connections using 

microscopic examination (O. S. Isikhuemhen et al., 2010).  
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2.7 Breeding approaches 

In a recent review article “Trends in mushroom cultivation and breeding” Chakravarty 

(2011) states the lamentable fact that there is not the body of research in the field of mushroom 

breeding that there is for other crops. Breeding for higher yield and increased product quality 

were proposed as the primary goals of breeding research. Yield may be increased by focusing on 

any of several parameters. The most obvious one is increasing the number of quality fruiting 

bodies produced. Yield may also be increased by breeding to increase the thickness of cap and 

the density of the tissue (Chakravarty, 2011). Since mushrooms are sold by weight this 

effectively increases yield. Decreasing the amount of time in the crop cycle is another effective 

way to increase yield on a seasonal or annual basis (Chakravarty, 2011). Breeding work in this 

area shows that initiation of fruit body development without a low temperature incubation period 

is heritable and likely dominant (Sakai, Saito, Kajiwara, & Shishido, 2004). Elimination of the 

cold temperature treatment step in the induction process shortens the incubation cycle and 

decreases cost to the producer while increasing annual yield. Another way the crop cycle can be 

shortened is by increasing the mycelial growth rate of the cultivated organism. This would 

shorten the amount of time needed for incubation and thereby increase annual yield.  

Dovetailing with the concept of decreasing incubation time is the idea of using incubation 

temperatures closer to the ambient seasonal air temperature. This does not directly increase yield 

in terms of mass but it can decrease the producers energy costs associated with either heating or 

cooling the incubation area. This reduction in energy usage translates to an increased monetary 

yield for the producer as well as a general beneficial environmental impact due to reduced 

energy consumption. In order to realize these benefits, strains which exhibit high mycelial 
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growth rates at temperatures above and below the typical optimal temperature must be obtained 

through breeding and selection.  

Other than yield the area with greatest need for strain improvement is resistance to 

disease (Chakravarty, 2011). Resistance to contamination by Trichoderma spp. has specifically 

been noted as an important problem to address. Outbreaks can quickly infest and severely reduce 

yield in a commercial mushroom operation. The heritability of direct resistance to Trichoderma 

spp. has been studied (Lee, Bak, Lee, Park, & Ka, 2008). Resistance was measured by placing 

Lentinula edodes and Trichoderma spp. in co-culture on PDA and observing the interaction. 

Some L. edodes strains showed the ability to form a barrage, while others either overtook the 

Trichoderma sp. or were overtaken by the Trichoderma sp. It was found that direct resistance to 

this Trichoderma sp. was not passed down from parental strains to their offspring. Screening for 

direct resistance to a contaminant must therefore be done on a strain by strain basis. Breeding 

studies working with L. edodes of know lineage coupled with molecular genetics techniques 

could be useful in the identification of the resistance mechanism to Trichoderma spp. 

Identification of rapidly colonizing L. edodes strains would also be useful in addressing this and 

other contamination problems since rapid substrate colonization is part of an organism’s ability 

to outcompete undesired contaminating organisms.  

The ability to outcompete another organism for the resources of a given substrate is a 

composite characteristic and makes up the organism’s competitive saprobic ability (Shearer, 

1995). Part of the mix of traits that enter into the competition equation is the direct resistance to 

the invading organism, e.g. production of antimicrobial compounds, another factor is the ability 

to efficiently use the nutrients in the substrate and a third factor is the ability to grow rapidly and 

colonize the substrate. While these three characteristics are intertwined rapid growth rate can be 
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used as an assessment of two of these constituent parts of an organism’s competitive saprobic 

ability. A L. edodes strain that efficiently uses soluble nutrients and grows rapidly leaves less of 

a foothold for the pathogen in the substrate (Mata & Savoie, 1998, 2005; Shearer, 1995).   

2.8 Mycelial growth rate on PDA and lignolytic substrates 

As previously noted there are many characteristics which may be selected for through a 

breeding program. Quantity of sporocarps, size of sporocarp, ability to efficiently utilize a 

specific substrate, nutritional value, taste, color, concentration of secondary metabolites, and rate 

of substrate colonization at various temperatures are some of the many traits which may be 

worthy choices for the focus of a breeding program (S. T. Chang, Buswell, & Chiu, 1993). 

Mycelial growth rate is a quantifiable trait for which it is relatively easy to generate data. This 

data is faster to obtain than data for a trait such as yield since one need not produce sporocarps. 

Though mycelial growth rate may or may not be a trait that producers are interested in directly it 

could be an indirect measurement of other sought after qualities. High mycelial growth rates 

shorten the time needed for substrate colonization. This lowers the likelihood that undesirable 

contaminants, fungi or bacteria, will have a chance to take hold in the substrate and utilize a 

vacant niche. As previously stated, high growth rates shorten incubation time which shortens the 

crop cycle and has the effect of increasing annual yield and revenue. Work in this thesis uses the 

mycelial growth rates of L. edodes on PDA as the quality by which strain improvement is 

determined.  

While PDA is not a substrate which is likely to be used as a production media it was 

selected for use in this work due to its uniformity and availability. When a defined medium, such 

as PDA is used to evaluate growth rate there are less sources of confounding error than there are 
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in other media types. There is less variation in the substrate composition than there is in sawdust 

blocks, logs, or agricultural waste products. While these substrates may be the ultimate intended 

substrate for production, PDA can be used as a stand in to generate useful data that can be 

extrapolated to the commercial production potential of L. edodes. This line of reasoning is 

supported by previous work outlined below which uses defined media as a substrate in order to 

extrapolate information about the performance of L. edodes in an in situ situation (Mata, 

Delpech, & Savoie, 2001; Miyazaki, 2008; Puri, 2012; Ryu, Bak, Koo, & Lee, 2009; Tan & 

Moore, 1992; Tokimoto, Fukuda, Matsumoto, & Fukumasa-Nakai, 1998). Further, mycelial 

growth rate has been used as an indicator of vigor and ultimate productivity both on defined 

media and on lignocellulosic substrates (Ashrafuzzaman, Kanruzzaman, Ismail, & Shahidullah, 

2009; Curvetto, Figlas, & Delmastro, 2002; Furlan et al., 1997; Levanon, Rothschild, Danai, & 

Masaphy, 1993; Martínez-Guerrero et al., 2012; Mata et al., 2001; A. Philippoussis, 

Diamantopoulou, & Zervakis, 2002; Puri, 2011; Tan & Chang, 1989; Tan & Moore, 1992).  

 A positive relationship between yield and mycelial growth rate on PDA was found in L. 

edodes breeding work using protoplasts (Tokimoto et al., 1998). This work compared the yield 

of 18 dikaryotic strains grown in log culture to their growth rate on PDA and found the positive 

relationship to be significant at the 1% level.  

PDA was used as the media choice to evaluate the mycelial growth rate of 19 hybrid L. 

edodes strains at low, mid and high temperatures in a dikaryotic-monokaryotic cross breeding 

program (Ryu et al., 2009). Mycelial growth rate on PDA of hybrid L. edodes strains was used to 

produce quantifiable trait data in order to evaluate the heritability of monokaryotic growth rates 

to their dikaryotic progeny (Miyazaki, 2008). Tan and Moore (1992) used rapid growth on PDA 
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media as a selection criterion for 18 L. edodes strains which were then grown in supplemented 

sawdust blocks (Tan & Moore, 1992).  

In a study using two strains of L. edodes which were grown on five defined agar based 

media types, Puri (2012) found that PDA was the defined agar media which produced the highest 

growth rate in both strains. Similar to the work in this thesis, these strains were grown at 15, 20, 

25, 30 and 35oC. Strain L1 grew at a faster rate than strain L2 at all temperatures on PDA. Strain 

L1 was found to have a higher yield of fruiting bodies when compared to L2 on 15 different 

substrate types made from agricultural waste. This supports the concept that faster growth rates 

are equated with higher fruit body yields and that mycelial growth rate on PDA can be used as a 

predictor of L. edodes yield on agricultural waste.  

Mata et al. (2001) determined the mycelial growth rate of L. edodes on three agar media 

types; malt extract agar, malt/yeast extract agar, and malt/yeast/wheat straw extract agar. 

Mycelial growth rates on all three media types were all found to be positively correlated with L. 

edodes mycelial growth rate on wheat straw. This like the work of Puri (2012) supports the use 

of mycelial growth rates on agar based media to select L. edodes strains for use on lignolytic 

substrates.   

In other work looking at use of wheat straw as a potential substrate for L. edodes, rapid 

colonization was linked to the ability of L. edodes strains to use soluble carbon recourses. While 

the ability to solubilize these resources is one important issue the ability to rapidly metabolize 

low molecular weight carbon resources is another. The ability to rapidly utilize carbon and other 

nutrients renders these resources unavailable to potential contaminating microorganisms which 

resist sterilization/pasteurization and remain viable in the substrate (Mata & Savoie, 1998). Since 
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defined media like PDA has an abundance of lower molecular weight carbon nutrients it is a 

suitable media for determination of the relative potential of an organism to metabolize soluble 

carbon recourses in other more complex substrates. This potential is measured as mycelial 

growth rate. This does not necessarily predict the relative suitability for use on a complex 

lignolytic substrate but it does predict how well a given strain can use available resources before 

competing organisms which may still be present are able to use it. The work of Mata and Savoie 

(1998) found that the strains with high metabolic activities were also the strains which were first 

to produce mushrooms and had higher mushroom yields. 

Much research has been conducted growing L. edodes directly on various lignolytic 

substrates. The trends in this research show that the faster the mycelial growth on these 

substrates the lower the rate of contamination and that strains with the fastest growth rates on a 

given substrate often produce mushrooms more quickly and in greater abundance than those with 

slower mycelial growth rates. Some of these studies have used multiple strains of L. edodes on a 

limited number of substrates while others have used a limited number of strains to test a wider 

variety of substrates (Ashrafuzzaman, Kamruzzaman, Ismail, Shahidullah, & Fakir, 2009; 

Levanon et al., 1993; A. Philippoussis & Diamantopoulou, 2011; A. Philippoussis et al., 2002; 

A. N. Philippoussis, Diamantopoulou, & Zervakis, 2003; Puri, 2012).   

In work examining 12 various substrates produced from the wood of tropical trees and 

one L. edodes strain, it was found that among the substrates tested, mycelial growth was fastest 

on Jackfruit sawdust. Jackfruit sawdust was first to fruit and had the greatest yield compared to 

the other tropical wood types tested (Ashrafuzzaman, Kamruzzaman, et al., 2009; 

Ashrafuzzaman, Kanruzzaman, et al., 2009). This same trend is seen in the work conducted by 

Curvetto et al. (2002) who studied sunflower seed hulls as a potential substrate for L. edodes. 
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The substrate producing highest mycelial growth rate, containing an 8:2 ratio of sunflower seed 

hulls to wheat bran, was found to have the highest mushroom yield of those substrates tested.  

Another study following this trend compared various agricultural wastes for use in the 

production of L. edodes spawn and found that the substrate combinations on which the shiitake 

strain grew fastest also gave the highest yields when the spawn was subsequently used to 

inoculate fruiting blocks (Puri, 2011).  

While there does seem to be a trend here between mycelial growth rate and yield on these 

various substrates the literature is not uniform. Zervakis, Philippoussis, Ioannidou, and 

Diamantopoulou (2001) compared mycelial growth rate and yield of L. edodes on wheat straw, 

cotton gin trash, peanut shells, poplar sawdust, oak sawdust, corn cobs and olive press-cake. A 

relationship between L. edodes mycelial growth rate on wheat straw and mushroom yield was 

observed, but no relationship was found between the mycelial growth rate and yield for other 

lignolytic substrates tested. The primary limitations of this work were that Zervakis et al. (2001) 

only used one strain of L. edodes and may have induced fruiting too early since part of their aim 

was to shorten the time between inoculation and fruit body production. Premature fruiting could 

have decreased the yields on substrates with higher lignin content.  Differences between strains, 

substrates, incubation time and yield have been observed in work comparing these factors (Royse 

& Bahler, 1986).  

The findings of Zervakis et al. (2001) are in agreement with earlier work conducted by 

Tan and Chang (1989). Their work compared mycelial growth rate on supplemented sawdust 

fruiting blocks of various composition to fruit body yields from those substrates. It was 

concluded that the substrate/strain combinations that had high yields all had high mycelial 

growth rates, but that not all combinations with high mycelial growth rates had high yields. 
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In several other studies originating at the National Agricultural Research Foundation in 

Athens, Greece, as well as the study by Zervakis et al. (2001) mentioned previously, it has been 

pointed out repeatedly that a rapid mycelial growth rate is important to lessen the risk of 

contamination when growing L. edodes on various agricultural waste products. Additionally, 

these studies assert that faster growth rates reduce the duration of the incubation phase of 

mushroom production. These studies use 2-5strains of L. edodes and substrates including wheat 

straw, cotton waste, peanut shells, oak sawdust, reed grass, corncobs and/or bean stalks (A. 

Philippoussis & Diamantopoulou, 2011; A. Philippoussis et al., 2011; A. Philippoussis et al., 

2002; A. N. Philippoussis et al., 2003). When using agricultural wastes as substrates rapid 

colonization of the substrate is critical due to the high loads of contaminating organisms that are 

likely to be present even after sterilization or pasteurization. A high growth rate gives the 

selected organism a competitive advantage during the critical initial colonization phase. 

2.9 Strain deterioration  

Strain deterioration is a continuous problem in mushroom cultivation (Chakravarty, 

2011). Repeated subculturing and or prolonged storage can result in strain deterioration due to an 

accumulation of genetic mutations that have occurred during storage and over multiple cell 

divisions under in vitro conditions (Chen, 2001). The longer a strain is in cultivation and the 

more cell divisions occur the greater the likelihood of the accumulation of mutations which can 

decrease the yield and quality of the fruiting bodies (Stamets & Chilton, 1983).  

2.10 Strain diversity and temperature optima  

In addition to the problem of strain deterioration it has been pointed out that there is 

limited genetic variability in the mushroom farmer’s library of cultivated strains (Chakravarty, 
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2011). The implication of limited genetic variation in commercial stock is that there is a 

decreased opportunity for producers to access strains which are free of accumulated mutations. 

Further, this genetic bottle neck could leave the population of commercial L. edodes susceptible 

to disease and pest attack.  The assertion that there is limited genetic variability among 

commercially used L. edodes strains is based on molecular genetics research of cultivated and 

wild type L. edodes strains.  

Nineteen strains of L. edodes used in commercial cultivation in China and three strains 

which were collected from the wild were characterized by random amplified polymorphic DNA 

(RAPD) marker profiles to assess the level of relatedness between them (Chiu et al., 1996). 

Although the commercial strains were reported to have come from distinct origins, different 

spawn suppliers and strain improvement programs, they were found to be highly related. It was 

suggested that the cultivated strains may be related to Japanese strains which were introduced 

and widely used in the 1960’s. The three wild type strains were found to have a greater genetic 

diversity based on analysis of their RAPD profiles. The investigators concluded that wild 

populations of shiitake are biodiversity reservoirs and that Chinese commercial strains are highly 

related.  

In Japan 15 cultivated strains were characterized using amplified fragment length 

polymorphism (AFLP) analysis to assess the level of relatedness between the studied strains. It 

was found that these 15 strains could be divided into two groups which correspond to their 

fruiting temperature designation so that one group is comprised of high temperature strains plus 

strains used for cultivation on sawdust blocks and the other group is made up of strains which 

fruit at low temperatures (Terashima et al., 2002). This suggests that there is low diversity in 

cultivated strains of L. edodes in Japan. It further suggests that either high temperature strains are 
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better suited to sawdust block production or that strains used for sawdust block production were 

derived from high temperature strains. This is also suggestive of a genetic basis for fruiting 

temperature and is likely the origin of the concept that strains which fruit at high temperature are 

well suited for supplemented sawdust block cultivation.  

Similar research was conducted in China with 15 cultivated strains and two wild type 

strains. This work used inter simple sequence repeat (ISSR) analysis to determine the level of 

genetic relatedness between the strains studied (Zhang et al., 2007). As in the study by 

Terashima et al. (2002), it was found that the 17 strains could be divided into two groups 

supported by ISSR results. It was also found that these two groups matched those made based on 

optimum temperature for fruit body formation. One group included the high and broad 

temperature strains while the other included the low and mid temperature strains. Zhang et al. 

conclude that “genetic diversity is related to temperature”. Additionally they are in agreement 

with Terashima et al. (2002) that, similar to Japan, the genetic diversity of cultivated L. edodes 

strains in China is low.  

Along with pointing out the potential genetic bottleneck in commercial L. edodes strains 

these studies reinforce the concept that there is genetic diversity existing between strains from 

different temperature classifications. Strains are traditionally classified by fruiting temperature in 

the following categories: low temperature 10oC, mid temperature 10-18oC, high temperature 

>20oC, and wide range 5-35oC (Chen, 2001; Hasebe, Ohira, & Arita, 1998; Terashima et al., 

2002).  The work of researchers like Zhang et al. (2007) and Terashima et al. (2002) support the 

use of temperature classification as an indicator of relatedness.  
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Strains which fruit at low to middle temperatures are typically used for outdoor log 

cultivation.  Strains from the high temperature group are said to be more easily induced and are 

able to fruit under summer conditions. These strains are used for log cultivation as well as indoor 

supplemented sawdust block cultivation (Chen, 2001; Stamets, 1993). It has been suggested that 

strains which are able to live at the upper extreme of the high temperature range (> or = 30oC) 

produce greater yields on sawdust blocks (Stamets, 1993). The hierarchy of genetic dominance 

of optimum temperature for fruiting has been found to be high temperature > medium 

temperature > low temperature (Hasebe et al., 1998).  

This concept is supported by work done by Ryu et al. (2009) in South Korea. In a 

dikaryotic-monokaryotic cross breeding program strains were evaluated for sawdust block 

cultivation.  Optimal temperature for mycelial growth of both the dikaryotic and monokaryotic 

cultures was evaluated. Cultures were classified as low, mid or high temperature strains. It was 

found that crosses of strains classified as mid-temperature with strains classified as high 

temperature produced novel strains with increased yield. There was no significant increase in the 

yield of the hybrid strains produced by the combinations of the other temperature based 

groupings. This work supports the findings of Hasebe et al. (1998) that high temperature strains 

have a dominant phenotype.   

Though the traditional classifications for L. edodes are based on optimal fruiting 

temperatures a relationship between fruiting temperature and optimal temperature for mycelial 

growth has been identified. Strains of L. edodes which grew well at high temperatures also 

fruited at high temperatures (20-33oC) (B. Wang, Tang, Xiong, Jiang, & Xian, 2004). Based on 

this work, mycelial growth rate at a given temperature can be used as an estimation of optimal 

fruiting temperature and comparisons between research using the two parameters can be made.  
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The identification of these genetically different groups, their associated phenotypes, and 

the hierarchy of dominance suggests that fruiting as a response to temperature and the 

inducibility of fruiting can be maintained and selected for through breeding regimes. Inbreeding 

and hybridization of strains known to possess cold temperature optima should maintain cold 

temperature optima. Outcrossing between strains with warm and high temperature optima or 

inbreeding between high temperature strains should produce high temperature strains. Further it 

has been shown that hybrid strains especially those made by mating parents with different 

optimum temperatures can produce more vigorous growth and have higher productivity in 

Pleurotus sapidus (S. S. Wang & Anderson, 1972) and in L. edodes (Ryu et al., 2009). Based on 

this information the hybridization of strains with different temperature optima, especially mid 

range crossed with high range, is a sound strategy for the development of new strains with 

aggressive colonization and high inducibility. These strains would be well suited for use in 

sawdust based fruiting blocks, as well as having the potential to increase the length of the log 

cultivation season into the summer and for use in tropical regions (Mata & Savoie, 2005).  

The research in this thesis focuses on the initial characterization of the mycelial growth 

rates of the parental and novel dikaryotic strains, as well at their monokaryotic constituents at a 

range of temperatures from 10o-30o C in five degree increments. The optimal temperature for L. 

edodes mycelial growth is variable for different strains but in general is 20-28oC (Zervakis et al., 

2001). The use of mycelial growth rates across a range of temperatures as opposed to the use of 

optimal temperature for fruiting is a proposed shift in the assessment of L. edodes strains. The 

logic behind this change is based on the following three points. First, as previously stated, the 

work of B. Wang et al. (2004) found that the growth rate at high temperatures correlated with 

fruiting at high temperatures. Therefore rapid growth at a given temperature can be used to 
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estimate a functional fruiting temperature. This point has not yet been examined under a wide 

range of conditions and only the abstract of the cited research is available, as is the case with 

some Asian language journals. This assertion makes intuitive sense but should be looked into 

more thoroughly.  Second, for log cultivation as well as supplemented block cultivation L. 

edodes spends more time incubating in a vegetative growth stage than in a fruiting stage. In 

biotechnological applications a fruiting stage may never be used as it may be only the mycelia or 

their extracellular exudate that is of interest. Therefore the vegetative growth stage is the 

predominant condition and as such should be used to characterize strains. Third there is less 

variability in the environmental parameters of an organism growing vegetatively on an agar plate 

in an incubator than there is in a fruiting house. This makes comparison between work conducted 

by different experimenters and in different laboratories more uniform.    

This research will serve to provide base line information about the suitability of these 

various strains and their gametes for use in breeding and production across the functional 

temperature range of L. edodes using mycelial growth as a parameter rather than fruiting. Strains 

that are found to have high mycelial growth rates at the extremes of the temperature study and 

those that have high growth rates across many temperatures are good candidates for further 

research.  

2.11 Strain diversity mating type  

Identifying mating types and using mating type as genetic marker is a simple method for 

determining the genetic diversity of a population or a culture collection. The use of mating type 

as a measure of relatedness is supported by taxonomists and by researchers using molecular 

techniques. It is suggested by Fox et al. (1994) that mating type diversity can be used to indicate 
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a level of relatedness within the species L. edodes (Fox et al., 1994). This information can be 

used in breeding programs to identify diverse lineages for hybridization or used for conservation 

of a phenotype by means of backcrossing. Having identified four distinct lineages and 

populations of L. edodes from Japan to New Zealand, Hibbett and Donoghue (1996) suggested 

that shiitake breeders use isolates from outside of northeast Asia to bring useful genetic diversity 

into their breeding programs.  

Mating type was found to be useful for characterizing genetic differences in wild strains 

of L. edodes collected in Japan. Eighteen wild type strains were grouped into distinct genets 

based on mating type. When concurrent analysis of the same 18 strains was conducted using 

mitochondrial DNA, the strains were grouped into roughly equivalent genetic groupings (Fukuda 

& Mori, 2003). The relationship between diversity of mating type and diversity determined by 

molecular techniques has been used with other species of fungi. High rates of mating 

compatibility were found between distant populations of Pleurotus tuber-regium with lower rates 

observed between strains from populations originating in geographically closer regions (O. S. 

Isikhuemhen et al., 2000). Higher rates of mating incompatibility indicate lower numbers of 

unique mating alleles. Analysis of the internally transcribed spacer (ITS) regions provided 

evidence that corresponded to the rates of mating compatibility for predicting relatedness. The 

populations which had higher mating incompatibility were more related and had more mating 

types in common than the populations which had fewer mating types in common and more 

readily mated.   

2.12 Growth rate of monokaryons as a basis for selection 
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The selection and mating of fast growing monokaryons, in order to produce fast growing 

dikaryons, is intriguing and would provide a useful methodology for monokaryon selection. The 

literature does not provide conclusive information with regard to the relationship between 

monokaryotic growth rates and the growth rates of the resulting dikaryons. The relationship has 

been found to be only partial and may vary by genus and species.   

Breeding work crossing L. edodes monokaryotic cultures was conducted by Miyazaki 

(2008) to determine the heritability of monokaryotic growth rate. Fifteen monokaryons from one 

dikaryotic parent and five monokaryons each from a unique parent were crossed to produce 75 

novel dikaryotic strains. The growth rate of the progeny was determined and the progeny were 

separated into groups based on the five monokaryons, each of which originated from a unique 

parental strain. A relationship was found in four of the five mating lines between the mycelial 

growth rate of the monokaryotic parent and the mycelial growth rate of the resulting hybrid 

progeny. However Miyazaki (2008) concluded that mycelial growth rate of monokaryons should 

not be used to select gametes for breeding dikaryons.  

S. S. Wang and Anderson (1972) found a significant relationship between the mycelial 

growth rates of dikaryotic cultures of Pleurotus sapidus and their constituent monokaryons. 

Simchen and Jinks (1964) found a limited relationship between the mycelial growth rate of 

component monokaryons and the resultant dikaryotic cultures in Schizophyllum commune. They 

concluded that most of the variation in the growth rate of dikaryons was not correlated with the 

variation in the monokaryotic growth rate. Simchen and Jinks (1964) hypothesized that the lack 

of a significant relationship was due to epigenetic differences between the monokaryotic and 

dikaryotic stages of development.  
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In work done by Larraya, Perez et al. (2001) monokaryotic growth rate was linked to the 

presence of specific mating type loci and subloci in Pleurotus ostreatus. This work identified a 

trend linking the growth rate of the constituent monokaryons to the growth rate of the resultant 

dikaryons, but no analysis was conducted to determine the significance of this trend.  Yan, Jiang, 

and Cui (2004) found that protoplasts from Stropharia rugoso-annulata with an A2B2 mating 

type grew faster than those with an A1B1 mating type. These studies indicate that while the 

relationship between the growth rate of monokaryons and the dikaryotic cultures produced by 

mating is not strong there may be a relationship between specific mating types and their growth 

rate. This does not provide a clear method of selection for producing fast growing dikaryons 

since one must have both heterozygous mating types to produce a fertile dikaryotic strain. If fast 

growing monokaryons from different lineages, with different sets of mating alleles, can be 

indentified and mating type is correlated with growth rate, then these monokaryons could be 

paired. This may be a workable strategy to employ the relationship between a given mating type 

and high monokaryotic growth rates resulting in faster dikaryotic strains. 

By determining the mycelial growth rates of the gametes and comparing them to the 

growth rates of the offspring, it is hoped that a methodical approach to selecting monokaryotic 

breeding stock may be established with the goal of producing novel strains with high mycelial 

growth at various desired temperatures. 

2.13 Distorted allele ratio and recombinant mating types  

A theoretical model of mating type allele ratios of spores which are the product of 

meiosis and based on Mendelian principles would have all four of the possible mating types from 

a given parent in a 1:1:1:1 ratio. A diagram of this model is shown in Figure 2.4. Two of the four 
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mating types are identical to the parents’ nuclei and the other two are the product of 

recombination during meiosis. The theoretical mating ratio of 1:1:1:1 is not always observed 

during experimentation. Distorted allele ratios have been found in L. edodes (Cheng & Lin, 

2008; Fox et al., 1994) and other fungi including Pleurotus ostreatus (Kay & Vilgalys, 1992; L. 

M. Larraya et al., 2001), Phytophthora infestans (Judelson, Spielman, & Shattock, 1995) and 

Schizophyllum commune (Raper, 1966).   

 

Figure 2.4. Tetrapolar model of spore production showing derivation of theoretical mating type 

allele ratio.  

There are several theories as to why distorted mating type ratios occur. It has been shown 

that wild strains of L. edodes have less distortion from the expected ratio than cultivated strains 

(Cheng & Lin, 2008). It has been theorized that a recessive lethal factor can appear in 

commercial stock after long periods of storage and repeated subculturing (Fox et al., 1994). An 
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associated theory suggests that a lethal factor near the mating locus may serve to eliminate 

gametes with inconsistent mating type allele combinations e.g. those which express both B1 and 

B2 functions (Judelson et al., 1995). It has also been proposed that rather than a lethal factor there 

may be a factor causing slow germination or subsequent slow mycelial growth (L. M. Larraya et 

al., 2001). These factors rather than being strictly lethal would cause a lack of vitality which may 

in turn cause spores to be under selected during single spore isolation. Thirdly, it has been found 

that spores with the parental mating types outnumbered those with non-parental mating types 

(Cheng & Lin, 2008) thus distorting the mating type ratio in the L. edodes strains studied. This 

study found that this distortion was significantly lower in wild type strains than it was in strains 

from commercial sources. This finding is not inconsistent with the theory that lethal mutations or 

factors accumulated during storage and or repeated subculturing is the cause of this phenomenon. 

If this theory holds then the mating type allele ratio could be a useful measure of how much time 

a strain has been under in vitro conditions. 

Another type of distortion in the mating type ratio of germinated spores is due to the 

occurrence of recombinant mating types. Recombinant mating types have been observed in 

spores from L. edodes. These spores were identified because they were able to mate with spores 

with 2, 3, or 4 different mating types which were generated from the parent (Cheng & Lin, 

2008). It was hypothesized that this result was due to mutation or an exchange of genetic 

material during meiosis or from recombination between mating type subloci. Recombination of 

mating type alleles of L. edodes was observed in the work of Fox et al. (1994). They observed 

that B3 and B6 mating loci were recombined in the progeny from all four of the strains with those 

mating types. Recombinant mating type genes have also been found in Pleurotus djamor during 

research into the roles of the A and B mating loci as they relate to the model organisms C. 
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cinereus and S. commune (James et al., 2004). As mentioned previously, recombinant mating 

types may be the source of the large number of functionally different mating types and the 

mechanism for their creation (L. A. Casselton, 1997; Erika Kothe, 1996).  
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CHAPTER 3 

Materials and Methods 

3.1 Fungal strains and isolation of monokaryotic cultures 

Six strains of Lentinula edodes (Berkley) Pegler from the Mushroom Biology and Fungal 

Biotechnology Lab (MBFBL) were selected as parent strains. Previous work at MBFBL 

characterized the parent strains MBFBL 1, 2, 3, 4, 5 and 6 as having superior mycelial growth 

rates at temperatures of 10oC, 10oC, 15oC, 20oC, 25oC and 30oC respectively (both MBFBL 1 

and 2 were selected for 10oC) when compared to each other. Spores were collected from the 

basidiocarps of each parent strain by placing the pileus gill side down on a clean sheet of paper 

or glass microscope slide and covering with a suitable container until a spore print was produced, 

usually overnight. Spores from fresh prints or previously collected spore prints which were 

stored at 4oC were used to make spore suspensions in sterile deionized water. A serial dilution of 

the spore suspension was performed making dilutions from 10-1 to 10-7. Nine hundred μl of the 

spore suspension at each dilution was plated on white rot spore germination media (Table 3.1) in  

100mm x 15mm Petri dishes using the spread plate method. Plates were incubated for 7-10 days 

at 20oC and 25oC until germination was observed, however plates with dilutions producing few 

germinated spores were incubated up to 4 weeks. Plates with dilutions that yielded visibly 

individual germinated spores were used for the isolation of the single spore cultures. From these 

plates individual spores were removed using a sterilized toothpick to transfer each of the 

germinated spores and its monokaryotic mycelium to a 60mm x 15mm Petri dish containing 

Potato Dextrose Agar (PDA) Difco™ media. This process was repeated as needed and used to 

generate 37 monokaryotic cultures from each of the parent strains. These cultures were examined 
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at 40x using a light microscope and the squash mount technique. Under these conditions the 

mycelia were examined for clamp connections. Lack of clamp connections was used as 

verification that the culture was a monokaryotic single spore isolate.   

3.2 Media formulations and preparation 

PDA media was prepared according to the manufactures specifications by dissolving 39g 

of Difco™ dehydrated PDA in 1L of deionized water, heating with agitation until the agar was 

dissolved and autoclaving for 15 minutes at 121oC. Modified PDA was prepared in the same way 

but was supplemented with 2g per L of yeast extract and hardwood extract was substituted for 

10% of the deionized water. Hardwood extract was prepared by mixing 100g of dry oak 

(Quercus spp.) sawdust into 1L of deionized water, autoclaving for 15 minutes at 121oC and 

filtering the supernatant. Spore germination media was prepared by adding 1g dextrose, 1g 

soluble starch, 28g agar, 10ml of hardwood extract and 990ml of deionized water in a 2L flask, 

followed by heating with agitation until the agar was dissolved. The media was then autoclaved 

for 15 minutes at 121oC. The spore germination medium with 10% hardwood extract was 

prepared the same way but had 10% hardwood extract added as compared to the 1% used in the 

first spore germination media described above. Media formulas are shown below in Table 3.1. 

Table 3.1  

Media formulas per 1 liter of media 

 Spore Germination 
Spore Germination 

with 10% Hardwood 
Extract 

Modified PDA 

PDA Difco™ - -   39g 
Dextrose     1g     1g - 
Soluble Starch     1g     1g - 
Yeast Extract - -     2g 
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Table 3.1  

Cont. 

 Spore Germination 
Spore Germination 

with 10% Hardwood 
Extract 

Modified PDA 

Agar   28g   28g - 
Hardwood Extract   10ml 100ml 100ml 
Water 990ml 900ml 900ml 

 

3.3 Selection of monokaryotic strains for mating 

Once the cultures were stabilized, having uniform growth and appearance on PDA, they 

were subcultured in quadruplicate from the leading edge of mycelial growth to 60mm x 100mm 

Petri dishes with modified white rot spore germination media containing 10% hardwood extract 

(Table 3.1). Sterilized (121oC for 15 minutes) toothpicks were used to transfer a small amount of 

inoculum (1-2 mm) to the center of each Petri dish. The growth rate of each monokaryon was 

determined at the temperature for which its parental strain was initially reported to have a 

superior mycelial growth rate. Based on analysis of these results using ANOVA followed by 

Duncan’s multiple range test (SAS 9.2), ten single spore isolates were chosen from each parent. 

The monokaryotic strains chosen were randomly selected from the ranked groupings provided 

from the results of the Duncan’s multiple range tests. For each parent strain four single spore 

isolates (SSIs) were selected from the group with the fastest growth rates, three SSIs were 

selected from the group with the median growth rates, and three SSIs were selected from the 

group with the slowest growth rates. The purpose of selecting SSIs from these three groupings 

was to ensure that there would be a variety of growth rates for use in the regression analysis 

between the mycelial growth rates of the gametes and that of their progeny. Additionally, 
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selecting individuals from these groups provides a greater level of genetic diversity for the 

phenotype of mycelial growth rate. Selection resulted in a total of sixty monokaryotic cultures. 

The isolated monokaryotic cultures and their parent strains are shown in Table 4.1.  

3.4 Mating of single spore monokaryotic cultures 

The 60 single spore monokaryotic cultures were crossed in all possible combinations with 

their sibling monokaryotic cultures (intrastrain crosses) and with monokaryotic cultures from the 

other parent strains (interstrain crosses) for a total of 1770 crosses. A wedge of inoculum, 

approximately 5mm x 10mm, from each of two of the monokaryotic cultures being crossed was 

placed approximately 30mm apart on modified PDA medium (Table 3.1). Plates with the paired 

monokaryotic cultures were incubated at room temperature and allowed to grow together. 

Mycelia from the contact zone were observed at 40x using a light microscope and the squash 

mount technique. The presence of multiple clamp connections was used as verification that a 

successful mating event occurred. Plates where successful mating occurred were subcultured 

from the region where the two cultures met and transferred to a new Petri dish with PDA. Lack 

of clamp connections was used as verification that mating was not successful. If the result was 

not clear, i.e. one or two clamp connections were observed but they were not abundant, then the 

culture was allowed to incubate further and reexamined. If the result remained in question after 

reexamination then the plate was subcultured from the region where the two cultures met, 

transferred to a new plate with PDA and followed by a suitable incubation period. In some cases 

somatic incompatibility was clear after the incubation period because the two monokaryons grew 

away from each other at the point of inoculation. In these cases the result was scored as a 

negative mating event. Otherwise the culture was reexamined microscopically for clamp 

connections. If multiple clamp connections were observed the result was scored as a positive 
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mating event and the plate was subcultured to a new plate with PDA. If clamp connections were 

not found the result was scored as a negative mating event.  

3.5 Mating type identification 

Charts in the form of a grid were used to track and verify the putatively labeled mating 

types of the monokaryons. Mating types were labeled starting with one monokaryon involved in 

a successful intrastrain cross and labeling it as a putative A1B1 mating type. This monokaryon 

was then used as a tester strain. Based on the positive mating with this tester strain monokaryons 

of opposite mating type (A2B2) could be identified. Strains that were identified as A2B2 could 

then be used to identify the remainder of the A1B1 strains. A second tester strain was selected 

from those monokaryons not involved in the first two rounds of mating type identification. This 

tester strain was labeled A2B1. Following the same technique, the strains of opposite mating type 

(A1B2) could be identified. By using one of the newly identified A1B2 monokaryons the 

remainder of the A1B2 strains could then labeled. 

3.6 Mycelial growth rate 

Five hundred and sixty six dikaryotic cultures isolated from the mating study, the 6 

parental strains and the 60 monokaryotic cultures used in the mating study were subcultured and 

maintained on 60mm x 100 mm Petri dishes with PDA. For each of these cultures a sterilized 

toothpick (121oC for 15 minutes) was used to transfer a small amount of inoculum (1-2 mm) to 

the center of twenty 60mm x 100mm Petri dishes with PDA from the leading edge of mycelial 

growth. These plates were then incubated at five temperatures (10oC, 15oC, 20oC, 25oC and 

30oC) with four replications at each temperature. Plates were monitored to determine the number 

of days for the organism to reach both ends of the diameter of a plate. This is a distance of 5.5 
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cm. The number of days to achieve this distance was recorded and used to calculate the growth 

rate. The growth rates of the faster growing cultures incubated at 10oC were calculated in this 

manner but, in the case of slow growing organisms where the constraint of excessive time was an 

issue, mycelial growth rates were calculated by measuring the diameter of mycelial growth in 

two perpendicular directions divided 2 and then divided by the number of days since inoculation 

(Mata et al., 2001). Both methods produced data in the form of mycelial growth rates (mm/day).  

This work uses a system based on statistically significant (p > .05 ) differences in 

mycelial growth rates at 15oC, 20oC, 25oC and 30oC to categorize strains into cool, warm, mid, 

or wide temperature strains. These are the same four groupings traditionally used but this system 

is based on incubation temperature and mycelial growth rate as opposed to fruiting temperature 

optima. This classification system is proposed for three reasons. First, regardless of cultivation 

system, L. edodes will spend the majority of its time in the vegetative growth phase of its life 

cycle. Classification based on the predominant life cycle stage of the organism makes intuitive 

sense and will provide useful information to cultivators. Second, classification of strains based 

on mycelial growth rate temperature profiles provides methodology for future research which 

can more easily be standardized when compared to control and standardization of the many 

factors involved in fruit body production. Factors which affect fruit body production are 

temperature, humidity, light, length of incubation prior to fruiting, CO2 and O2 concentrations. 

These environmental factors will vary between different labs, researchers and fruiting rooms. A 

model based on defined media and a set of factors which are easy to control will eliminate much 

of the environmental variance and allow for better comparison between researchers. Third, 

classification of strains based on mycelial growth rate is more expedient than classification based 
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on fruiting temperature optima. The need to produce fruit bodies is eliminated so the time needed 

for classification is reduced.  

The classification method based on mycelial growth rate uses data collected at 15oC, 

20oC, 25oC and 30oC and makes comparisons between these data to determine classification into 

1 of 4 groups, cool, mid, wide or warm. The criteria used to make classifications based on 

mycelial growth rates are presented below. 

Cool temperature: 

 If the mycelial growth rate is significantly greater at 15oC and 20oC than it is at 30oC 

then the strain is classified as a cool temperature strain.  

Mid temperature: 

If the mycelial growth rate is significantly greater at 20oC than at 30oC and the growth 

rate at 15oC is significantly different from the growth rate at 30oC then the strain is a classified as 

a mid temperature strain.  

Wide temperature: 

If the mycelial growth rate at 15oC and/or 20oC is not significantly different than it is at 

30oC then the strain is classified as a wide temperature strain.  

Warm temperature: 

If the mycelial growth rate at 30oC is significantly greater than it is at 15oC and 20oC then 

the strain is classified as a warm temperature strain.  

3.7 Experimental design and statistical analysis 
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A critical rejection value of 5% was used to determine significance for all tests. All 

growth rate experiments had factorial structured treatments with completely randomized designs 

and four replications; although due to space and time constraints it was not possible to test all 

strains at the same time. Every effort was made to identify and mitigate potential sources for 

confounding effects between inoculation dates. Statistical analyses were performed using SAS 

9.2 software for chi square, regression analysis, analysis of variance (ANOVA) or general linear 

model (GLM) procedures and paired comparisons were performed using Duncan’s multiple 

range test (SASInstitute, 1985). The ANOVA procedure was used when testing between groups 

with equivalent numbers of data points per treatment. The GLM procedure was used when the 

numbers of data points per treatment were not equivalent, e.g. when comparing the growth rates 

from aggregated full sibling groups in which there were different numbers of full siblings in the 

groups. Duncan’s multiple range tests were used to determine significant differences between 

treatment means. Relationships between the dikaryotic growth rates of novel strains and the 

mean of the growth rates of their monokaryotic constituents was determined by regression 

analysis. Differences between expected and observed allele frequencies were determined by chi 

square test. 

Comparisons between the growth rates of novel strains were made in three ways: 

1. The first comparisons were made between each full sibling group of novel strains for all 

incubation temperatures (10oC, 15oC, 20oC, 25oC and 30oC). Full sibling groups were 

comprised of the novel strains produced by crossing monokaryons from the same two 

parents, in the case of interstrain groups, or monokaryons from the same parent, in the case 

of intrastrain full sibling groups.  
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2. The second set of comparisons was made between all novel strains produced by interstrain 

crosses and all novel strains produced by intrastrain crosses for each incubation temperature 

(10oC, 15oC, 20oC, 25oC and 30oC). 

3. The third set of analyses was made comparing the growth rates of each strain within each full 

sibling group to the growth rate(s) of their parents at each incubation temperature (10oC, 

15oC, 20oC, 25oC and 30oC).  
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CHAPTER 4 

Results and Discussion of Monokaryotic Mating Type and the Effect of Monokaryotic 

Growth Rates on Dikaryotic Growth Rates  

4.1 Selection of monokaryons from parent strains 

From each of the six parent strains 37 monokaryons were isolated from the germinated 

spores. From each group of 37 single spore isolates (SSIs) ten were selected for use in breeding 

crosses. Table 4.1 shows the lineage and relative growth rates, at the temperature for which its 

parental strain was initially reported to have a superior mycelial growth rate, of the selected 

monokaryotic SSIs.  

Table 4.1 

Isolated monokaryotic cultures listed by parent strain and their relative growth rate 

Identification 
numbers and 
relative 
growth rates 
of 
monokaryotic 
cultures 

 Parent Strains 
 1 2 3 4 5 6 

Fastest 

1 11 21 31 41 51 
2 12 22 32 42 52 
3 13 23 33 43 53 
4 14 24 34 44 54 

Median 
5 15 25 35 45 55 
6 16 26 36 46 56 
7 17 27 37 47 57 

Slowest 
8 18 28 38 48 58 
9 19 29 39 49 56 
10 20 30 40 50 60 

 

4.2 Novel strains produced by interstrain and intrastrain breeding 
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 A total of 566 novel L. edodes offspring were produced by intra and inter crossing of the 

ten monokaryotic cultures from each of the six parental strains. Twenty two strains were the 

result of intrastrain crosses, mating of monokaryons from the same parent, and 544 of these 

strains were the result of interstrain crosses, mating of monokaryons from different parents. The 

numbers of novel strains produced from intra and inter mating of all selected monokaryons 

aggregated by full sibling groups are depicted in Figures 4.1 and 4.2 respectively.  

 

Figure 4.1. Novel strains produced by intrabreeding of strains 1, 2, 3, 4, 5 and 6.  

Successful mating events were observed in 3 of 6 intrabred groups. Each set of crosses 

was comprised of a total of 45 combinations of SSIs. Of the strains with successful mating 

events Mushroom Biology and Fungal Biotechnology Lab (MBFBL) 2, 5 and 6 had a 26.7%, 

17.8 %, and 4.4% successful self crossing rates respectively while, MBFBL 1, 3 and 4 had 0.0% 

successful self crossing rates. The intrastrain crossing rates for 2 and 5 are close to the expected 

25% successful self crossing rate while the others are well below the expected rate. The three 

0 

2 

4 

6 

8 

10 

12 

14 

1x1 2x2 3x3 4x4 5x5 6x6 

N
um

be
r 

 o
f n

ov
el

 st
ra

in
s p

ro
du

ce
d 

by
 

m
at

in
g 

MBFBL # of parental strains used in crosses 



52 
 

strains which did not self cross in this systematic mating program did self cross in mass matings 

of germinated monokaryotic spores where hundreds to thousands of germinated spores from a 

given parent were added to single sterile supplemented sawdust substrate block. That successful 

mating was observed in these supplemented sawdust blocks shows that these strains are in fact 

self fertile although no successful mating was observed in the controlled pairings. The lower than 

expected successful mating rate in the strains 1, 3, 4, 5 and 6 suggests that there is a distorted 

mating type ratio in the population spores from these strains.  

 

Figure 4.2. Novel strains produced by interbreeding of strains 1, 2, 3, 4, 5 and 6. 

A total of 1500 interstrain crosses of monokaryons were made. The majority, 400 of 422, 

of the successful interstrain crosses were produced by crossing monokaryons from MBFBL 2 

with monokaryons from the MBFBL 1, 3, 4, 5 and 6 as seen in Figure 4.2. The 100% successful 

breeding rate between the monokaryons of MBFBL 2 and all other monokaryons is evidence that 

this strain has A and B mating type alleles that are different from those of the other five strains. 
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This finding is consistent with the tetrapolar mating system (Kendrick, 2000; E. Kothe, 2001; 

Raper, 1966). 

4.3 Identification of mating types 

 Successful crosses or positive mating events exhibited the presence of abundant clamp 

connections in hyphae of mated cultures when observed by microscopic examination. The 

labeling of mating types was tracked and verified with the aid of the construction of mating 

grids. Analysis of the mating grids from the intrastrain mating of monokaryons was used to 

identify the mating types present in each of these crosses. The intrastrain mating grid used for the 

identification of monokaryons from parent strain MBFBL 2 is shown in Figure 4.2. 

Intrastrain mating grids were also constructed and used for the initial identification of 

monokaryons from MBFBL 5 and 6 as these were the only other strains with successful 

intrastrain mating. Successful mating in a bifactorial tetrapolar system requires that monokaryons 

be heterozygous at both the A and B alleles.  

Table 4.2 

Intrastrain mating grid for monokaryons from MBFBL 2  

Identification numbers and mating type of monokaryotic SSI cultures used in mating crosses 

 
SSIs 

11 
A4B3 

12 
A4B4 

13 
A3B3 

14   
A¾B4 

15 
A4B4 

16 
A4B4 

17 
A3B4 

18 
A3B4 

19 
A3B3 

20 
A3B4 

11 
A4B3 

 - - + - - + + - + 

12 
A4B4 

-  + - - - - - + - 

Note. Positive mating events are denoted by the + symbol and negative mating events are 
denoted by a – symbol.  
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Table 4.2 

Cont.  

Identification numbers and mating type of monokaryotic SSI cultures used in mating crosses 

 
SSIs 

11 
A4B3 

12 
A4B4 

13 
A3B3 

14   
A¾B4 

15 
A4B4 

16 
A4B4 

17 
A3B4 

18 
A3B4 

19 
A3B3 

20 
A3B4 

13 
A3B3 

- +  + + + - - - - 

14   
A¾B4 

+ - +  - - - - + - 

15 
A4B4 

- - + -  - - - + - 

16 
A4B4 

- - + - -  - - + - 

17 
A3B4 

+ - - - - -  - - - 

18 
A3B4 

+ - - - - - -  - - 

19 
A3B3 

- + - + + + - -  - 

20 
A3B4 

+ - - - - - - - -  

Note. Positive mating events are denoted by the + symbol and negative mating events are 
denoted by a – symbol. 

 

Table 4.3 lists the mating type of monokaryons from MBFBL 1, 3, 4, 5 and 6 including 

those found to have recombinant mating types. The monokaryons from these five parent strains 

were found to have the same set of mating alleles, A1or2 and B1or2. Therefore a single mating grid 

for all the monokaryons from these strains was constructed showing positive mating events and 

the mating type of the monokaryons from these parents. The final and complete mating grid used 

for identification of the mating types of these 50 monokaryons is given in Appendix A, Table 

A4.1. The ten monokaryons from MBFBL 5 and monokaryon 52 from MBFBL 6 are the only 
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monokaryons listed in the horizontal axis of this mating grid. This is because these were the only 

monokaryons which were involved in either interstrain or intrastrain crosses. 

Table 4.3  

Mating type of monokaryons with A1or2 B1or2 mating types  

                         
 

Mating type of monokaryons from MBFBL 1, 3, 4, 5, and 6 
A1B1 A2B2 A1B2 A2B1 A½B2 A2B½ 

Identification 
number of 
monokaryon 

  5 45    1 49 52 
  6     2   
  8     3   
21     4   
22     7   
24     9   
27   10   
28   23   
30   25   
31   26   
34   29   
35   32   
36   33   
38   37   
41   39   
42   40   
43   44   
47   46   
50   48   
55   51   
56   53   
57   54   
59   58   
60      

 

Table 4.4 shows the mating type of monokaryons from MBFBL 2 including monokaryon 

14 where a recombinant mating type was observed. The mating type of these monokaryons are 

presented in a separate table because they were found to have a unique set of mating types 

compared to the other 50 monokaryons shown in Table 4.3 above. 
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Table 4.4  

Mating type of monokaryons with A3or4 B3or4 mating types  

                           Mating type of monokaryons from MFBBL 2 
 A3B3 A4B4  A3B4 A4B3 A¾B4 
Identification 
number of 
monokaryon 

13 12 17 11 14 
19 15 18   
 16 20   

 

In matings of monokaryons with the same mating type alleles three monokaryons were 

observed mating with monokaryons carrying either of the binary options for mating type. An 

example of this situation was observed in the A locus of monokaryon 14 from MBFBL 2 as 

shown in Table 4.2. Monokaryon 14 successfully mated with monokaryons with both the A3 and 

A4 mating types as long as that monokaryon had a B3 allele at the B locus. The nomenclature of 

these recombinant mating types is given as a fraction comprised of the two parental mating 

types. Based on these observations monokaryon 14 was labeled A¾B4. It is theorized that the 

recombination which occurred in this mating locus is between complete subloci at the A locus. 

When complete subloci are recombined the resulting monokaryon can have a main locus which 

is now able to produce transcription factors which will start the signal cascade in either of the 

parental mating types. This is functionally a new mating type. This model is supported by the 

findings of L. A. Casselton (1997); Fox et al. (1994); James et al. (2004); Erika Kothe (1996) 

and Cheng and Lin (2008). Recombinant mating types were observed in monokaryons from 

MBFBL 5 and 6 as well.  

Of the three monokaryons identified with recombinant mating types, monokaryon 14 was 

found to have complete functionality of both parental A mating alleles while the other two, 
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monokaryons 49 and 52, exhibited recombinant yet incomplete functionality in the parental A 

and B mating alleles respectively. Monokaryon 49 from parent MBFBL 5 was found to have a 

recombinant A mating type but mated only with monokaryons having an A2B1 mating type for 

all intrastrain matings. Based on these observations this monokaryon was initially labeled as 

A1B2. However when monokaryon 49 was used in interstrain crosses it was found that it 

successfully crossed with 7 out of 24 of the monokaryons with an A1 mating type and 17 out of 

24 of the monokaryons with an A2 mating type. Based on these observations monokaryon 49 was 

relabeled A½B2 since it was successfully mating, albeit inconsistently, with monokaryons of both 

the A1 and A2 mating types as long as the B locus was B1. Monokaryon 52 from MBFBL 6 

displayed this same type of inconsistency in successful mating but was found to be recombinant 

at the B locus. Monokaryon 52 mated with none of its sibling monokaryons with an A2B1 mating 

type but did successfully mate with 2 out of 5 of its sibling A1B1 monokaryons. Additionally, in 

interstrain crossing monokaryon 52 did not successfully mate with monokaryon 45 which has an 

A2B2 mating type. There were no monokaryons identified with an A1B2 mating type but 

monokaryon 52 did mate successfully with monokaryon 49 with an A½B2 mating type in 

interstrain mating. Based on these results monokaryon 52 was labeled as A2B½.  

 Comparing these three recombinant monokaryons, 14, 49 and 52 it is evident that 

recombinant mating types can add inconsistency to the theoretical tetrapolar mating system. In 

cases like monokaryon 14 where the recombinant mating type exhibits the complete functionality 

of both alleles it can increase the number of successful mating events. Monokaryon 14 mated 

successfully with three other sibling monokaryons. If the A mating locus had not been 

recombinant monokaryon 14 would have mated with either monokaryon 11 with an A4B3 mating 

type or with monokaryons 13 and 19 with an A3B3 mating type. Monokaryon 14 was able to 
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mate with both. In this case the recombinant locus seems to have complete A3 and A4 

functionality. The recombinant mating loci in monokaryons 49 and 52 do not have the complete 

functionality of both mating alleles. Monokaryon 49 successfully mated with all intrastrain A2B1 

monokaryons and none of the intrastrain A1B1 monokaryons but successfully mated with some 

of both of these mating types in interstrain crosses. Monokaryon 52 was similar in exhibiting 

different responses to interstrain and intrastrain mating. Monokaryon 52 mated with some of its 

A1B1 sibling monokaryons but none of the A1B1 monokaryons from other parents.  

The recombinant mating type of monokaryon 52 limited the number of successful mating 

events in both intra and inter strain mating. The recombinant mating type of monokaryon 14 

increased the number of successful mating events in intrastrain mating. The recombinant mating 

type of monokaryon 49 behaved as an A1B2 mating type in intrastrain crosses but mated with 

A1B1 and A2B1 mating types as well as monokaryon 52 with an A2B½ mating type in interstrain 

crosses. This resulted in a slightly increased number of successful mating events. The observed 

responses of these three recombinant mating types may be due to where the crossing over 

occurred in the genome of the loci. The successful mating pattern of monokaryon 14 indicates 

that an entire sublocus was transferred while in the other two instances the pattern of successful 

mating indicates that only part of the sublocus was transferred leaving the new recombinant 

mating type only partially functional to nonfunctional.  

The percentage of monokaryons with a recombinant mating type is shown in Table 4.5. 

The occurrence of recombinant mating type alleles is neither high nor is it uncommon. The 

observation of mating types which are recombinant at one of the mating type loci is consistent 

with the findings of Fox et al. (1994) and Cheng and Lin (2008) in their work with L. edodes 

spores.  
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Table 4.5 

Observed recombinant mating types and their frequency  

Parent Strains 
Number of 

monokaryotic 
cultures observed 

Number of 
monokaryon with 

recombinant 
mating types 

Locus where 
recombination 

occurred 

Percent of 
Recombination 

2 10 1 A 10 
1 10 0 -   0 
3 10 0 -   0 
4 10 0 -   0 
5 10 1  A 10 
6 10 1 B 10 
Total  60 3 A and B   5 

 

 As noted, monokaryon 14 from MBFBL 2 had complete functionality of both mating 

type alleles while monokaryon 49 exhibited partial functionality and monokaryon 52 exhibited 

limited functionality of both mating type alleles. These recombinant mating types have 

interesting implications for breeding. Gametes like monokaryon 14 and to a lesser extent like 

monokaryon 49 would be useful in breeding backcrosses. Using monokaryons like these should 

increase the successful backcrossing rate from the expected 25%. Gametes like monokaryon 52 

should probably not be used for breeding stock.  

4.4 Frequency and distribution of mating types 

Based on the lower than expected numbers of successful inter and intra strain mating 

events and with the identification of monokaryotic mating types completed it was evident that 

the ratio of mating types among the monokaryons from many if not all of the parent strains was 

not the expected 1:1:1:1. The distribution of the four mating types of monokaryotic cultures from 

parental strains 1, 3, 4, 5 and 6 were analyzed in order to determine if the frequency of mating 
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types was skewed. The ratio of the mating types of the monokaryotic cultures could not be 

analyzed separately for each strain because of the limitations of the chi square test. One of the 

requirements for the chi square test is that there should be at least five individuals expected in 

each class. Since there are four classes of mating type and ten individuals from each parent strain 

it is expected that there will be 2.5 individuals in each class. However by pooling the 50 

individuals from all of the parental strains with the same four mating types a chi square analysis 

may be performed. These results are shown in Table 4.6.  

Table 4.6  

Frequency analysis of monokaryons with A1or2 B1or2 mating types  

Strains 
Mating type ratio of 

monokaryons 
A1B1:A2B2: A1B2:A2B1 

x2 

1 3:0:0:7 n/a 
3 6:0:0:4 n/a 
4 5:0:0:5 n/a 
5 5:1:0:3 n/a 
6 5:0:0:4 n/a 
Total 24:1:0:23       21.13** 

Note. *= x2
.05-3= 7.82, **=  x2

.01-3= 11.35 

The pooled analysis of the four mating types with an A1or2 and B1or2 mating type shows 

that the mating type ratio is skewed with a highly significant x2 value of < .01. By looking at the 

pooled mating type ratio it is evident that the A2B2 and A1B2 mating types are deficient in this 

population. This type of distorted mating type ratio causes the number of positive mating events 

to be much lower than expected in both intrastrain crosses and in interstrain crosses between 

strains with the same set of mating types. 
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As stated above, a minimum of five individuals in each class are needed to perform a chi 

square test for frequency distribution. For this reason this analysis could not be conducted on the 

ten monokaryotic cultures produced from spores from MBFBL 2 or the monokaryons from any 

of the individual strains. However a chi square test could be performed on the mating alleles for 

each locus and from each strain as there were only two classes for each of the ten individuals. 

The chi square test results for the frequency distribution of the mating alleles for each locus of 

the monokaryons produced by each of the parent strain are shown in Table 4.7. 

Table 4.7 

Frequency analysis of mating type alleles for the A and B loci   

Strains 
Ratio of four types of 

monokaryons 
AxBx:AyBy: AxBy:AyBx 

Ratio of A 
alleles 
Ax:Ay 

x2 Ratio of B 
alleles 
Bx:By 

x2 

1 3:0:0:7 3:7 (A1:A2) 1.60 10:0 (B1:B2) 10.00** 

2 2:3:3:1 5:4 (A3:A4) 0.11 3:7 (B3:B4) 1.60 
3 6:0:0:4 6:4 (A1:A2) 0.40 10:0 (B1:B2) 10.00** 

4 5:0:0:5 5:5 (A1:A2) 0.00 10:0 (B1:B2) 10.00** 

5 5:1:0:3 5:4 (A1:A2) 0.11 8:2 (B1:B2)   3.60 
6 5:0:0:4 5:5 (A1:A2) 0.00 9:0 (B1:B2)   9.00** 

Total 
without 2 24:1:0:23 24:25 (A1:A2) 0.02 47:2 (B1:B2) 41.33** 

Total 26:4:3:26 27:31 (Ax:Ay) 0.28 50:9 (Bx:By) 28.49** 

Note. *= x2
.05-1 = 3.84, **= x2

.01-1 = 6.64   

 The results of the chi square test for the distribution of specific mating alleles at each 

locus show that there is a highly significant imbalance, x2. < .01, in the B mating type alleles 

among the monokaryotic cultures isolated from MBFBL 1, 3, 4 and 6. In these four strains the 

spores produced are predominantly carriers of the B1 mating type and there is a severe lack of the 

B2 mating type alleles within this population. Imbalance in the distribution of mating types was 

observed in spores from commercial strains of L. edodes in the work conducted by Fox et al. 
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(1994) however the severe lack of a single allele, in this case B2, was not observed. Fox et al. 

(1994) proposed the existence of a lethal factor as the cause of distorted mating type ratios. This 

remains a possible explanation for the distorted mating type ratios and the severe lack of the B2 

mating type in this population.  

4.5 Comparison of the growth rate of monokaryons based on B mating type alleles  

The growth rates of monokaryons with different B mating types were compared in order 

to test proposed theories seeking to explain the skewed ratio of B mating type alleles. There are 

two associated theories for why an imbalanced ratio of mating types may exist in this population 

of monokaryons. The first is that there is a lethal factor associated with the B2 mating allele 

which causes spores with this mating type to not germinate and/or grow successfully (Fox et al., 

1994). The second is that spores of a given mating type may have a faster growth rate than 

spores with a different mating type causing a selection bias for monokaryons with the mating 

type associated with fast growing monokaryons (L. M. Larraya et al., 2001). L. M. Larraya et al. 

(2001) proposed this theory after observations were made while working with a population of 

Pleurotus ostreatus monokaryons found to have a skewed ratio of mating types. The observance 

of monokaryons with different mating types growing at different rates has was also reported by 

Yan et al. (2004) while working with monokaryons isolated from protoplasts of Stropharia 

rugoso-annulata.  

The growth rates of monokaryons with different B mating types were compared at 20oC 

and 25oC, the two incubation temperatures at which spores were germinated. Results of the 

statistical analysis of the growth rates of monokaryons with different B mating types are shown 

below in Figure 4.3. It was found that there was no significant difference (p < .05) between the 

growth rates of monokaryons with B1 and B2 mating types at 20oC. There was a significant 
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difference (p < .05) between the growth rates of monokaryons with B1 and B2 mating types at 

25oC. 

 

Note. Within each temperature, growth rates with the same letter are not significantly different at 
the 5% level of significance according to Duncan’s multiple range tests. 

Figure 4.3. Growth rates of monokaryons aggregated by common B alleles.  

Monokaryons were isolated from plates incubated at both 20oC and 25oC. The analysis of 

the growth rate of monokaryons with different mating types at different temperatures supports 

the concept of under selection of monokaryons with a B2 mating type at 25oC but not at 20oC. 

Secondly, at both 20oC and 25oC there is no significant difference (p < .05) between the growth 

rates of monokaryons with B2 and B½ mating types. The theoretical occurrence of the 

recombinant B½ mating type is infrequent compared to the expected occurrence of the B2 mating 

type which should be present in half of the monokaryons form parents with B1and2 mating types, 

yet this monokaryon was selected. Thirdly, the selection process used for monokaryons involved 

choosing three of the slowest growing monokaryons from each parent. This should have allowed 

for selection of monokaryons with B2 mating alleles even if they were slower growing. Finally, 

plates used for spore germination and isolation of monokaryons were prepared with serial 
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dilutions of spore slurries. The plates inoculated with the lowest concentrations of spores, where 

there was little likelihood of chance mating, were left to incubate for up to a month. In these 

cases, it would seem that slower growing and or germinating monokaryons would have had the 

opportunity to be selected. These arguments do not support the theory that slow germination and 

growth led to under selection of monokaryons with a B2 mating type. However there are two 

issues which must be mentioned that keep the under selection theory from being discarded. The 

first issue is that since there were only two monokaryons with a B2 mating type, the growth rate 

analysis comparing monokaryons with different B mating alleles is not as robust as it should be. 

The second issue is that the plates which were left to incubate for up to one month contained a 

limited number of germinating spores due to the dilution level of the spore slurries used on these 

plates. More research to determine the cause of the limited number of monokaryons with a B2 

mating type allele and to rule out either of the competing theories of under selection (L. M. 

Larraya et al., 2001) or lethal factor(s) (Fox et al., 1994; Judelson et al., 1995) must be conducted 

in order to make a conclusion. 

4.6 Relationship between dikaryotic and parental monokaryotic growth rates 

 Mycelial growth rates of dikaryotic cultures were compared to the growth rates of their 

constituent monokaryons. Results are shown in Table 4.8 below. Regression plots, Figures A4.1 

– A4.5, and ANOVA tables, Tables A4.2 – A4.6, for growth rates of monokaryons and 

dikaryons incubated at 10oC, 15oC, 20oC, 25oC and 30oC are located in Appendix A.  

These comparisons were made using the growth rates of organisms incubated at each of 

the studied incubation temperatures. When the organisms were incubated at 10oC the regression 

was nonsignificant. When incubated at the other temperatures studied, significant relationships 
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between the growth rates of parental monokaryons and their dikaryotic progeny were observed. 

In general, the growth rates of the constituent monokaryons predicted only a small amount, 1-

2%, of the variance in the growth rate of the dikaryotic progeny. Models show that the effect of 

monokaryotic growth rate on the dikaryotic growth rate was also small. These low values 

indicate that monokaryotic growth rate is not useful as a criterion for selection of monokaryons 

to be used in strain improvement for mycelial growth rate.  

Table 4.8 

Results of linear regression analyses comparing the mean growth rate of constituent 

monokaryons to the mean growth rate of resulting dikaryons   

Temperature  Model R2 p Value  
10oC - -  0.4035  
15 oC y = 0.128x + 2.290 0.01        0.0092  
20 oC y = 0.150x + 3.298 0.02   0.0008  
25 oC y = 0.150x + 3.801 0.02  0.0007  
30 oC y = 0.256x + 2.249 0.01  0.0137  

 

When incubated at 20oC and 25oC, close to the optimal temperature for L. edodes, 2% of 

the variance in dikaryotic growth rate is explained by the growth rates of the parental 

monokaryons while at the temperature extremes the coefficient of determination was found to be 

1%. The difference in values at optimal and extreme temperatures hint at increasing variation, 

likely due to an environmental component, which has not been modeled in this study.  

The question of what accounts for the majority, 98-99%, of the variance in dikaryotic growth 

rate remains unanswered. However, data collected may prove useful when coupled with genome 

sequencing which could lead to the identification of quantitative trait loci as has been done by 

Luis M Larraya, Alfonso, Pisabarro, and Ramírez (2003) with Pleurotus ostreatus. 
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The null hypothesis, that growth rates of parental constituent monokaryons does not 

affect the growth rates of the resulting dikaryons, is rejected for growth rates at 15oC-30oC. 

However, due to low R2 vales monokaryotic growth rates should not be used as a selection 

criterion when choosing L. edodes monokaryons for breeding dikaryons with improved growth 

rates. This is in agreement with the findings of Miyazaki (2008) who recommend that 

monokaryotic growth rates should not be the basis for selection of gametes for breeding although 

a relationship between the growth rates of L. edodes dikaryons and their constituent 

monokaryons was found. This finding is also in agreement with Simchen and Jinks (1964) who 

worked with Schizophyllum commune and the work of O. S. Isikhuemhen et al. (2010) in studies 

conducted with Lentinus squarrosulus. The heritability of mycelial growth rates from 

monokaryons to dikaryons may be species dependant as a relationship was reported in Pleurotus 

sapidus by S. S. Wang and Anderson (1972). 
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CHAPTER 5 

Results and Discussion of Mycelial Growth Rates and Temperature Profiles for Parental 

and Offspring Dikaryons 

5.1 Mycelial growth rates of parental strains at each incubation temperature 

Initial temperature classification of the parental strains was based on previous work 

completed in the Mushroom Biology and Fungal Biotechnology Lab (MBFBL) which 

characterized the parent strains as having superior mycelial growth rates at given temperatures 

when compared to other strains (section 3.1). Initial temperature characterization was also based 

on antidotal reports of temperatures during occurrences of fruit body formation on inoculated 

logs. This work reexamined the temperature classification of the six parental strains. The 

reclassification was based on the growth rates of strains on PDA at 10oC, 15oC, 20oC, 25oC and 

30oC. These data were used to construct mycelial growth rate temperature profiles. Results from 

ANOVA for the mycelial growth rates at the five incubation temperatures were used to classify 

each parent as having a cool, mid, warm or wide temperature mycelial growth rate profile.  

Results from the study of mycelial growth rates of the six parental strains incubated at 

five temperatures indicated that there was an interaction effect between strain and temperature. 

This was as expected as this effect is well understood (Zervakis et al., 2001). ANOVA showed 

that differences between growth rates were highly significant, p < .0001. The ANOVA table is 

shown in Appendix B, Table B5.1. The average mycelial growth rates of the parent strains at 

each of the five incubation temperatures are shown in Figure 5.1. The method for 

characterization of temperature profiles is explained in section 3.6.  
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Note. Growth rates with a letter in common are not significantly different at the 5% level of 
significance as indicated by Duncan’s multiple range tests. 

Figure 5.1. Mean mycelial growth rates of parent strains incubated at 10oC, 15oC, 20oC, 25oC 

and 30oC.   

The average mycelial growth rate of the parent strains grown at 10oC and 15oC followed 

similar trends with no significant differences between the strains observed at either temperature. 

Growth rates at 10oC ranged from 0.61 – 0.87 mm/day. Mycelial growth rates at 15oC ranged 

from 3.06 – 3.28 mm/day. All strains grew faster at 15oC than at 10oC and growth at 10oC was 

much slower than all other temperatures. These results indicate that incubation at 10oC is far 
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enough below the optimum temperature for mycelial growth of L. edodes that there is a leveling 

effect in growth rate among these strains. 

All parental strains grew faster when incubated at 25oC than any other temperature. This 

indicated that despite differences in growth rates between strains at other temperatures 25oC is 

the optimum temperature for mycelial growth for these strains. By comparing the mycelial 

growth rates at temperatures on either side of this optimum, assessments of the temperature 

profiles of the parent strains were made and the parent strains were classified as a warm, cool, 

mid or wide temperature strains. The mycelial growth rate temperature characterizations of the 

parental strains using this classification system are shown in Table 5.1.  

Table 5.1 

Temperature classifications of parent strains based on mycelial growth rates at 15-30oC  

MBFBL # Temperature classification Rational for classification 
1 wide temperature 20o = 30oC 
2 cool temperature 15o and 20o > 30oC 
3 wide temperature 20o = 30oC 
4 mid temperature 20o > 30oC 
5 wide temperature 15o = 30oC 
6 wide temperature 15o = 20o = 30oC 

Note. = indicates no significant difference between growth rates and > indicates a significant 
difference with a higher mean indicated by the direction of the sign, at the 5% level of 
significance as indicated by Duncan’s multiple range tests. 

 The results of the temperature classifications of the parental strains differ in some 

respects from their initial temperature classifications based on previous work conducted in the 

MBFBL. MBFBL 1 was initially classified as a cool temperature, 10oC strain. The mycelial 

growth rate of MBFBL 1 was found to be no different at 10oC or 15oC than any of the other 

strains and MBFBL 1 was among the strains with the fastest growth at 30oC. MBFBL 2 while 

not faster at its indicated temperature of 10oC or the next coolest temperature studied, 15oC, than 
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any of the other parent strains was found to be a cool temperature strain as originally indicated. 

MBFBL 3 was not found to be superior at 15oC as initially indicated and was classified as a wide 

temperature strain. MBFBL 4 was among strains with the highest growth rates at 20oC as 

determined in previous work. Similarly, MBFBL 5 was among strains with the highest growth 

rates at 25oC as determined in previous work. MBFBL 6 was not among the strains with the 

highest growth rates at 30oC as had been previously determined. The temperature profiling 

method used in this work provides broader information about the response to temperature of 

these strains than was previously available.  

5.2 Mycelial growth rates and temperature profiles aggregated by full sibling groups 

The technique used to classify parental strains with the mycelial growth rate temperature 

profiles was used on aggregated full sibling groups of novel strains. The mean mycelial growth 

rates used for constructing mycelial growth rate temperature profiles for the 12 full sibling 

groups are shown in Figure 5.2. Data used for constructing temperature profiles was analyzed by 

GLM followed by Duncan’s multiple range tests. The ANOVA table is shown in Appendix B, 

Table B5.2. 

The majority of the 12 full sibling groups were found to have cool temperature mycelial 

growth rate temperature profiles. This was true even for those full sibling groups without a 

parent which was classified as a cool temperature strain i.e. those full sibling groups that do not 

have MBFBL 2 as a parent. The converse is also true. Full sibling groups, 1x2, 2x3, and 2x6 all 

have mycelial growth rate temperature classifications of wide although they involve gametes 

from the cool temperature characterized MBFBL 2. Table 5.2 shows the basis for determination 
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of the mycelial growth rate temperature classification and the classification of the aggregated full 

sibling groups. 

Table 5.2 

Temperature classifications of full sibling mating groups based on mycelial growth rates at 15-

30oC  

Full sibling groups identified 
by MBFBL # of parents 

Mean temperature 
classification of full sibling 

group  

Rational for classification 

1x2 wide temperature 25oC > 20oC > 15oC = 30oC 
1x5 cool temperature 25oC  > 20oC > 15oC > 30oC 
2x3 wide temperature 25oC > 20oC > 15oC = 30oC 
2x4 cool temperature 25oC  > 20oC > 15oC > 30oC 
2x5 cool temperature 25oC  > 20oC > 15oC > 30oC 
2x6 wide temperature 25oC > 20oC > 15oC = 30oC 
3x5 cool temperature 25oC  > 20oC > 15oC > 30oC 
4x5 cool temperature 25oC  > 20oC > 15oC > 30oC 
5x6 cool temperature 25oC  > 20oC > 15oC > 30oC 
2x2 cool temperature 25oC  > 20oC > 15oC > 30oC 
5x5 cool temperature 25oC  > 20oC > 15oC > 30oC 
6x6 warm temperature 25oC = 30oC > 20oC 

Note. = indicates no significant difference between growth rates and > indicates a significant 
difference with a higher mean indicated by the direction of the sign, at the 5% level of 
significance as indicated by Duncan’s multiple range tests. 

 Graphic representation of the above information as well as the AVOVA table can be seen 

in Figures 5.2 below and Table B5.2 in Appendix B respectively. It has been asserted, using 

classifications based on fruit body development, warm and mid temperature strains have a 

dominant phenotype (Hasebe et al., 1998; Ryu et al., 2009). This was not observed in 

temperature classifications based on mycelial growth rates. Table 5.3 shows that dominance of 

high temperature classifications of warm or wide temperature, were observed in 4 of 12 full 

sibling groups while cool temperature dominance was observed in 8 of 12 full sibling groups. 
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Table 5.3 

Temperature classifications of parent strains compared to average classifications of full sibling 

mating groups 

MBFBL # of parents Temperature classification of 
parents  

Mean temperature 
classification of sibling 

mating group  
1x2 wide x cool wide temperature 
1x5 wide x wide cool temperature 
2x3 cool x wide wide temperature 
2x4 cool x mid cool temperature 
2x5 cool x wide cool temperature 
2x6 cool x wide wide temperature 
3x5 wide x wide cool temperature 
4x5 mid x wide cool temperature 
5x6 wide x wide cool temperature 
2x2 cool x cool cool temperature 
5x5 wide x wide cool temperature 
6x6 wide x wide warm temperature 

 

In order for a direct comparison of these results to the results of Hasebe et al. (1998)  and 

Ryu et al. (2009), who have identified dominant phenotypes based on fruiting temperature, a 

comparison must be made and a relationship found between fruiting temperature based 

temperature profiles and mycelial growth rate based temperature profiles. This comparison 

would add support to the work of B. Wang et al. (2004) who has noted such a relationship. 

However, the results of this work indicate that there is not a clear hierarchy of dominance for 

mycelial growth rate temperature classifications as has been found for optimum fruiting 

temperature based classifications.  

5.3 Mycelial growth rates of interstrain and intrastrain crosses 
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Mycelial growth rate is a quantifiable phenotype and a measure of vigor which may be 

used to test the hypothesis that outcrossing or hybridization between strains of the same species 

will increase vigor compared to crossing monokaryons from the same strain. This phenomenon is 

known as heterosis. Figure 5.2 shows the average growth rates of  the nine interstrain full sibling 

mating groups and the three intrastrain full sibling mating groups at 10oC, 15oC, 20oC, 25oC and 

30oC. Heterosis has been observed in the breeding of Pleurotus sp. by Kinugawa, Tanesaka, 

Nagata, and Watanabe (1997) and in Stropharia rugoso-annulata by Yan and Jiang (2005). It 

should be noted that the numbers of offspring in each full sibling mating group are different and 

are shown in Figures 4.1 and 4.2. 

 No statistically significant differences in growth rates were observed between full sibling 

mating groups when they were incubated at 10oC. When incubated at 15oC, 20oC and 25oC all 

interstrain full sibling groups had statistically higher growth rates than the intrastrain full sibling 

mating groups 2x2 and 6x6. The mycelial growth rate of the intrastrain full sibling group 5x5 

was not statistically different from the interstrain mating groups at 15oC. There were no 

significant differences between the growth rates of intrastrain full sibling mating group 5x5 and 

all other interstrain full sibling mating groups at 20oC except for full sibling group 4x5 which 

was found to be significantly slower than the 5x5 full sibling mating group. Intrastrain full 

sibling mating group 5x5 had a significantly greater mycelial growth rate than full sibling groups 

4x5, 2x6, and 1x2 when incubated at 25oC. When incubated at 30oC, the intrastrain full sibling 

group 6x6 was among the full sibling groups with the fastest mycelial growth rates along with 

interstrain full sibling groups 2x5 and 2x4. Interstrain full sibling groups 1x2, 2x3 and 2x6 were 

found to have the next fastest growth rates at 30oC, followed by intrastrain full sibling mating 

group 5x5 and interstrain full sibling groups 3x5, 4x5, and 5x6. These interstrain full sibling 
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groups did not have significantly different growth rates from interstrain full sibling group 1x5. 

Intrastrain full sibling group 2x2 was found to have the slowest growth rate at 30oC.  

 

Note. Growth rates with a letter in common are not significantly different at the 5% level of 
significance as indicated by Duncan’s multiple range tests. 

Figure 5.2. Mean mycelial growth rates of each full sibling group of novel offspring produced by 

interbreeding and intrabreeding monokaryons of different parental strains.  

Interstrain full sibling mating groups tended to have higher growth rates than 2 of the 3 

intrastrain full sibling mating groups at the studied incubation temperatures; however there are 
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the exceptions noted above as well as the lack of significant differences at the 10oC incubation 

temperature and no such trend at 30oC. Based on the performance of full sibling group 5x5 and 

full sibling group 6x6 at 30oC it must be concluded that the case for increased vigor as measured 

by mycelial growth rate of interbred crosses when compared to inbred crosses is not entirely 

clear. There are some instances where strains produced by intrabreeding have, in aggregated full 

sibling groups, growth rates greater than or equal to strains produced by interbreeding. The 

ANOVA table for these results is shown in Appendix B, Table B5.2.  

To further examine the hypothesis that outcrossing will produce strains with higher 

mycelial growth rates than those produced by inbreeding, the growth rates of strains produced by 

each method were compared for differences at each temperature. These results are shown in 

Table 5.4 below.  

Table 5.4 

Comparison of mycelial growth rates of novel strains produced by inter and intra strain crosses 

Incubation 
Temperature 

Mean mycelial growth rate of 
novel strains from interstrain 

crosses 

Mean mycelial growth rate of 
novel strains from intrastrain 

crosses 

p 
value 

10oC 0.47 0.40 0.21 
15oC 2.78 2.27 <.0001 
20oC 3.99 3.30 <.0001 
25oC 4.53 3.76 <.0001 
30oC 2.77 1.60 <.0001 

Note. ANOVA was performed for each temperature. 

The mycelial growth rates of L. edodes strains produced by interbreeding monokaryons 

from different strains was significantly higher than the mycelial growth rates of strains produced 

by intrabreeding monokaryons from the same strain at all incubation temperatures except 10oC. 
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There was no significant difference between mycelial growth rates of strains produced by 

interbreeding and intrabreeding at 10oC. The next level of analysis examines what is perhaps a 

more important question; does either interbreeding or intrabreeding produce strains which have 

higher mycelial growth rates than their parents? 

5.4 Identification of novel strains with mycelial growth rates superior to their parents 

 In order to assess the success of breeding for increased mycelial growth rates of L. edodes 

strains, the growth rates of novel progeny strains were compared to the growth rates of the their 

parents. This comparison was made using ANOVA for each incubation temperature and for each 

of the twelve full sibling mating groups. This allowed for the identification of individual progeny 

strains which were faster than either one parent or both parents. These results are shown in 

Tables 5.5 – 5.9.  

Table 5.5 

Comparison of parent and offspring mycelial growth rates at 10oC  

Mating 
group 

Average 
growth rate 
of Parent 1 
(mm/day) 

Average 
growth rate 
of Parent 2 
(mm/day) 

% of 
strains 

faster than 
parent 1 

MBFBL #s 
of strains 
faster than 
parent 1 

% of 
strains 

faster than 
parent 2 

MBFBL #s 
of strains 
faster than 
parent 2 

1x2 0.81 0.61   0.0 n/a 1.0 1210 
1x5 0.81 0.79   7.7 1305 7.7 1305 

2x3 0.61 0.70   5.0 
1362, 1368, 
1331, 1389, 

1364 
1.0 1362 

2x4 0.61 0.87   2.0 1443,1444 0.0 n/a 

2x5 0.61 0.79   8.0 

1580, 1583, 
1546, 1551, 
1582, 1543, 
1517, 1573 

2.0 1580,1583 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 
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Table 5.5 

Cont. 

Mating 
group 

Average 
growth rate 
of Parent 1 
(mm/day) 

Average 
growth rate 
of Parent 2 
(mm/day) 

% of 
strains 

faster than 
parent 1 

MBFBL #s 
of strains 
faster than 
parent 1 

% of 
strains 

faster than 
parent 2 

MBFBL #s 
of strains 
faster than 
parent 2 

2x6 0.61 0.85 26.0 

1623, 1650, 
1626, 1673, 
1644, 1703, 
1705, 1655, 
1654, 1663, 
1645, 1614, 
1651, 1704, 
1656, 1672, 
1625,1613, 
1620, 1696, 
1643, 1653, 
1664, 1685, 
1630, 1670 

0.0 n/a 

3x5 0.70 0.79   0.0 n/a 0.0 n/a 
4x5 0.87 0.79   0.0 n/a 0.0 n/a 
5x6 0.79 0.85   0.0 n/a 0.0 n/a 
2x2 0.61 0.61   0.0 n/a 0.0 n/a 
5x5 0.79 0.79   0.0 n/a 0.0 n/a 
6x6 0.85 0.85   0.0 n/a 0.0 n/a 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 

 Since progeny full sibling groups are comprised of different numbers of individuals 

results include the percentage of strains which were faster than one or both parent strains. The 

average growth rate of each parent strain is given in the order listed in the mating group column. 

Four strains were found to have significantly higher growth rates than both parents when grown 

at 10oC. These strains were produced from crosses between monokaryons from MBFBL 2, a cool 

temperature strain, and MBFBL 5 and 3, both wide temperature strains and from the cross of 

MBFBL 1 and 5 both wide temperature strains. The highest percentage of progeny with growth 

rates superior to both parents at 10oC was 7.7%; this percentage was achieved by full sibling 
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group 1x5. The full sibling group with the next highest percentage of progeny with superior 

growth rates at 10oC was full sibling group 2x5 with a rate of 2% of progeny with growth rates 

superior to both parents. 

Table 5.6 

Comparison of parent and offspring mycelial growth rates at 15oC 

Mating 
group 

Average 
growth rate 
of Parent 1 
(mm/day) 

Average 
growth rate 
of Parent 2 
(mm/day) 

% of 
strains 

faster than 
parent 1 

MBFBL #s 
of strains 
faster than 
parent 1 

% of 
strains 

faster than 
parent 2 

MBFBL #s 
of strains 
faster than 
parent 2 

1x2 3.07 3.22 2.0 1222, 1220 2.0 1222, 1220 
1x5 3.07 3.29 0.0 n/a 0.0 n/a 
2x3 3.22 3.06 0.0 n/a 2.0 1289, 1226 
2x4 3.22 3.20 0.0 n/a 0.0 n/a 

2x5 3.22 3.29 3.0 1522, 1583, 
1566 2.0 1522, 1583 

2x6 3.22 3.09 3.0 1681, 1644, 
1684 3.0 1681, 1644, 

1684 
3x5 3.06 3.29 0.0 n/a 0.0 n/a 
4x5 3.20 3.29 0.0 n/a 0.0 n/a 
5x6 3.29 3.09 0.0 n/a 0.0 n/a 
2x2 3.22 3.22 0.0 n/a 0.0 n/a 
5x5 3.29 3.29 0.0 n/a 0.0 n/a 
6x6 3.09 3.09 0.0 n/a 0.0 n/a 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 

 Seven strains were found to have significantly greater mycelial growth rates compared to 

their parents when grown at 15oC. The strains exhibiting superior growth rates were from crosses 

between MBFBL 2, a cool temperature strain and MBFBL 1, 5, and 6, all wide temperature 

strains. Only one of these strains, MBFBL 1583, also showed a superior growth rate at 10oC. 

Three percent of the progeny from full sibling group 2x6 were superior to both parents. This was 

the highest percentage of progeny with superior growth rates at 15oC. 
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Table 5.7 

Comparison of parent and offspring mycelial growth rates at 20oC 

Mating 
group 

Average 
growth rate 
of Parent 1 
(mm/day) 

Average 
growth rate 
of Parent 2 
(mm/day) 

% of 
strains 

faster than 
parent 1 

MBFBL # of 
strains faster 
than parent 1 

% of 
strains 

faster than 
parent 2 

MBFBL #s 
of strains 
faster than 
parent 2 

1x2 4.50 4.01 0.0 n/a 0.0 n/a 
1x5 4.50 4.50 0.0 n/a 0.0 n/a 
2x3 4.01 4.24 1.0 1332 0.0 n/a 
2x4 4.01 4.60 1.0 1424 0.0 n/a 
2x5 4.01 4.50 1.0 1523 0.0 n/a 

2x6 4.01 3.61 1.0 1684 3.0 1684, 1794, 
1624 

3x5 4.01 4.50 0.0 n/a 0.0 n/a 
4x5 4.60 4.50 0.0 n/a 0.0 n/a 
5x6 4.50 3.61 0.0 n/a 0.0 n/a 
2x2 4.01 4.01 0.0 n/a 0.0 n/a 
5x5 4.50 4.50 0.0 n/a 0.0 n/a 
6x6 3.61 3.61 0.0 n/a 0.0 n/a 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 

 Only strain MBFBL 1684, progeny of MBFBL 2 and 6, cool and wide temperature 

strains respectively, grew at a higher mycelial growth rate than both parents when grown at 

20oC. This strain represents 1% of the progeny of the full sibling group 2x6. MBFBL 1684 

showed a superior growth rate at 15oC as well as 20oC, indicating that this strain may be suitable 

for use at cooler temperatures in the functional temperature range of L. edodes and therefore 

useful in extending the outdoor production season into cooler seasons and reducing the need to 

heat incubation areas in cooler seasons for indoor production.  

Two strains were found to have greater mycelial growth rates than both of their parents 

when grown at 25oC. Both are progeny of MBFBL 2, a cool temperature strain, and either 

MBFBL 1 or 6, both wide temperature strains. One of these strains is from full sibling group  
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Table 5.8 

Comparison of parent and offspring mycelial growth rates at 25oC  

Mating 
group 

Average 
growth rate 
of Parent 1 
(mm/day) 

Average 
growth rate 
of Parent 2 
(mm/day) 

% of 
strains 
faster 
than 

parent 1 

MBFBL # 
of strains 
faster than 
parent 1 

% of 
strains 
faster 
than 

parent 2 

MBFBL #s 
of strains 
faster than 
parent 2 

1x2 5.13 5.00 1.0 1220 1.0 1220 
1x5 5.13 5.68 0.0 n/a 0.0 n/a 
2x3 5.00 5.40 1.0 1372 0.0 n/a 

2x4 5.00 5.40 3.0 1424, 
1443, 1432 0.0 n/a 

2x5 5.00 5.68 1.0 1522 0.0 n/a 
2x6 5.00 5.13 1.0 1684 1.0 1684 
3x5 5.40 5.68 0.0 n/a 0.0 n/a 
4x5 5.40 5.68 0.0 n/a 0.0 n/a 
5x6 5.68 5.13 0.0 n/a 0.0 n/a 
2x2 5.00 5.00 0.0 n/a 0.0 n/a 
5x5 5.68 5.68 0.0 n/a 0.0 n/a 
6x6 5.13 5.13 0.0 n/a 0.0 n/a 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 

1x2, representing 1% of the progeny from this full sibling group. The other is from full sibling 

group 2x6, also representing 1% of the progeny of this full sibling group. As mentioned, MBFBL 

1684 demonstrated superior mycelial growth at 15oC, 20oC and 25oC making it a good candidate 

for further use in production and breeding research.  

Fifty four strains were found to have mycelial growth rates greater than both of their 

parents when incubated at 30oC. Table B5.3 in Appendix B shows the MBFBL numbers of these 

54 strains. Strains which were found to have growth rates that were greater than both of their 

parents at 30oC were from crosses between MBFBL 2, a cool weather strain, and MBFBL 4, 5 

and 6, mid, wide and wide temperature strains respectively. It should be noted that MBFBL 1684 
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Table 5.9 

Comparison of parent and offspring mycelial growth rates at 30oC  

Mating 
group 

Average 
growth 
rate of 

Parent 1 
(mm/day) 

Average 
growth 
rate of 

Parent 2 
(mm/day) 

% of 
strains 
faster 
than 

parent 
1 

MBFBL # of 
strains faster than 

parent 1 

% of 
strains 
faster 
than 

parent 
2 

MBFBL #s of 
strains faster than 

parent 2 

1x2 4.08 2.00   0.0 n/a 32.0 
32 strains See 

Appendix B Table 
B5.3 

1x5 4.08 3.62   0.0 n/a   0.0 n/a 

2x3 2.00 4.23 31.0 
31 strains See 

Appendix B Table 
B5.3 

  0.0 n/a 

2x4 2.00 3.80 63.0 
63 strain See 

Appendix B Table 
B5.3 

10.0 
10 strains See 

Appendix B Table 
B5.3 

2x5 2.00 3.62 61.0 
61 strains See 

Appendix B Table 
B5.3 

26.0 
26 strains See 

Appendix B Table 
B5.3 

2x6 2.00 3.34 46.0 
46 strains See 

Appendix B Table 
B5.3 

18.0 
18 strains See 

Appendix B Table 
B5.3 

3x5 4.23 3.62   0.0 n/a   0.0 n/a 
4x5 3.80 3.62   0.0 n/a   0.0 n/a 
5x6 3.62 3.34   0.0 n/a   0.0 n/a 
2x2 2.00 2.00   0.0 n/a   0.0 n/a 
5x5 3.62 3.62   0.0 n/a   0.0 n/a 
6x6 3.34 3.34   0.0 n/a   0.0 n/a 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. MBFBL numbers of strains which were found to be significantly 
faster than either and/or both parents are listed in Table B5.3. 

which was found to have growth rates superior to its parents at 15oC, 20oC and 25oC was not 

found to have a superior growth rate at 30oC. Several strains which were identified as having 

superior mycelial growth rates at 30oC were also identified as having superior growth rates at 

other temperatures as well. Strains 1580 and 1583 products of monokaryons from MBFBL 2 and 

5 were found to have growth rates superior to both of their parents at 10oC as well as 30oC. For 
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strain 1583, this was true at 15oC and 30oC as well as 10oC. Strain 1681, a product of 

monokaryons from MBFBL 2 and 6 was found to have a growth rate superior to its parent strains 

at 15oC and 30oC. These strains exhibit growth rates superior to their parents at temperatures 

both above and below the optimum temperature for mycelial growth of L. edodes making them 

good candidates for further use in production and as breeding stock.  

More novel strains with growth rates which were greater than both of their parents were 

found at 30oC than at any of the other temperatures studied. These strains represented 10% of the 

progeny from full sibling group 2x4, 26% of the progeny from full sibling group 2x5 and 18% of 

the progeny from full sibling group 2x6. These are much higher percentages of progeny with 

superior growth rates than were found at any of the other incubation temperatures. This suggests 

that breeding for L. edodes which can grow well at temperatures higher than the species optimum 

of 20-28oC, cited by Zervakis et al. (2001), can be achieved. This evidence supports the concept 

that L. edodes strains which perform at higher temperatures can be produced through breeding. 

Based on the observed results comparing temperature classifications of parents to average 

temperature classifications of offspring full sibling groups (Table 5.3) the phenotype of superior 

high temperature tolerance as measured by growth rate, is not dominant in the Mendelian sense. 

However, the finding that a much larger number of novel strains with growth rates superior to 

both parents were identified at 30oC suggests that it is an easier phenotype to achieve through 

breeding than superior growth rate at other temperatures.  

All of the strains identified as having mycelial growth rates higher than both of their 

parents were products of interstrain crosses. This was true for all temperatures studied. This 

finding strongly supports the hypothesis that interstrain crossing is a better method of increasing 

vigor than intrastrain crossing. Furthermore, this finding does not support the theory that 
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backcrossing is a sound method of achieving strains with a superior growth rate at a given 

temperature.  

All of the strains with a growth rate superior to their parents except strain 1210, a product 

of monokaryons from MBFBL 1 and 5, were from crosses involving monokaryons from MBFBL 

2. MBFBL 2 was found to have mating type alleles which were unique at both mating loci 

compared to the other five parent strains. The presence of unique mating type alleles is an 

indicator of genetic diversity (Fox et al., 1994; E. Kothe, 2001) and suggests that of the six 

parent stains MBFBL 2 is the strain which is the least related to the other five strains. That in 

almost all cases it was monokaryons from MBFBL 2 combined with monokaryons from the 

other five strains which produced strains with superior growth rates supports the hypothesis that 

increased genetic diversity in breeding stock will yield novel strains with increased vigor as 

proposed by Hibbett and Donoghue (1996). This concept of heterosis is also seen in the work of 

(Kinugawa et al., 1997) with Pleurotus sp. and Yan and Jiang (2005) with Stropharia rugoso-

annulata.  

The phenotype of mycelial growth rate seems to be a complex interaction of factors and 

is not as straight forward as crossing gametes from the fastest growing strains at a given 

temperature to yield the fastest offspring at that temperature.  
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CHAPTER 6 

Conclusions and Future Research 

Five hundred and sixty six novel strains were produced through breeding of 60 

monokaryons from six strains of L. edodes. Five hundred and forty four of these strains were 

products of interstrain breeding and 22 were the products of intrastrain breeding. This increases 

the number of strains of L. edodes in the MBFBL culture collection. In addition, these strains and 

the characterization of their growth rates at the five temperatures studied are the first step in a 

breeding program which will produce strains with superior phenotypes. These strains have a 

known lineage which makes them useful for future studies using quantitative genetics and 

molecular techniques for the identification of quantitative trait loci for L. edodes phenotypes. 

The work accomplished in this thesis provides a broad base for future research into the genetics 

and breeding of the shiitake mushroom. 

Strains with growth rates superior to their parents were identified at each temperature 

studied. Several of these strains had growth rates which were superior to their parents at multiple 

temperatures. The strategy of continuously screening and selecting strains with mycelial growth 

rates superior to those of their parents at given temperatures should be continued. All novel 

strains identified as having growth rates superior to both parent strains were from interstrain 

crosses. This is strong evidence for the use of interstrain breeding as a strategy for producing 

strains with superior growth rates.  

The comparison of the mean growth rates of aggregated full sibling groups shows it is not 

the mating of any two monokaryons from a parent or parents that will produce strains with 

superior growth rates; rather it is the mating of specific monokaryons which will produce strains 
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with superior growth rates. The results indicate that growth rate is a complex trait and it is the 

specific combining ability of gametes which produces dikaryons with superior growth rates. This 

is supported by the finding that mean growth rates of some intrastrain full sibling groups at some 

temperatures were not statistically significant from the mean growth rates of some interstrain full 

sibling groups, yet no strains with growth rates superior to their parent were produced by 

intrastrain crosses. This concept is further supported by the finding that not all interstrain crosses 

produced offspring with superior growth rates, but all offspring with superior growth rates were 

the product of interstrain crosses.  

A comparison of the mycelial growth rates of monokaryons to their constituent dikaryons 

in L. edodes strains was studied and it was found that monokaryotic mycelial growth rate should 

not be used as a selection criterion for monokaryons in L. edodes when breeding for mycelial 

growth rate. The determination of monokaryotic growth rate is an unnecessary step and should 

not be used in future breeding of L. edodes. 

Though the addition of 566 new strains represents a large increase in the total number of 

L. edodes strains in the MBFBL culture collection and thereby an increase in the number of 

strains for use by researchers, cultivators and industry, the number of strains produced in this 

work could have been greater. Two factors played a role in limiting the number of strains 

produced. The first factor was the finding of common mating type alleles in 5 of 6 parent strains. 

This limited the majority of the novel strains to offspring of MBFBL 2. The second factor which 

limited the number of strains produced was the skewed frequency distribution of mating type 

alleles and a lack of monokaryons with a B2 mating type.  
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That five of the six parent strains studied had the same set of A1or2 and B1or2 mating types 

is an indication that these strains are more closely related to each other than they are to MBFBL 

2. Other strains of L. edodes in the MBFBL culture collection should be examined to determine 

if they have the same or different mating types as MBFBL 2 or the other 5 parental strains. This 

would provide valuable information about the diversity of L. edodes in the MBFBL culture 

collection. If strains with unique mating type alleles or the set of mating type alleles identified in 

MBFBL 2 are present then they should be incorporated in future breeding efforts. 

The finding that the B2 mating type allele was limited in the population of monokaryons 

from four parent strains and that a fifth strain trended toward the same finding is worthy of 

further investigation. Two theories, under selection due to slow growth and a lethal factor due to 

a deleterious mutation, have been proposed. In either case, the existence of the skewed mating 

type ratio and the limited number of monokaryons with a B2 allele suggests that either these 

strains are derived from the same lineage where this mutation originated or that the development 

of a lethal factor involving the B2 allele is a common convergent mutation. If the mating type 

ratio remains skewed in subsequent generations produced from the offspring of these parent 

strains then this is evidence that the strains exhibiting a lower than expected frequency of B2 

alleles have inherited this factor from a common ancestor and that these strains are closely 

related. If the frequency of the B2 allele returns to the expected 1:1:1:1 ratio in subsequent 

generations then this is an indication that the lethal factor is a common occurrence in L. edodes 

which should be addressed prior to or during controlled breeding projects. 

 Future work is necessary testing the proposed use of temperature designations for L. 

edodes based on mycelial growth rates rather than fruiting temperature optima. Research testing 

the relationship between these two approaches would be useful as only limited literature is 
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currently available on the subject. The fruiting temperature based approach to classification is 

traditional and does provide useful information for the production of mushrooms. However, L. 

edodes will spend the majority of its life growing vegetatively in any production system and 

there is a role for the mycelial growth rate temperature profile based approach to strain 

classification. The mycelial growth rate temperature profile based approach provides information 

allowing the selection of strains suitable for use at temperatures close to ambient climatic 

conditions, can be used to select strains with high competitive saprobic advantage and can 

decrease the crop cycle conferring savings of energy and capital to the producer.  

While there is much work to continue, the future breeding of L. edodes for high growth 

rates at and across selected temperatures, as well as the continued assessment of genetic diversity 

of breeding stock, will help to insure that the efficiency of cultivation of this important 

mushroom will continue to improve in years to come. 
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Appendix A 

Table A4.1 

Mating grid for monokaryons from strains 1, 3, 4, 5 and 6 

Identification numbers and mating type of monokaryotic SSI cultures used in mating crosses 

 
SSIs 

41 
A1B1 

42 
A1B1 

43 
A1B1 

44 
A2B1 

45 
A2B2 

46 
A2B1 

47 
A1B1 

48 
A2B1 

49 
A½B2 

50 
A1B1 

52 
A2B½ 

1 
A2B1 

- - - - - - - - + - - 

2 
A2B1 

- - - - - - - - + - - 

3 
A2B1 

- - - - - - - - + - - 

4 
A2B1 

- - - - - - - - + - - 

5 
A1B1 

- - - - + - - - - - - 

6 
A1B1 

- - - - + - - - + - - 

7 
A2B1 

- - - - - - - - + - - 

8 
A1B1 

- - - - + - - - + - - 

9 
A2B1 

- - - - - - - - + - - 

10 
A2B1 

- - - - - - - - - - - 

21 
A1B1 

- - - - + - - - + - - 

22 
A1B1 

- - - - + - - - - - - 

Note. Positive mating events are denoted by the + symbol and negative mating events are 
denoted by a – symbol. Only monokaryons from MBFBL 5 and monokaryon 52 from MBFBL 6 
are shown in the horizontal axis of this table as these were the only monokaryons involved in 
successful interstrain or intrastrain crosses except for the monokaryons from MBFBL 2. 
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Table A4.1 

Cont. 

Identification numbers and mating type of monokaryotic SSI cultures used in mating crosses 

 
SSIs 

41 
A1B1 

42 
A1B1 

43 
A1B1 

44 
A2B1 

45 
A2B2 

46 
A2B1 

47 
A1B1 

48 
A2B1 

49 
A½B2 

50 
A1B1 

52 
A2B½ 

23 
A2B1 

- - - - - - - - + - - 

24 
A1B1 

- - - - + - - - - - - 

25 
A2B1 

- - - - - - - - + - - 

26 
A2B1 

- - - - - - - - + - - 

27 
A1B1 

- - - - + - - - - - - 

28 
A1B1 

- - - - + - - - + - - 

29 
A2B1 

- - - - - - - - + - - 

30 
A1B1 

- - - - + - - - - - - 

31 
A1B1 

- - - - + - - - + - - 

32 
A2B1 

- - - - - - - - + - - 

33 
A2B1 

- - - - - - - - - - - 

34 
A1B1 

- - - - + - - - - - - 

35 
A1B1 

- - - - + - - - - - - 

Note. Positive mating events are denoted by the + symbol and negative mating events are 
denoted by a – symbol. Only monokaryons from MBFBL 5 and monokaryon 52 from MBFBL 6 
are shown in the horizontal axis of this table as these were the only monokaryons involved in 
successful interstrain or intrastrain crosses except for the monokaryons from MBFBL 2. 
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Table A4.1 

Cont. 

Identification numbers and mating type of monokaryotic SSI cultures used in mating crosses 

 
SSIs 

41 
A1B1 

42 
A1B1 

43 
A1B1 

44 
A2B1 

45 
A2B2 

46 
A2B1 

47 
A1B1 

48 
A2B1 

49 
A½B2 

50 
A1B1 

52 
A2B½ 

36 
A1B1 

- - - - + - - - + - - 

37 
A2B1 

- - - - - - - - + - - 

38 
A1B1 

- - - - + - - - + - - 

39 
A2B1 

- - - - - - - - + - - 

40 
A2B1 

- - - - - - - - + - - 

41 
A1B1 

n/a - - - + - - - - - - 

42 
A1B1 

- n/a - - + - - - - - - 

43 
A1B1 

- - n/a - + - - - - - - 

44 
A2B1 

- - - n/a - - - - + - - 

45 
A2B2 

+ + + - n/a - + - - + - 

46 
A2B1 

- - - - - n/a - - + - - 

47 
A1B1 

- - - - + - n/a - - - - 

48 
A2B1 

- - - - - - - n/a + - - 

Note. Positive mating events are denoted by the + symbol and negative mating events are 
denoted by a – symbol. Only monokaryons from MBFBL 5 and monokaryon 52 from MBFBL 6 
are shown in the horizontal axis of this table as these were the only monokaryons involved in 
successful interstrain or intrastrain crosses except for the monokaryons from MBFBL 2. 
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Table A4.1 

Cont. 

Identification numbers and mating type of monokaryotic SSI cultures used in mating crosses 

 
SSIs 

41 
A1B1 

42 
A1B1 

43 
A1B1 

44 
A2B1 

45 
A2B2 

46 
A2B1 

47 
A1B1 

48 
A2B1 

49 
A½B2 

50 
A1B1 

52 
A2B½ 

49 
A½B2 

- - - + - + - + n/a - - 

50 
A1B1 

- - - - + - - - - n/a - 

51 
A2B1 

- - - - - - - - - - - 

52 
A2B½ - - - - - - - - + - n/a 

53 
A2B1 

- - - - - - - - + - - 

54 
A2B1 

- - - - - - - - + - - 

55 
A1B1 

- - - - + - - - - - - 

56 
A1B1 

- - - - + - - - + - - 

57 
A1B1 

- - - - + - - - - - - 

58 
A2B1 

- - - - - - - - - - - 

59 
A1B1 

- - - - + - - - + - + 

60 
A1B1 

- - - - + - - - - - + 

Note. Positive mating events are denoted by the + symbol and negative mating events are 
denoted by a – symbol. Only monokaryons from MBFBL 5 and monokaryon 52 from MBFBL 6 
are shown in the horizontal axis of this table as these were the only monokaryons involved in 
successful interstrain or intrastrain crosses except for the monokaryons from MBFBL 2. 
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Figure A4.1. Plot showing lack of relationship between dikaryotic growth rate and the mean 

growth rate of constituent monokaryons at 10oC.  

Table A4.2 

Analysis of variance for the effect of monokaryotic growth rate on dikaryotic growth rate at 10oC 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares Mean square F Value Pr > F 

Regression     1   0.03 0.03 0.70 0.4035 

Residual 564 26.41 0.05   

Total 565 26.44    
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Figure A4.2. Relationship between dikaryotic growth rate and the mean growth rate of 

constituent monokaryons at 15oC.  

Table A4.3 

Analysis of variance for the effect of monokaryotic growth rate on dikaryotic growth rate at 15oC 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean square F Value Pr > F 

Regression   1     1.72 1.72 6.83 0.0092 

Residual 564 141.77 0.25   

Total 565 143.49    

y = 0.1277x + 2.2898 
R² = 0.012 
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Figure A4.3. Relationship between dikaryotic growth rate and the mean growth rate of 

constituent monokaryons at 20oC.  

Table A4.4 

Analysis of variance for the effect of monokaryotic growth rate on dikaryotic growth rate at 20oC 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean square F Value Pr > F 

Regression     1     5.24 5.24 11.47 0.0008 

Residual 564 257.88 0.46   

Total 565 263.13    

y = 0.1504x + 3.298 
R² = 0.02 
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Figure A4.4. Relationship between dikaryotic growth rate and the mean growth rate of 

constituent monokaryons at 25oC.  

Table A4.5 

Analysis of variance for the effect of monokaryotic growth rate on dikaryotic growth rate at 25oC 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean square F Value Pr > F 

Regression     1     6.86 6.86 11.74 0.0007 

Residual 564 329.45 0.58   

Total 565 336.31    

y = 0.1503x + 3.801 
R² = 0.0204 
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Figure A4.5. Relationship between dikaryotic growth rate and the mean growth rate of 

constituent monokaryons at 30oC.  

Table A4.6 

Analysis of variance for the effect of monokaryotic growth rate on dikaryotic growth rate at 30oC 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean square F Value Pr > F 

Regression     1     7.72 7.72 6.12 0.0137 

Residual 564 712.13 1.26   

Total 565 719.85    

y = 0.256x + 2.249 
R² = 0.0107 
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Appendix B 

Table B5.1  

ANOVA table for comparison of mycelial growth rates of parent strains at 10oC, 15oC, 20oC, 

25oC and 30oC 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean square F Value Pr > F 

Parent     5     6.30   1.26     9.59 <0.0001 

Temperature     4 270.23 67.56 514.52 <0.0001 

Parent x 
Temperature   20   11.20   0.56     4.27 <0.0001 

Error   90   11.82   0.13   

Total 119 299.55    

 

Table B5.2 

ANOVA table for comparison of mycelial growth rates of offspring from interstrain and 

intrastrain mating groups at 10oC, 15oC, 20oC, 25oC and 30oC 

Source of 
variation 

Degrees of 
freedom 

Sum of 
squares 

Mean square F Value Pr > F 

Full sibling 
groups 

      11     537.84     48.89     98.25 <0.0001 

Temperature         4 19146.76 4786.69 9618.15 <0.0001 

Mating cross x 
Temperature 

      44     589.42     13.40     26.92 <0 .0001 

Error 11260   5603.79       0.50   

Total 11319 25877.80    
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Table B5.3 

Complete comparison of parent and offspring mycelial growth rates at 30oC.  

Mating 
group 

Average 
growth 
rate of 

Parent 1 
(mm/day) 

Average 
growth 
rate of 

Parent 2 
(mm/day) 

% of 
strains 
faster 
than 

parent 
1 

MBFBL # of 
strains faster than 

parent 1 

% of 
strains 
faster 
than 

parent 
2 

MBFBL #s of 
strains faster than 

parent 2 

1x2 4.08 2.00   0.0 n/a 32.0 

1223, 1222, 1252, 
1245, 1243, 1228, 
1253, 1293, 1262, 
1220, 1239, 1238, 
1229, 1251, 1237, 
1211, 1217, 1232, 
1281, 1231, 1265, 
1230, 1261, 1241, 
1233, 1221, 1227, 
1297, 1205, 1225, 

1235, 1288 

1x5 4.08 3.62   0.0 n/a   0.0 n/a 

2x3 2.00 4.23 31.0 

1366, 1369, 1563, 
1362, 1361, 1526, 
1359, 1344, 1568, 
1341, 1365, 1537, 
1356, 1370, 1558, 
1345, 1338, 1551, 
1353, 1327, 1540, 
1348, 1364, 1558, 
1328, 1339, 1578, 
1347, 1360, 1552, 

1367 

  0.0 n/a 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 
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Table B5.3 

Cont. 

Mating 
group 

Average 
growth 
rate of 

Parent 1 
(mm/day) 

Average 
growth 
rate of 

Parent 2 
(mm/day) 

% of 
strains 
faster 
than 

parent 
1 

MBFBL # of 
strains faster than 

parent 1 

% of 
strains 
faster 
than 

parent 
2 

MBFBL #s of 
strains faster than 

parent 2 

2x4 2.00 3.80 63.0 

1443, 1424, 1444, 
1446, 1431, 1483, 
1426, 1432, 1496, 
1436, 1433, 1445, 
1456, 1438, 1434, 
1442, 1452, 1430, 
1506, 1486, 1439, 
1435, 1466, 1450, 
1441, 1447, 1440, 
1468, 1490, 1505, 
1455, 1420, 1448, 
1484, 1416, 1464, 
1460, 1461, 1425, 
1423, 1493, 1494, 
1453, 1502, 1428, 
1415, 1421, 1495, 
1508, 1457, 1411, 
1454, 1437, 1449, 
1451, 1498, 1418, 
1485, 1462, 1414, 
1463, 1491, 1422 

 

10.0 

1443, 1424, 1444, 
1445, 1431, 1483, 
1425, 1432, 1496, 

1436 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 
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Table B5.3 

Cont. 

Mating 
group 

Average 
growth 
rate of 

Parent 1 
(mm/day) 

Average 
growth 
rate of 

Parent 2 
(mm/day) 

% of 
strains 
faster 
than 

parent 
1 

MBFBL # of 
strains faster than 

parent 1 

% of 
strains 
faster 
than 

parent 
2 

MBFBL #s of 
strains faster than 

parent 2 

2x5 2.00 3.62 61.0 

1566, 1565, 1561, 
1564, 1583, 1580, 
1584, 1551, 1569, 
1579, 1546, 1582, 
1586, 1585, 1604, 
1609, 1560, 1578, 
1568, 1567, 1550, 
1576, 1523, 1554, 
1562, 1570, 1553, 
1526, 1557, 1600, 
1603, 1608, 1605, 
1541, 1543, 1524, 
1558, 1571, 1587, 
1572, 1574, 1536, 
1577, 1530, 1607, 
1552, 1544, 1527, 
1522, 1588, 1533, 
1531, 1593, 1556, 
1532, 1521, 1555, 
1529, 1528, 1563, 

1597 

26.0 

1566, 1565, 1561, 
1564, 1583, 1580, 
1584, 1551, 1569, 
1579, 1546, 1582 
1586, 1585, 1604, 
1609, 1560, 1578, 
1568, 1567, 1551, 
1576, 1523, 1554, 

1562, 1570 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 
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Table A5.3 

Cont. 

Mating 
group 

Average 
growth 
rate of 

Parent 1 
(mm/day) 

Average 
growth 
rate of 

Parent 2 
(mm/day) 

% of 
strains 
faster 
than 

parent 
1 

MBFBL # of 
strains faster than 

parent 1 

% of 
strains 
faster 
than 

parent 
2 

MBFBL #s of 
strains faster than 

parent 2 

2x6 2.00 3.34 46.0 

1694, 1681, 1691 
1624, 1630, 1675 
1703, 1699, 1625 
1620, 1696, 1700 
1662, 1610, 1674 
1660, 1650, 1702 
1688, 1671, 1670 
1664, 1697, 1673 
1695, 1704, 1690 
1655, 1685, 1649 
1684, 1698, 1640 
1643, 1635, 1629 
1663, 1619, 1652 
1680, 1622, 1654 
1644, 1659, 1683 

1656 

18.0 

1694, 1681, 1691, 
1624, 1630, 1675, 
1703, 1699, 1625, 
1621, 1696, 1700, 
1662, 1610, 1674, 
1660, 1650, 1702 

3x5 4.23 3.62   0.0 n/a   0.0 n/a 

4x5 3.80 3.62   0.0 n/a   0.0 n/a 

5x6 3.62 3.34   0.0 n/a   0.0 n/a 

2x2 2.00 2.00   0.0 n/a   0.0 n/a 

5x5 3.62 3.62   0.0 n/a   0.0 n/a 

6x6 3.34 3.34   0.0 n/a   0.0 n/a 

Note. Strains found to have a greater growth rate are significant at the 5% level according to 
Duncan’s multiple range tests. 
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