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Abstract 

Biomaterials including ceramic material, polymer material, metallic material and 

composite material have been used in biomedical scaffolds, artificial tissues, and drug delivery 

systems for a long time. Magnesium (Mg) and Mg-based alloys are a new generation of 

degradable metallic materials that have attracted great attention in the last ten years. The 

advantages of Mg alloys as biomaterials are their good biocompatibility and biodegradability. 

Mg as an essential element in human body is an enzyme cofactor for over 300 biochemical 

reactions. However, the degradation process of Mg material may hinder the potential application. 

The purpose of this study is to evaluate the biocompatibility of pure Mg and Mg alloys by 

different in vitro methods. We believe that Mg material could be used as vascular stent material 

and bone orthopedic implant materials. 

The effect of different metals used in Mg stent materials on endothelial cells, 

biocompatibility of Mg-Rare Earth (RE) alloys, collagen self-assembly on Mg bone orthopedic 

material, and endothelialization on hydrofluoric acid conversion coating were studied. Scanning 

electron microscope, electrochemical corrosion test, hemolysis test, platelet adhesion test, cell 

viability test, cell proliferation test, immunostaining and q-PCR were used. Major results 

include: (i) the effect of Mg on endothelial cell viability and proliferation is dose-dependent; (ii) 

alloying with rare earth elements could improve endothelial cell attachment and viability; (iii) 

the structure of collagen self-assembly on Mg material is affected by collagen monomer 

concentration, assembly time, pH, and degradation products; and (iv) hydrofluoric acid 

conversion coating can improve endothelial cell attachment and proliferation. This study 

successfully shows that Mg alloys have the potential to be medical implant materials. 
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CHAPTER 1 

Introduction 

1.1 Biomaterials 

A biomaterial is any substance, natural or man-made, that is used to help the biological 

system to fulfill its function or to induce the system to recover from certain defects. Since the 

late 18th century, biomaterials have been used in joint replacements, bone plates, bone cement, 

artificial ligaments, artificial tendons, dental implants, blood vessel prostheses, heart valves, 

cardiovascular stent, and artificial skin [1,2]. There are three development stages for 

biomaterials: inert biomaterial, resorbable biomaterial, and regenerative biomaterial [3]. For inert 

biomaterial, its function is mainly to maintain local system integrity and there is limited tissue 

response. Resorbable biomaterials can be degraded and absorbed by local tissues over a certain 

amount of time. Regenerative biomaterial should not only have the basic characteristics of a 

biomaterial but also be able to induce and promote the self-healing of the tissue. Based on the 

material composition, the most common classes of biomaterials include ceramic material, 

polymer material, metallic material, and composite material.  

Polymer biomaterial has some unique properties such as flexibility, preferable 

biocompatibility, light weight and an adjustable range of physical and mechanical properties. 

Polymer materials can be divided into two categories based on their origin: artificial polymer and 

native polymer. Polytetrafluoroethylene (PTFE), Dacron (PET) and polyglycolic acid (PGA) are 

the most commonly used synthetic materials in vascular grafts [4-6]. Among them, synthetic 

poly (ethylene terephthalate) (Dacron) and expanded polytetrafluoroethylene (ePTFE) have been 

successfully used for reconstruction of peripheral arteries in large diameter vascular grafts. 

Besides vascular graft, polymer materials are also used in artificial skin, artificial heart valve, 
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vascular stent and drug delivery system. Generally, ceramic biomaterial and metal biomaterial 

are often chosen for hard tissue applications because of their relative higher mechanical strength 

compared with polymer biomaterials. On the other hand, polymer has better biocompatibility 

compared with metal and ceramic materials. 

 Ceramic biomaterials are also called bioceramics. Common ceramic biomaterials include 

aluminia, zirconia, and bioglass. The major characteristics of ceramic biomaterials are high 

hardness, brittleness, and high corrosion resistance. Ceramic biomaterials have been used in 

several different biomedical applications such as dentistry, orthopedics as well as medical 

sensors. 

 Metallic biomaterial usually has very strong mechanical strength. Titanium, titanium 

alloys, stainless steel, nitinol, and cobalt alloys are called permanent metallic materials due to the 

fact that their corrosion rate in physiological conditions is very slow. Biodegradable metallic 

materials are a new generation of metallic biomaterials which can be degraded and absorbed by 

the host. In many cases, biomaterials or medical implants do not need to be present after the local 

tissue has healed. Therefore, another surgery is needed to remove the medical devices made by 

permanent materials.  Degradable metallic materials can avoid another surgery to remove the 

medical devices. Iron, zinc, zinc alloys, magnesium (Mg), and Mg alloys are currently 

extensively researched for degradable biomaterials.  

1.2 Mg and Mg Alloys 

Mg is a very attractive biodegradable material which has very good biocompatibility and 

low thrombogenicity [7]. Mg also is an essential element in human body required for many 

biological/metabolic activities. In addition, Mg ion is the cofactor for many enzymes and pure 

Mg can be easily degraded in simulated body fluid and lose the mechanical strength. The 
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degradation products of Mg alloys may include metal ions, metal particles, and hydrogen gas, 

which all might hamper the biocompatibility of Mg materials. Mg alloyed with Al, Zn, Ca, 

Zirconium (Zr), Yttrium (Y), and rare earth elements (REs) can significantly improve the 

corrosion resistance and mechanical strength. Mg and its alloys are often used for vascular stent 

and bone orthopedic application [8]. 

1.3 Mg Stent 

Vascular system disease including cardiovascular disease, cerebrovascular disease, and 

peripheral arterial disease is the leading cause of mortality in the United States. Currently about 

30% of global death is caused by cardiovascular disease [9]. Cardiovascular stents have been 

used to treat vascular stenosis for a long time. Dozens of biomaterials have been tried to 

demonstrate their ability as a suitable candidate for the stent material, such as stainless steel, 

nitinol, cobalt alloys, titanium alloys, Mg-based alloys and polymers. Enough mechanical 

strength until tissue heals, high corrosion resistance and good biocompatibility are the three 

major requirements for a suitable stent material. The key advantage of Mg-based material over 

others for stent material is its potential to reduce or even eliminate the late restenosis which 

occurs very frequently in permanent stent materials. Despite the advantages of Mg-based stent, 

high corrosion rate and low mechanical strength are two major limitations for stent application. 

Alloying with other metal elements and surface coating are used to conquer the two problems. 

The first biodegradable metallic stent was based on Mg by Armco Iron and implanted in an 

animal model in 2001 [10].  Figure 1 shows a vascular stent based on Mg alloy [11]. 

Endothelialization is a key factor for successfully stent implantation. Therefore, it is very 

important to study how Mg and Mg degradation products interact with vascular endothelial cells. 
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Figure 1. Mg based cardiovascular stent [11]. 

1.4 Mg for Orthopedic Application 

Metallic biomaterials play an important role in repairing or replacement of diseased or 

damaged bone tissues because of their suitability for load-bearing. There are several advantages 

of Mg-based alloys for bone orthopedic application over other metal biomaterials, e.g., stainless 

steel, titanium alloys, and cobalt-chromium alloys.  First, their physical and mechanical 

properties including density (1.74-2.0 g/cm3), elastic modulus (41-45 GPa), and compressive 

yield strength (65-100 MPa), are much closer to that of natural bone, and therefore can avoid the 

stress shielding effect [12-14].  Table 1 summarizes the physical and mechanical properties of 

some implant materials with comparison to natural bone [15]. Second, Mg is an essential element 

for many biological activities including enzymatic reaction, formation of apatite, and bone cells 

adsorption [16]. Third, Mg alloys can eliminate the necessity of a second surgery to remove the 

permanent bone implants. A lot of studies have shown that Mg implant materials had better bone 

cell induction compared with other biomaterials [15,17-19]. However, how Mg material interacts 

with extracellular matrix (ECM) in bone tissues is still unknown. ECM plays an important role in 

the structure and function of bone tissues. Therefore, it is very important to study how Mg 

materials affect the ECM structure and their functions. 
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Table 1 

Summary of the physical and mechanical properties of some orthopedic biomaterials with 

comparison to natural bone [15] 

Properties Natural 
bone 

Mg Ti alloy Co–Cr 
alloy 

Stainless 
steel 

Density (g/cm3) 1.8–2.1 1.74–
2.0 

4.4–4.5 8.3–9.2 7.9–8.1 

Elastic modulus (Gpa) 3–20 41–45 110–117 230 189–205 
Compressive yield strength 
(Mpa) 

130–180 65–100 758-
1117 

450–1000 170–310 

Fracture toughness (MPam1/2) 3–6 15–40 55–115 N/A 50–200 
 

1.5 Thesis Outline 

Chapter 2 will be a literature review of current research focus of Mg and Mg-based 

biomaterials, popular methods used for assessing the biocompatibility, potential applications for 

tested materials, and coating materials for Mg. Chapter 3 will discuss methods and materials 

used to evaluate the toxicity of Mg degradation products, biocompatibility of Mg materials, and 

coatings for Mg. Chapter 4 will discuss all results regarding the material characterization, 

biocompatibility of the materials, and surface coating. Lastly, chapter 5 presents a summary of 

the results discovered and suggested future studies. 
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CHAPTER 2 

Literature Review 

The history of application Mg as a degradable biomaterial dates back to late 19th century. 

Lambotte reported the first use of Mg as a plate to secure a fracture involving the bones of the 

lower leg [20]. Due to the fast corrosion rate of pure Mg in vivo, the trial failed only 8 days after 

the surgery. In 1944, Troitskii and Tsitrin reported a study where Mg alloying with cadmium was 

fabricated into plates and screws and used to secure bone fractures [21]: 25 of 34 cases were 

successfully implanted and no inflammatory reaction or high serum magnesium level was 

observed. In 1986, Richard Jorgensen filed a patent on a Mg device for haemostatic clip; he 

found that Mg clips and staples were safer for closing vessels in brain or deep wounds [22]. Later 

in the 20th century, Mg was researched as biodegradable cardiovascular stent and orthopedic 

biomaterials. During the recent 10 years, there is a boom of study of Mg-based alloys. 

2.1 Alloying Elements.  

Pure Mg has very fast degradation rate and lower mechanical strength. Those two 

properties can be improved by alloying with other metal elements. Al, Zn, Ca, Mn, Zr, Y and 

rare earth elements (REs) are the most common elements used in Mg alloys. Table 2 summarized 

the composition of some commercially available Mg alloys and alloys that were widely studied 

recently. The mechanical properties and corrosion resistance could be improved by aluminum 

significantly [23]. However, excessive aluminum ions have a high toxic effect on nervous system 

[24]. Zn a nd Ca are two common necessary elements in human body and it is believed that Zn is 

one effective element for improving the mechanical strength of Mg-based alloy [25]. In addition, 

Zn and Mn can also enhance the corrosion resistance by avoiding the galvanic corrosion caused 

by nickel and iron impurities [25]. 
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 Table 2 

Composition of different Mg-based alloys 

 

One of the most attractive approaches today in fabricating new Mg-based alloy is to add 

rare earth elements (Sc, Y, and all lanthanides) to the alloy system [40]. On the other hand, their 

toxicity is still controversial and remains as a main concern. Nd, Gd, Y, and Er are the most 

commonly used REs. Besides WE43, AZ31 and other commercial Mg alloys, the mechanical 

strength, corrosion behavior and biocompatibility of Mg-Y, Mg-Nd-Y, Mg-Zn-Y, Mg-Zn-Y-Nd, 

Alloy Elements Percentage (wt%) Referen
ce Mg Al Zn Ca Mn Zr Re Other 

WE43 Balan
ce 

/ 0.2 / 0.13 0.36 3.8 Y:4.16 [26] 

AZ31 Bal 2.83 0.8 / 0.37 / / Si:0.1~0.
05 

[27,28] 

ZW21 Bal / 2 0.2
5 

0.15 / / Y:1 [29] 

AZ31B Bal 1.2 0.74 / 0.35 /  Si:0.026 [30] 
AZ63 Bal 5.6 2.7 0.2 0.18~0.

5 
/ / Cu:0.2 [31] 

AZ91D Bal 8.5 0.6 / 0.25 / / Cu:0.25 [32] 
Mg-Sr Bal 0.007~0.0

12 
/ / 0.003 / / Sr:0.3~2.

5 
[33] 

Mg-Mn-Zn Bal <0.3 1.05~3.
05 

 1.08~1.
11 

/ / / [25] 

Mg-Zn-Ca Bal / 30~25 4~
5 

/ / / / [34] 

Mg-Li-Al-
Re 

Bal 2-4 / / / / 2 Li:3.5~8.
5 

[35] 

Mg-Nd-Zn-
Zr 

Bal / 0.164 / 0.003 0.41
3 

3.1
3 

/ [36] 

Mg-Nd-Zn-
Zr 

Bal / 0.22 / / / 3.5
3 

/ [37] 

Mg-Zn-Y-
Nd 

Bal / 2 / / / 0.5 Y:0.46 [38] 

Mg-Al-Ca-
Mn 

Bal 3.5 / 3.3 0.4 / / / [39] 
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Mg-Nd-Zr, Mg-Nd-Zn-Zr were extensively investigated [37,41-45]. Seitz et al. tested cell 

viability and cell proliferation after exposure to the Mg-Nd degradation solution, and their results 

indicated that alloying with Nd did not affect the cell viability [46]. Murine aneuploid 

fibrosarcoma cell line(L-929) cells cultured with extracts from Mg-1.5Y-1.2Zn-0.44Zr showed 

that there was improved cell proliferation with no significant cytotoxicity [47]. In vitro cell 

culture with rare earth chlorides showed that most rare earth elements have obvious effect on 

viability of human umbilical cord perivascular cell at concentrations over 1000 µg/mol [48]. 

However, it is still unclear whether REs released from stent will affect the endothelialization 

process. 

2.2 Material Preparation and Characterization.  

The grain sizes of the alloys, second-phase distribution, mechanical properties as well as 

absence of structural defects are strongly related to the processing routes. Pure Mg and other 

alloying elements are typically melted and cast under an inert environment. As-casted alloys 

often have an inhomogeneous grain structure, which results in lower mechanical strength and 

fast corrosion at the grain boundary. Zhang et al. estimated the effects of extrusion and heat 

treatment on the Mg-based alloy system [36]. It was shown that extrusion can significantly 

improve the mechanical properties of the alloy by grain refinement and precipitation 

strengthening. In addition, the mechanical properties decreased as the increase of the extruded 

temperature (250-450ºC). It was also shown that cyclic extrusion compression could optimize the 

microstructure and corrosion behavior of Mg–Zn-Y-Nd alloy compared with as-cast and 

extrusion alloys [49]. After extrusion of ZM21 alloy, the grain size was within submicrometer 

range and the hardness was significantly higher than that of the coarse-grained ZM21 alloy [50]. 
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Annealing can significantly improve the elongation of Mg-Zn-Y alloy, but the yield strength 

ofthe alloys with different contents decreases [51]. 

Table 3 

Mechanical properties of Mg alloys 

Alloy name Fabrication Grain 
size(middle 

linear 
length um) 

Yield 
strength(MPa) 

UTS 
(Mpa) 

Elongation 
(%) 

Reference 

Pure Mg As-rolled / 113 170 12 [31] 
WE43 As-extruded 10~30 216.67 297.67 21.67 [52] 
AZ31B As-extruded / 200 255 12 [53] 
AZ91D Die-cast 250 70.67 170.74 4.3 [52] 
ZM21 As-extruded 0.52~15 180~340 259~353 / [50] 
Mg-Sr As-casted 5~30 / 210~240 / [54] 
Mg-Li As-extruded  ~70 101~148 75~190 [35] 
Mg-Zn-Ca As-casted / / 162 / [55] 
Mg-Zn-Y As-extruded 3~4 160 270 20 [56] 
Mg-Li-Al As-extruded  ~90 ~148 ~220 [35] 
Mg-Mn-Zn As-extruded 4~9 246 280 20 [25] 
Mg-Li-Al-
Re 

As-extruded / 73~130 200~230 15~46 [35] 

Mg-Nd-Zn-
Zr 

As-extruded / 124~189 226~243 17~26 [36] 

Mg-Zn-Y-
Nd 

As-casted / 105 209 10.6 [49] 

Mg-Zn-Y-
Nd 

As-extruded 5~15 185 316 15.6 [49] 

Mg-Al-Ca-
Mn 

As-extruded / / 420 5.6 [39] 

 

Mechanical properties are always the top priority when a new alloy is evaluated as stent 

material. Yield strength, ultimate tensile strength and elongation are the three most common 

factors to determine if the material could fulfill its function with respect to a mechanical 

perspective. In addition, for most balloon expandable stents, 20% to 30% elongation is needed 

for the stent expansion process. Table 3 summarizes the mechanical strength of some Mg alloys.  
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Immersion test, electrochemical corrosion test, and in vitro cell culture were often used to 

determine the corrosion property and biocompatibility. Immersion test in solution can provide a 

simplified model about how stent materials degrade in a static solution. Table 4 summarizes the 

immersion corrosion parameters of different alloys. Sample size and corrosion solution in 

different experiments varied, which could have direct effects on the corrosion rate. It is the same 

scenario for electrochemical corrosion tests (Table 5). Electrochemical impedance spectroscopy 

and potentiodynamic polarization showed dominant role in revealing Mg-alloy galvanic 

corrosion. 

Table 4 

Immersion degradation test of Mg material 

Alloy name Size/mm solution Duration/
d 

Corrosion rate 
(mg/d*cm2) 

Reference 

WE43 D=8,T=1.5 SBF,APS 5,10 0.363 [26,37] 
ZW21 D=17.5,T=3.6 SBF 7 / [29] 
MgSr H=40,W=20,T

=6 
Hank’s 1~3 2~23 [33] 

MgLi D=10,T=2 Hank’s 3~10 / [35] 
MgLiAl D=10,T=2 Hank’s 3~10 / [35] 
MgMnZn D=11.3,T=2 SBF 3~30 / [25] 
MgLiAlRe D=10,T=2 Hank’s 3~10 / [35] 
MgNdZnZr D=12,T=5 SBF 10 0.09~0.14 [36] 
MgNdZnZr D=12,T=5 APS 10 0.337mm/y [57] 
MgZnYNd D=8,T=5 SBF 5 4.8~8.04 [49] 
MgZn D=11.3 0.9%NaCl 3~6 1.5~3.9 [58] 
 

2.3 Surface Modification.  

The most effective way to improve the corrosion resistance and biocompatibility of stent 

materials without compromising their mechanical strength is surface modification. Surface 

treatment and surface coating are the two common strategies. The difference between them is 

that surface treatment does not add any distinctive layer of substance and it only modifies the 
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composition or microstructure of the outer layer. Some of the techniques that have been 

commonly used for stent surface modification include galvanization, sputtering followed by ion 

bombardment, pulsed biased arc ion plating, micro-arc oxidation, dipping, spraying, and plasma-

based deposition [59-66]. 

Table 5 

Electrochemical corrosion tests of Mg alloys 

Alloy 
name 

Shape Area(cm2) Solution Icorr(mA/cm2) Ecorr(V) Degradation 
rate(mm/y) 

Referenc
e 

Pure Mg Square 1 Hanks 0.0598 -1.554  [31] 
AZ31 Round 0.785 PBS 0.182 -1.54 / [67] 
AZ31B / / SBF 0.0013 -1.69 / [30] 
WE43 Round 1 SBF 0.509 -1.85 / [26] 
MgLiAl
Re 

Round 0.785 Hank’s 0.418~1.412 -1.482~-
1.587 

0.1~3.4 [35] 

MgZnCa Square 1 SBF 0.11 -1.645 / [55] 
Mg-
0.5Sr 

/ 0.72 Hank’s 0.005 -1.58 0.2~0.4 [33] 

MgZnY
Nd 

Round 1 SBF 1.08 -1.7 / [38] 

MgNdZn
Zr 

Round 1 APS 0.00141 -1.69 / [57] 

MgZnY / 1 SBF 0.44 -1.792 / [56] 
MgLi Round 0.785 Hank’s 0.428~0.461 -1.52~-1.565 0.1~0.16 [35] 
MgLiAl Round 0.785 Hank’s -1.587 0.418 0.1 [35] 
        

Mg alloy coated with PLGA by dipping method was tested by Li et al. [58]; their 

immersion and potentiodynamic tests showed that coating with PLGA can significantly reduce 

the corrosion rate. Besides, osteoblast cells demonstrated good morphology and spread well on 

the coated Mg samples. In contrast, there was no cell attachment observed on the bare Mg 

surface. In another study, PLA and PCL layer of 15 to 20 µm were coated on the high purity Mg 

surface [68]. PLA and PCL coated Mg had higher free corrosion potentials and smaller corrosion 

currents. In addition, the weight loss and surface characterization showed that the interaction 
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between polymer and the Mg surface may undermine the corrosion resistance of coated high 

purity Mg. Moreover, adhesion of pyrrole to the AZ31 surface could reduce the corrosion 

potential and corrosion current, indicating good corrosion resistance compared with bare AZ31. 

Wang et al. compared the poly(1,3-trimethylene carbonate) (PMTC) and PCL as coating 

materials on the Mg-Mn-Zn alloy surface [69]. The static and dynamic hemocompatibility test 

showed that platelets, red blood cells and leukocytes attached on the PMTC coated Mg were 

much less than that on the 316 stainless steel, PCL coated and bare Mg. Electrochemical 

corrosion test, dynamic degradation test and in vivo degradation test all demonstrated that the 

PMTC coated Mg had higher biocompatibility.  

Table 6 

Effect of some coatings on the corrosion of Mg alloys 

 

Xiao et al. coated the die-cast AZ60 with calcium phosphate [70]. The uncoated and 

coated alloys were implanted into rabbit femora. The mean weight loss of coated and uncoated 

alloy was 0.12 g and 0.21 g at one month respectively. CT data showed that the in vivo 

Alloy Material Ecorr(V
, 

uncoat
ed) 

Ecoor(V,coat
ed) 

Icorr 
(uA/cm2

,uncoate
d) 

Icorr 
(uA/cm2,coate

d) 

Reference 

AZ31 Fluoride -1.57 -1.54 1820 209 [71] 
WE43 Phytic acid -1.85 -2.80~-1.79 509 3070~508 [26] 
WE43 SiC 4.9 0.6 / / [26] 
AZ91D Ceramic -1.75 -1.61~-1.39 37.1 0. 08 [72] 
Mg-Zn-Ca Hydroxyapatite -1.645 -1.414 110 25 [55] 
Mg-Zn-Y-Nd Ti-O -1.70 -1.65 1080 48 [38] 
Mg-Zn PLGA -1.46 -1.44~-1.36 26.5 0.085 [58] 
AZ91D Zr power -1.584 -1.422 607900 200.4 [73] 
AZ91E Gold ~-1.72 ~-1.31 ~91 ~82 [74] 
MgZnMn PTMC -1.694 -1.478 190546 15.1 [69] 
MgZnMn PCL -1.694 -1.604 190546 1625.5 [69] 
MgNdZnZr Hydrofluoric 

acid 
-1.69 -1.59 1.41 1.05 [57] 
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degradation rate of the uncoated alloy is almost 3 times as high as that of the coated alloy. Wang 

et al. treated the AZ31 surface with hydrofluoric acid and sulfuric acid to form a 

superhydrophobic layer [67]. The corrosion current of the AZ31 coated with hydrophobic layer 

is a tenth of that of the bare AZ31. Superhydrophobic surfaces had less platelets adhesion after 

incubated with blood for 1 h. Yang et al. immersed the AZ31B in fluoric acid of 50wt% from 3 

to 168 h [30]. A compact film with several irregularly distributed pores was observed on the 

surface of alloys. Besides, as the immersion time increases, the corrosion resistance of the treated 

sample also increases. Other coating materials in recent studies were summarized in Table 6. 

2.4 Preclinical and Clinical Evaluation of Mg Materials. 

In vitro biocompatibility tests include direct cell culturing on the Mg material surface, 

cell viability test, cell proliferation test, hemolysis test and platelet adhesion test. Those tests can 

provide data to evaluate the potential for further in vivo and clinical tests. 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test has been the most commonly 

used method to test cell viability in characterizing the cytocompatibility of Mg alloys. This test is 

based on the detection of NAD(P)H-dependent cellular oxidoreductase enzymes. Other methods 

to test the cytocompatibility include MTT, Lactose dehydrogenase (LDH), Bromodeoxyuridine 

(BrdU), and adenosine triphosphate (ATP)-based tests [75,76].  Hemolysis test and platelet 

adhesion test are usually used to test the hemocompatibility of the material. Table 7 shows the 

effect of different alloys on cell viability and hemolysis. Animal models including dog, rabbit 

and pig models were used for preclinical test (Table 8). For example, sirolimus-eluting stent 

made from AZ31B was tested in the infrarenal abdominal aorta of rabbit [79]. Radiographs 

showed that most of the stent struts remain complete after 30 days implantation but fully 
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degraded after 120 days, suggesting that the corrosion resistance of Mg stent still needs to be 

improved. 

Table 7 

In vitro biocompatibility test of Mg alloys 

 

PROGRESS-AMS was the first clinical trial of absorbable Mg metal alloy stents where 

63 patients received the stent implants [80,81]. The length and diameter of the stents ranged from 

10-15 mm and 3-3.5mm. After implantation, the patient follow-up was scheduled at 4, 6, and 12 

months. Coronary angiography and intravascular ultrasound showed that the lumen loss at 4 

months was 0.83 mm. Mg was replaced by calcium and phosphorous compound within 2 

months. A continuation of such clinical trial was published later where the long-term effects of 

Mg stent in human body was evaluated by angiogram and IVUS [82]. Eight patients who were in 

good condition after 4 months implantation were selected in this study. The net volume 

Alloy Cell viability(indirect) Hemolysis Reference 
Cell line Duration(d)-viability(%) 

WE43 L929 1- ~28 2- ~32 4- ~32 9.27 [26] 
WE43 L929 1-83 3-69 5-67 4.9 [26] 
Mg-3.5Li VSMC 1-130 3- ~80 5- ~80 2.6~3.75 [35] 
Mg-3.5Li ECV304 1- 3- 5- 2.6~3.75 [35] 
Coated-WE43 L929 1-83 2-87 4-96 3.57 [77] 
MgZnCa L929,MG63 1-83 3-52 5-52 / [34] 
MgMnZn / / / / 0.48 [25] 
MgLiAl VSMC 1- ~182 3- ~98 5- ~90 3.75 [35] 
MgLiAl ECV304 1- ~92 3- ~75 5- ~87 3.75 [35] 
MgY VSMC 2-92 4-120 7-89 5 [31] 
MgZn L929 2-~97 4-~96 7-~96 / [78] 
Mg-0.5Sr HUVEC 1-75 4-102 7-112 / [33] 
Mg-8.5Li-Al-Re VSMC 1- ~105 3- ~75 5- ~60 6 [35] 
Mg-8.5Li-Al-Re ECV304 1- ~42 3- ~48 5- ~69 6 [35] 
MgNdZnZr Endothelia 

cell 
1- 95.4 3-102.2 5- ~120 52 [57] 
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obstruction was about 11% (1.3-18.2 mm3) after 12 months implantation and the stent volume 

reduced from 124.5 mm3 to 94.2 mm3.  

Table 8 

Animal models used for in vivo evaluation of Mg alloys 

Alloy Stent(mm) Animal Position Duration(d) Reference 
Length Diameter Strut thickness 

WE43 10 2.4 0.27 dog Femoral artery 21 [33] 
WE43 10 1.2 0.15~0.2 pig Coronary artery 10-56 [83] 
AZ31B 15 3 0.155 rabbit Infrarenal 

abdnominal aorta 
30-120 [84] 

Mg-
0.5Sr 

10 2.4 0.27 dog Femoral artery 21 [33] 

AZ31B 15 3 0.155 rabbit Carotid artery 30~120 [79] 
AE21 10 2 0.12-0.2 pig Anterior,circumflex 

and coronary artery 
10~56 [85] 

 

The first-in-man trial of the drug-eluting absorbable metal stent based on Mg alloy was 

reported recently [86-88]. The stent used in this clinical trial was balloon-expandable, paclitaxel-

eluting delivery system based Mg alloy. The study was carried out in 5 clinical centers including 

47 patients and the clinical follow-up for the patients was arranged at 1, 6, 12, 24, and 36 months 

respectively. All the stents were successfully delivered to the location of lesion and the clinical 

follow-up ratio at 1 month, 6 months, 12 months are 100%, 100%, and 93%, respectively [87]. 

Except for one patient who died from non-cardiac cause and for 2 patients who withdrew their 

informed consents, data was collected from the rest of the patients. The luminal cross-section 

area loss at 6 and 12 months are 1.12 and 1.30 mm2. This study first demonstrated the feasibility 

of application of Mg-based biodegradable stents in clinical treatment.   
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CHAPTER 3 

Methodology 

3.1 Material Preparation 

3.1.1 Mg alloy. Mg based alloys of MgYZr-1RE, MgZnYZr-1RE (RE includes Gd and 

Dy, denoted as R1 and R2, thereafter), as well as MgZnCaY-xRE (x=1 and 2, RE includes Nd 

and Gd, denoted as R3 and R4, thereafter) were prepared by melting 99.97 % Mg ingot (Alfa 

Aesar, US), 99.9 % Zn, Ca granules (Sigma-Aldrich, US) and Mg-30RE master alloys in an 

electrical resistance furnace (Mbraun, US) under the protection of argon gas. Mg-30RE is a gift 

from Institute of Metal Research, Chinese Academy of Science. The alloy fabrication process 

was carried out by Dr.Zhigang Xu [89]. 

All the materials were then cut (Techcut 5, Allied High Tech Products, US) into 10×10×1 

mm square and polished (EcoMet 250 Grinder, Buehler, US) with SiC paper up to 1200 grit. All 

samples were supersonically cleaned (M2510 Ultrasonic cleaner, Branson, US) in absolute 

acetone and ethanol (Sigma-Aldrich, US). For hemocompatibility and endothelialization tests, 

each side of the samples was sterilized by UV light (1380 Biological Safety Cabinet, Thermo, 

US) exposure for 30 min. At least 3 replicates were used in each experiment (n≥3). 

3.1.2 Mg extracts solution. Mg extracts were prepared according to ISO 10993-12 [90]. 

Samples were soaked with serum free endothelial culture media (ECM, ScienCell, USA) as the 

extraction medium with a ratio of 1.25 ml/cm2 in a humidified atmosphere with 5 % CO2 at 37 

°C for 3 days. The supernatant was removed, filtered by a double layer 0.8 µm filter (BD 

Biosciences, US) and refrigerated at 4 °C. 

3.1.3 Ion stock solutions. The chlorides of Sodium (Na), Mg, Ca, Zn, Al, Y, Dy, Nd, and 

Gd (>99.99 %, Sigma Aldrich, USA) were dissolved into deionized water at concentration of 1 
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M (Na, Mg, Ca) and 0.01 M (The rest). The stock solutions were filtered, and stored at 4°C. 

Final ion solutions were made by mixing stock solution with ECM.  

3.2 Mg Material Characterization 

3.2.1 Electrochemical corrosion. Potentiodynamic polarization curves were measured 

by Gamry instruments (Gamry Ref 600, Gamry Instruments, US) using a three-electrode cell as 

described previously [30]. The reference electrode, counter electrode and working electrode were 

saturated calomel, platinum and testing materials. Tests were carried out in Hank’s balanced 

solution (HBS, Invitrogen, US) after samples were immersed for a while. All the DC polarization 

data was fitted and analyzed by Echem Analyst 6.0 (Gamry instrument, US). The corrosion rate 

of all the samples were calculated according to ASTM-G102-89 [91]. 

3.3 In Vitro Biocompatibility 

3.3.1 Hemolysis. Fresh human whole blood with sodium citrate was purchased from 

Cedarlane Labs (Cedarlane, US). The test was performed according to the method described 

previously [28]. In brief, 0.2 ml diluted human whole blood (4:5) was added to 10 ml centrifuge 

tubes after all the samples were pre-soaked into 10 ml Dulbecco’s Phosphate Buffered Saline 

(DPBS, Invitrogen, US) for 1 hour. The positive and negative groups were diluted blood with 10 

ml deionized water and diluted blood with 10 ml DPBS, respectively. Then all the samples were 

incubated at 37 ºC for 1 hour. After centrifuge (Biofuge Stratos, Thermo, US) at 800 g for 5 min, 

the supernatants were collected and the absorbance (A) was measured using a UV-Vis 

Spectrometer (Thermo, US) at 545 nm. The hemolysis rate (HR) was calculated by the following 

equation: 

① HR = [A(sample) - A(negative)]/[A(positive) - A(negative)]. 
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3.3.2 Platelet adhesion. Platelet rich plasma (PRP) with platelets of 108/ml (All Cells, 

US) was used for platelet adhesion test. All the samples were pre-soaked in DPBS for 1 hour. 

Then 100 µl PRP was overlaid on the surface of each sample and incubated (Heracell 150 I, 

Thermo, US) at 37 °C for 1 hour. Samples were gently rinsed by DPBS for 3 times to remove the 

non-adherent platelets. After that, 4 % paraformaldehyde (Boston Bioproducts, US) was used to 

fix the adherent platelets followed by ethanol gradient (50 %, 60 %, 70 %, 80 %, 90 %, and 100 

%) dehydration for 10 minutes. All the samples were coated by gold nanoparticle for 2 min and 

observed by SEM (SU8000, Hitachi, US). The number of adherent platelets was counted by 

Image-Pro Plus 6.0 (Media Cybernetics, US) on at least four different SEM images for each 

sample. 

3.3.3 Indirect cytocompatibility. Human aorta endothelial cells (HAEC) were purchased 

from Sciencell Research Laboratories (California, US). HAECs were expanded ECM with 10 % 

fetal bovine serum (Sciencell, US), 100 U/ml penicillin (Sciencell, US) and 100 µg/ml 

streptomycin (Sciencell, US) on the fibronectin coated 75-flasks (BD Biosciences, US) at 37 ºC 

in humidified incubator with 5 % CO2 and the passages 4-5 were used. Indirect MTT 

(Invitrogen, US) test was used to measure cell toxicity. HAECs were seeded in the 96-well cell 

culture plate (BD Bioscience, US) for 24 hours to allow cell attachment. ECM then was replaced 

by 100 µl 10 %, 25 %, 50 %, and 75 % extract solutions. The positive control and negative 

control were serum free ECM and serum free ECM with 10 % DMSO (Invitrogen, US), 

respectively. After incubating in the humidified incubator for 2, 4, and 7 days, MTT test was 

performed according to the manufacturer’s protocol. The absorbance (A) was measured at 570 

nm by a Microplate reader (SpectraMax, Molecular Devices, US). Morphology of cells was 
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characterized by Digital Inverted Microscope (EVOS, Advanced Microscopy, US). Cell viability 

was calculated by the following equation:  

② Viability= (Asample-Anegative)/(Apositive-Anegative) 

3.3.4 In vitro direct endothelialization. Mg alloy samples were soaked into serum free 

ECM for 3 days in 24-well culture plate (BD Bioscience, US) before using. Cell suspension (100 

µl) with density of 100,000 cell/100 µl was overlaid on the surface of samples. Fibronectin 

coated tissue culture plates were used as a control group. Cells were allowed to settle for 30 min 

in an incubator with 5 % CO2 at 37ºC. DPBS was used to gently wash the sample surface for 3 

times to remove the unattached cells. And then 2 ml serum free ECM was added to each well. 

After 3 hours and 24 hours, Mg samples were transferred to another new plate and cells on the 

sample surface were characterized by LIVE/DEAD Viability Kit (Invitrogen, US) according to 

the manufacturer’s protocol. Images were taken by Digital Inverted Microscope (EVOS, US). 

3.3.5 Effect of metal ions on cell viability. HCAECs were seeded in the 96-well cell 

culture plate (BD Biosciences, USA) with 5,000 cells/well for 24 hours to allow cell attachment. 

ECM was replaced by ECM supplemented with different ion solutions and incubated for 24 

hours. ECM with 10% DMSO (Life Technologies, USA) and ECM alone were positive and 

negative controls. Another blank reference containing same concentrate of ion solution without 

cells was used to exclude the interference of the ions. MTT test was performed according to the 

manufacturer’s protocol. Absorbance (A) was measured at 570 nm by a microplate reader 

(SpectraMax5, Molecular Devices, USA). Cell viability was calculated by the following equation 

(except for the Calcium group in which Ablank was not deducted): 

③ Viability = (Asample-Anegative -Ablank)/(Apositive-Anegative) 
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3.3.6 Lactate dehydrogenase release. HCAECs were seeded in 96-well cell culture plate 

at 5,000 cells/well and incubated for 24 h. Then ECM was replaced by ECM supplemented with 

different ion solution. After 24 h incubation, 100 μl culture media from each well was transferred 

to a new plate for lactate dehydrogenase (LDH, Roche Applied Science, USA) test. Absorbance 

was measured by a Microplate Reader (BioTek, USA) at 490 nm. Positive control and negative 

control were cells cultured with ECM supplemented with 2.5% dimethylsulfoxide (DMSO, Life 

Technologies, USA) and ECM, respectively. LDH release was calculated by the following 

equation: 

④ LDH = (Asample-Anegative)/(Apositive-Anegative) 

3.3.7 Cell proliferation. BrdU cell proliferation kit (Cell Signaling, USA) was used for 

cell proliferation test. HCAECs were seeded in 96-well cell culture plate at 5,000 cells/well. 

After 24 hours, ECM was replaced by different ion solutions and incubated for 24 hours. The ion 

concentration was set up to the concentration at which cell viability was not significantly 

affected. Proliferation test was performed according to the manufacturer’s protocol. Absorbance 

was measured at 450 nm. Positive control and negative control were ECM without ion 

supplement and ECM without cells. Proliferation rate was calculated as following equation: 

⑤ Proliferation = (Asample-Anegative)/(Apositive-Anegative) 

3.3.8 Cell migration. HCAECs (2.5*105 cells/well) were seeded in 12-well cell culture 

plate (BD Biosciences, USA). A straight line in cell monolayer was created by scratching the 

surface with a p200 pipette tip (Thermo Scientific, USA). Debris was removed by gently 

washing for 3 times with DPBS and cells were incubated with 3 ml ECM supplemented with 

different ion solutions. At 0, 6, and 24 hours, optical images were taken by Phase Contrast 

Microscope (Advanced Microscopy, USA). The width of the line at upper, middle and bottom 
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positions was measured in Image-Pro Plus 6.0 (Media Cybernetics, USA). Recovery rate (RR) 

and recovery speed (RS) were calculated by following equations (n=18):  

⑥ RR = (Initial Gap Width – Current gap width)/Initial Gap width 

⑦ RS = RR/Time 

3.3.9 Cytoskeleton staining. HCAECs (2.5*105 cells/well) were seeded in 12-well cell 

culture plate and treated with ECM supplemented with different MgCl2 for 24 hours. Image-iT 

Fix-Perm kit (Invitrogen, USA) was used to fix cells. Microfilament/F-actin was stained by 

Actin Green 488 Ready Probes Reagent (Invitrogen, USA). Microtubule was stained by mouse 

anti-β tubulin (Invitrogen, USA) followed by Alexa Fluor 546 rabbit anti-mouse IgG (Invitrogen, 

USA). Cell nucleus was stained by SlowFade Gold Anti-fade Reagent with DAPI (Invitrogen, 

USA). Images were taken by EVOS Inverted Fluorescent Microscope (Advanced Microscopy, 

USA). Fluorescent intensity of the cells was extracted by using ImageJ 1.49 software (NIH, 

USA). Contrast of the representative images was auto-adjusted by Image-Pro Plus 6.0. 

3.3.10 Gene expression. HCAECs (107 cells/dish) were seeded in 100 mm culture dishes 

(BD Technologies, USA) and allowed to attach for 24 h. Then the cells were treated with either 

ECM, ECM supplemented with 10 mM MgCl2, or ECM supplemented with 50 mM MgCl2, 

respectively for 24 h. Cells were harvested and total RNA was extracted by using RNeasy Mini 

Kit (Qiagen, USA) and subsequently quantified by a spectrophotometer (Nanodrop 2000, USA) 

with OD260/OD280 ratios between 1.9 and 2.1. Total of 600 ng RNA was used for reverse 

transcription by a RT2 First Strand Kit (Qiagen, USA). Reverse-transcription was performed in a 

thermo cycler (T100, Bio-Rad, USA). Then 91 µl RNase-free water was added to the 20 µl 

cDNA mix and stored at -20℃ Freezer (Puffer Bubbard, Thermo Scientific, USA). HCAECs 

gene expression analysis was performed in CFX96 Touch RT-PCR Detection System (Bio-Rad, 
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USA) by using RT2 Profiler PCR array (Qiagen, USA) for endothelial cell (EC). The array 

includes 84 functional genes, 5 housekeeping genes, 3 reverse-transcription controls (RTC), and 

3 positive PCR controls (PPC). 25 µl PCR components mix including cDNA, SYBR Green 

Mastermix and RNase-free water was dispensed to the RT2 Profiler PCR Array plate. After 

initial heat activation (95℃，10 min), cDNA was amplified as the following parameters: 95°C 

for 15 s and 60°C for 1 min. After the amplification, melting curve analysis was performed using 

the default melting curve program. Only the genes with one single melting peak were chose for 

final analysis. Data was analyzed by Bio-Rad CFX Manager 3.1 (Biorad, USA). 2-ΔΔCt method 

was used to calculate gene fold changes [92]. 

3.4 Collagen Self-assembly on Mg 

3.4.1 Concentration. Rat tail type I collagen solution (Life Technologies, USA) of 3 

mg/ml was diluted by D-phosphate-buffered solution (DPBS, Invitrogen, USA) to 10, 50, 100, 

and 200 µg/ml. 50 µl final collagen solutions (pH of 7) were spread on testing materials surface 

(polished up to 1200 grit SiC paper) followed by incubating under 37°C for 2 hours and then 

dehydrate with ethanol gradient. The morphology of final collagen structure was characterized 

by Scanning Electron Microscope (SEM, SU8000, Hitachi, USA).  

3.4.2 pH. The pH of DPBS (7.49) solutions were adjusted to 7, 9, and 11 by 1 M NaOH 

(Sigma-Aldrich, USA) and 1 M HCl (Sigma-Aldrich, USA). Stock collagen solution was diluted 

by DPBS solutions with different pH to final concentration of 200 µg/ml. 50 µl final collagen 

solutions were spread on Mg and AZ31 surface (polished up to 1200 grit SiC paper) for 2 hours 

of assembly, then followed by dehydration using ethanol gradient. The morphology of collagen 

was imaged by SEM. 
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3.4.3 Assembly time. DPBS diluted collagen solution (50µl of 200µg/ml , pH of 7) was 

spread on Mg and AZ31 surface (polished up to 1200 grit SiC paper) and allowed to assemble 

for 4 h and 8 h. Then samples were dehydrated with ethanol gradient. The morphology of 

collagen was imaged by SEM. 

3.4.4 Surface roughness. Mg and AZ31 were divided into 3 groups and polished up to 

180, 800 and 1,200 grit SiC paper. Materials polished up to 180 grit SiC paper were denoted as 

rough surface (RS); materials polished up to 800 grit SiC paper were denoted as semi-rough 

surface (SR); and materials polished up to 1,200 grit SiC paper were denoted as smooth surface 

(SS). Surface roughness was characterized by WYKO Optical Profiler (Veeco, USA). 50µl 

200µg/ml DPBS diluted collagen solution (pH of 7) was spread on Mg and AZ31 surface and 

allowed to assemble for 2 h. The morphology of collagen fibril was imaged by SEM. 

3.4.5 Collagen dynamic adsorption. RS, SR and SS materials were soaked into 1 ml 60 

µg/ml diluted collagen solution (pH of 7) with only one side exposed to the solution. The amount 

of absorbed collagen was quantified by Sirius Red Assay (Abacam, USA) according the method 

described previously with minor modification [93,94]. In brief, materials were soaked into 

collagen solution for 0.5h, 1h, 2h, 4h, and 8h, respectively. At each time point, samples were 

removed and washed with DPBS for 3 times. Then the unattached collagen in solution was 

transferred to a new tube followed by incubation with Sirius Red for 1 hour. The solutions were 

centrifuged at 8,000 g for 15 min and the dye was eluted by 0.1 M NaOH. The absorbance was 

measured at 540 nm by 10S UV-Vis Spectrometer (Thermo, USA). Standard curve of a series of 

collagen solution (7.5, 15, 22.5, 30, 37.5, 45, 52.5, and 60 µg/ml) was obtained as the same 

procedures. Linear regression was performed in Prism 5 (GraphPad, USA). The attached 
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collagen was calculated by subtraction of initial collagen by the collagen remained in the 

solution.  

3.4.6 Cell attachment. Mouse osteoblasts (MC 3T3, ATCC, USA) were expanded in 

Minimum Essential Medium α (MEM, Life Technologies, USA) supplemented with 10 % fetal 

bovine serum (Sciencell, USA), 100 U/ml penicillin (Sciencell, USA) and 100 µg/ml 

streptomycin (Sciencell, USA) in humidified incubator (Heracell 150 I, Thermo, USA) with 5 % 

CO2 as previously described [95]. Collagen solution (50 µl 200 µg/ml , pH of 7) was allowed to 

self-assemble on Mg and AZ31 with RS, SR, and SS for 2 h in a 24-well culture plate (BD 

Bioscience, USA). Then these materials were gently rinsed by DPBS for 3 times. 50 µl cell 

solution with density of 10,000 cell/ml was dipped onto the surface of collagen treated materials. 

Cells were allowed to attach for 30 min and then samples were washed gently with DPBS for 3 

times. After 4 hours, cells were fixed with 4 % paraformaldehyde (Boston Bioproducts, USA) 

followed by ethanol gradient dehydration for 10 minutes. Samples were coated with gold 

nanoparticles for 2 min, and imaged by SEM. 

3.4.7 Cell proliferation. Mg and AZ31 with different surface roughness treated by 

collagen as described above were used to test cell proliferation. MC 3T3 Cells were seeded onto 

the collagen coated material surface with density of 10,000 cell/ml in a 24-well culture plate. At 

1st, 4th, and 7th day, cell culture media were changed and cells were stained by Live/Dead kit 

(Invitrogen, USA). Culture media were centrifuged (Biofuge Stratos, Thermo, USA) at 8,000 g 

for 10 min and pH was measured by a pH meter (Eutech, USA). The fluorescent images were 

taken by a digital inverted light microscope (EVOS, Advanced Microscopy, USA). 

3.4.8 Mg2+ concentration. Mg2+ concentration was measured by xylidyl blue magnesium 

kit (Pointe Scientific, USA) as previously described [96]. In brief, 10 µl aliquot of test solution 
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was added to 1.5 ml final xylidyl solution (0.1 mM xylidyl blue, 0.13 mM EGTA, 1.4 M DMSO, 

0.02 % potassium cyanide) and incubated for 10 min at room temperature. The absorbance of the 

mixtures was measured at 520 nm by a UV-Vis Spectrometer (Thermo, USA). Standard curve 

was obtained by using gradient MgCl2 solution. Linear regression was performed in Prism 5 

(GraphPad, USA). Mg2+ concentration was determined by the standard curve. 

3.5 Mg Coating 

3.5.1 Fluoride Coating. The prepared Mg samples were immersed horizontally in 1.0 ml 

of 47-51 % hydrofluoric acid (Sigma-Aldrich, US) for 3 days. At day 3, the alloys were removed 

from hydrofluoric acid (HF) and allowed to air dry. The SU8000 SEM (Hitachi, US) was used to 

measure the surface morphologies of the alloys, and the Quantax EDS for SEM (Bruker, US) 

was used to measure the alloys’ thicknesses.  

3.5.2 Collagen coating. Rat tail type I collagen (3 mg/ml) was obtained from life 

technologies, US. The stock collagen solution was diluted with DPBS (Invitrogen, US) to the 

final concentration of 200 μg/ml, and then placed onto the prepared material surfaces. Following 

surface coating, the alloys were incubated in a humidified incubator (Heracell 150 I, Thermo, 

US) at 37.0 ºC with 5.0 % CO2 for two hours.  After two hours, samples were washed with 

DPBS for 3 times to remove unattached collagen followed by gradient ethanol dehydration. All 

the materials were stored at 4 ºC.   

3.5.3. In vitro endothelialization. A total of 50 μl endothelial cell (50,000 cells/mL) with 

serum free culture medium were pipetted onto the surface of each sample in a 24-well tissue 

culture plate (BD Biosciences, US).  Thereafter, the cells were allowed to attach for fifteen 

minutes. Then all the materials were gently washed with DPBS for 3 times to remove the 

unattached cells. Thereafter, each alloy was immersed in 2.0 ml serum free culture medium, and 
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the HCAECs were incubated in a humidified environment at 37.0 ºC, 5.0 % CO2. LIVE/DEAD 

Viability Kit (Invitrogen, US) was used to test cell attachment and viability at 1, 2, and 3 days, 

respectively. Culture medium was changed every 24 hours. Culture medium was removed from 

the wells, and the materials were incubated for 30 minutes with 1.0 ml DPBS containing 20 μM 

Ethidium Homodimer-1 and 5 μM Calcein AM.  Following incubation, cells were imaged under 

digital inverted light microscope (EVOS, Advanced Microscopy, US). 

3.6 Statistical Analysis 

All data was expressed as Mean±SD. Statistical analysis was performed in Prism 5 

software (GraphPad, US). For analysis of ion dose effects, nonlinear fit for dose-response-

inhibition in Prisma was used. Unpaired student’s t-test was performed to compare the 

significance level of treatment group with control group. One-way ANOVA was used to test 

significant difference in hemolysis and cell viability. Multiple comparisons within one group 

were performed by using one-way ANOVA followed by post hoc analysis. It is considered 

significantly different statistically if the P < 0.05. 

 

 

  



   28 

   

CHAPTER 4 

Results 

4.1 Endothelial Responses Exposed to Metal Ions. 

4.1.1 EC viability. ECs were treated with different ion solutions for 24 hours and the 

relative MTT viability results are shown in Figure 2. The dashed lines indicate the half maximal 

effective concentration (EC50). Stars indicate that the cell viability was significantly decreased 

compared to control (n=3, P<0.05).  

 

Figure 2. MTT viability of ECs as a function of salt concentration. 
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The overall cell viability decreased as ion concentrations increased except for the group 

treated with CaCl2. For the group of NaCl treatment, viability was not affected up to 100 mM 

and then decreased to 80.03±0.2% at 200 mM (Figure 2F).With the increase of Mg ion 

concentration from 8 mM to 103 mM, viability decreased from 105% to almost 0. Nonlinear fit 

(R2=0.97) for dose-response-inhibition showed that viability was not significantly affected when 

the Mg2+ is less than 30 mM. The half maximal effective concentrations (EC50) for MgCl2, 

ZnCl2, and AlCl3 were about 66.7 mM, 130 µM and 2,400 µM, respectively. The EC50 for the 

four REs ranges from 710 to 990 µm. When the CaCl2 concentration was higher than ~60 mM, it 

could interfere with the MTT result (Figure 2C). 

 

Figure 3. LDH release from ECs as a function of salt concentration. 

4.1.2 Lactate dehydrogenase (LDH) release. The relative amount of LDH released into 

cell culture media after endothelial cells treated with MgCl2, CaCl2, ZnCl2 AlCl3 and REs was 
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shown in Figure 3. Stars indicate that the LDH release was significantly increased compared to 

control (n=3, P<0.05). As the concentration of MgCl2 increased from 10 mM to 70 mM, the 

relative quantity of released LDH increased from 0.6±0.4% to 112.4±5.6%, and then started to 

drop. The highest LDH release in CaCl2 treated group was at concentration of 60 mM. In the 

ZnCl2 treated group, LDH release showed the same tendency and the turning point was around 

40 µM of ZnCl2. LDH release decreased first when concentrations of AlCl3 increased from 100 

to 1,800 µM, then it increased again and peaked at 2,000 µM AlCl3 and then started to drop 

(Figure 3D). In the REs treated groups, the overall LDH release increased with increasing ion 

concentrations (Figure 3E and Figure 3F). 

 

Figure 4. ECs proliferation rate as a function of salt concentration.  
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4.1.3 EC proliferation rate. The overall HCAECs proliferation rate decreased as the 

concentrations of MgCl2 and CaCl2 increased (Figure 4). One interesting observation was that 

MgCl2 at 10 mM improved the proliferation rate to 114±0.70%, significantly higher than control 

group, while the proliferation rate of 10 mM CaCl2 treated group was 90.5±14.9% which is not 

significantly different from the control. The proliferation rate of cells treated with 10 µM ZnCl2 

increased to 110.8±12.5%, and then decreased slowly as the increase of ZnCl2 to 40 µM (Figure 

4B). For AlCl3, cell proliferation was significantly decreased at 1,000 µM. REs had much severe 

adverse effects on the cell proliferation compared with AlCl3. DyCl3 and GdCl3 significantly 

decreased the proliferation rate at 100 µM. In all REs treated HCAECs, cell proliferation 

declined gently with concentrations increase from 100 to 500 µM, and then decreased sharply 

from 500 to 1,000 µM.  

4.1.4 EC migration. Figure 5 shows the EC migration test. ECs were treated with 

endothelial cell culture media supplemented with different concentration of magnesium chloride.  

The gap width (GW) of the line was calculated by Image Pro software. Recovery rate (RR) and 

recovery speed (RS) are shown on the top left corner of the image. For the control group, the 

recovery ratio (RR) was 39±4% after 6 h and the wound completely healed after 24 h. For the 

group supplemented with 10 mM and 20 mM MgCl2, the simulated wound also completely 

healed after 24 h. The RSs and RRs were even significantly higher than that of control group 

during the first 6 h (n=18, P<0.05). In the 30 mM and 40 mM groups, RR and RS were 

comparable to the control group at 6 h while significantly decreased at 24 h. In the 50 mM group, 

not only the RR and RS significantly decreased at 6 h, but also a large amount of cells peeled off 

along the edge of the wound.  
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Figure 5. Optical images of ECs migration under the effect of MgCl2.  

4.1.5 Cytoskeleton staining. Cytoskeleton proteins, actin (Green) and microtubule (Red) 

structures were shown in Figure 6.  
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Figure 6. Cytoskeleton staining images of ECs treated by ECM supplemented with MgCl2. 

Cell morphology and microtubule structure were not significantly affected as the increase 

of MgCl2 concentration. Some small green fluorescent dots were visible in all groups. Ventral 
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stress fibers which are actomyosin bundles connected to focal adhesions at both ends [97], were 

observed in all groups. At 10 mM and 20 mM MgCl2, increased amount of thicker ventral stress 

fibers and nebulous fluorescence were displayed. Stress fibers were arranged along the edges of 

each cell and microtubule network was surrounded by the actin stress fibers in the 30 mM group. 

There were some discontinuities within the intercellular cell-to-cell junctions as the MgCl2 

concentration increased to 40 mM. The discontinuous areas got larger when MgCl2 increased to 

50 mM. A few ventral stress fibers were visible and cells were fraught with nebulous green 

fluorescence at 50 mM group.  

Normalized actin fluorescent intensity per cell (Figure 7) showed that total cellular actin 

significantly increased when supplement MgCl2 concentration was within 10 to 40 mM whereas 

actin quantity was not significantly different from that of control group when MgCl2 increased to 

50 mM (n=12, P<0.05).  

 

Figure 7. Normalized green fluorescence intensity (GFI) of ECs actin microfilament. Stars 

indicate GFI significantly different from control. 
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4.1.6 EC gene expression. We used a gene array for endothelial cells to examine the 

gene expression profile under the influence of Mg ion. Gene functions are classified into 7 

different groups (Vaso C&D represents vasoconstriction & vasodilation). X-axis represents 

different gene functions and Y-axis represents the number of genes significantly changed. The 

bars above the X-axis are the up-regulated genes and below are the down-regulated genes. (n=3, 

P<0.05) We used a gene array for endothelial cells to examine the gene expression profile under 

the influence of Mg ion.  

 

Figure 8. ECs gene expression after treated by ECM supplemented with 10 mM MgCl2 (A) and 

50 mM MgCl2 (B).  

In the 10 mM MgCl2 group, 12 genes were excluded due to the absence of distinctive 

melting peak. Among the total of 72 detectable genes, 26 were up-regulated and 7 were down-

regulated (Figure 8A). The remaining 39 did not show significant change. Table 9 summarizes 

some significantly changed genes under 10 mM of MgCl2 (n=3, P<0.01). The expression fold 

change of FGF1, FLT1, FN1, MMP1, NOS3, and PROCR was more than 2 times that of the 

control. The majority of genes affected were related to angiogenesis and cell adhesion signaling 

pathways.  As for the 50 mM MgCl2 group (Figure 8E), 31 genes were up-regulated and 9 genes 
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were down-regulated. 15 of the up-regulated genes are involved in the angiogenesis signaling 

pathway and 12 up-regulated genes are related to cell adhesion signaling pathway.  

Table 9 

Gene expression changes of HCAECs (ECM supplemented with 10 mM MgCl2 with normal ECM 

as control) 

*(Percentage of control, P<0.01) 

In Table 10, AGTR1, ANXA5, CCL2, CCL5, FGF1, FN1, ITGAV, PLAT, and VCAM1 

were up-regulated more than 2-fold higher than that of the control. IL7, PF4, PTGIS, SELE, and 

SELL were down-regulated to less than 0.5-fold of control. Among them, FLT1, NOS3, MMP1 

and PROCR were the most significantly affected genes (fold change > 2, P<0.01) at 10 mM 

MgCl2 but interestingly, they did not show significant changes at 50 mM. FGF1 and FN1 were 

up-regulated at both concentrations. 

Gene Function 
Average 

fold 
change* 

ACE Angiogenesis 1.978 
FGF1 Angiogenesis, Cell adhesion 2.415 
FLT1 Angiogenesis 2.124 
FN1 Angiogenesis, Inflammatory response, Cell adhesion, 

Coagulation, Platelet activation 
2.383 

HMOX1 Angiogenesis, Vaso-C&D, Inflammatory response, Apoptosis 1.799 
IL6 Angiogenesis, Vaso-C&D, Inflammatory response, Apoptosis 0.624 
IL7 Apoptosis, 0.518 
ITGAV Cell adhesion 1.762 
MMP1 Coagulation 2.087 
NOS3 Angiogenesis, Vaso-C&D, Platelet Activation 3.429 
PGF Angiogenesis 1.337 
PROCR Coagulation 2.264 
TIMP1 Coagulation, Platelet activation 1.779 
VEGFA Angiogenesis, Cell adhesion, Platelet activation 1.360 
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Table 10 

Gene expression changes of HCAECs (ECM supplemented with 50 mM MgCl2 with normal ECM 

as control) 

*(Percentage of control, P<0.01) 

4.2 Biocompatibility of Mg-RE Alloys. 

4.2.1 Electrochemical corrosion properties. Potentiodynamic polarization curves of 

four RE alloys and pure Mg in HBS are shown in Figure 9A. An obvious shift of Ecorr in 

cathodic direction and reduction in cathodic current density were observed in R3 and R4. The 

current density in all alloys decreased significantly compared with pure Mg. The Ecorr, Icorr and 

corrosion rate of all Mg materials were summarized in Figure 9B. The corrosion rates of three 

RE alloys were 3 to 10 times lower than that of pure Mg. 

Gene Function 
Average 

fold 
change* 

AGTR1 Angiogenesis 3.014 
ANXA5 Apoptosis, Coagulation   2.356 
CCL2 Angiogenesis 4.290 
CCL5 Angiogenesis, Inflammatory response, Apoptosis 8.413 
FGF1 Angiogenesis, Cell adhesion 3.486 
FN1 Angiogenesis, Cell adhesion, Inflammatory response,  

Coagulation, Platelet activation 
2.300 

IL7 Apoptosis 0.403 
ITGAV Cell adhesion 2.736 
PF4 Apoptosis, Coagulation, Platelet activation 0.453 
PLAT Coagulation 5.140 
PTGIS Vaso-C&D 0.424 
SELE Inflammatory response, Cell adhesion 0.277 
SELL Cell adhesion, Coagulation 0.393 
TIMP1 Coagulation, Platelet activation 1.439 
VCAM1 Inflammatory response, Cell adhesion 3.436 
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Figure 9. Potentiodynamic polarization curves of Pure Mg and Mg-RE alloys in HBS (A). 

Electrochemical corrosion data of Pure Mg and Mg alloys (B).  

4.2.2 Hemolysis rate. The hemolysis rates (HR) of the materials are shown in Figure 10. 

All the hemolysis rates of the materials were smaller than 0.6 %, much lower than the 5 % 

threshold, therefore, all samples were considered non-hemolytic according to the ISO 10993-

4:2002 standard [98,99]. There was no significant difference among all the Mg materials tested. 

 

Figure 10. Hemolysis rate of diluted whole human blood incubated with Mg materials for 1 h. 
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Figure 11. Representative SEM images of platelet adhesion and activation on Mg materials: (A) 

pure Mg, and (B-E) R1-R4. 

4.2.3 Platelet adhesion. Figure 11 shows the platelet adhesion and activation after 

incubation on the material surfaces for 1 hour. Activated platelets with spreading dendriticals 

connecting with their proximal platelets were observed on the pure Mg surface. In addition, a 

few platelets with long dentritical structure were seen under higher magnification. R1 and R2 
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had similar density of adherent platelets but with less spreading dendriticals compared to pure 

Mg. On the other hand, the number of adherent platelets on R3 and R4 was significant less than 

that on pure Mg (Figure 12). 

 

Figure 12. The number of adherent platelets. Star indicates that the platelet number is 

significantly different from that of pure Mg group (P < 0.05). 

 

Figure 13. HAECs viability by MTT after treated with different Mg material extracts for 2 days 

(A), 4 days (B), and 7 days (C). 
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4.2.4 Indirect EC viability. MTT cell viability on days 2, 4 and 7 with different 

concentrations of alloy extract solutions is shown in Figure 13. Stars indicate that the cell 

viability is significantly different from that of pure Mg group (P<0.05).The overall cell viability 

for all groups decreased as the concentrations of the extract solutions increased. Extract solution 

of R3 and R4 didn’t affect cell viability at any concentrations compared with pure Mg. On the 

2nd day, reduced cell viability was observed in R1 and R2. On day 4, there was no significant 

difference among all the materials and pure Mg control except for R1 and R2 at 75 % 

concentration. On day 7, cell viability of all alloys was not significantly different from pure Mg 

control. Representative optical images of HAECs on day 7 were shown in Figure 14. Red arrows 

indicate the cell debris and dead cells. Cells all looked healthy, and there were no obvious 

morphological changes for all groups at 10 % and 25 % extract solutions. There were some dead 

cells and debris floated around when the extract concentration reached 50 %. In 75 % group, the 

cell density decreased significantly, especially for the pure Mg. 

 

Figure 14. Representative optical images of HAECs morphology after treated with Mg material 

extracts for 7 days. 
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Figure 15. Representative fluorescent images of ECs on Mg materials after 3 h: (A) Pure Mg, 

(B) Tissue culture plate, and (C-F) R1-R4.  

4.2.5 Direct Endothelialization. The attached HAECs were detected by fluorescent 

staining with green for live cells and red for the dead. The density of attached cells after 3 hours 

on R1 and R2 were lower than that on pure Mg, tissue culture plate, R3 and R4 (Figure 15). 

Most of the cells attached on the sample surface in all tested materials were still in round shape. 

Some dead cells could be observed on pure Mg, R1, and R2. In comparison, a few completely 

spread cells in healthy shape were seen on tissue culture plate, R3 and R4. 

After 24 hours, most cells on pure Mg were dead, and many air bubbles with diameter of 

~50 µm evolved on the surface of all the materials (Figure 16). More cells survived on R1 and 
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R2 compared to pure Mg but were in a stressed condition. On R3 and R4, majority of the 

attached cells were still viable, and they looked healthy and well attached, spreading in a spindle 

shape. However, cell density on R3 and R4 significantly decreased compared to that on the tissue 

culture plate control. 

 

Figure 16. Representative fluorescent images of ECs on Mg materials after 24 h: (A) Pure Mg, 

(B) Tissue culture plate, and (C-F) R1-R4. 

4.3 Collagen Self-assembly on Mg and Subsequent Cell Attachment. 

4.3.1 Effect of collagen concentration. Collagen self-assembly with different 

concentrations of collagen monomers on SS Mg and SS AZ31 at neutral pH was examined first 

(Figure 17). 
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Figure 17. Representative SEM images of collagen self-assembly on Mg and AZ31.  

The concentration of collagen monomer is marked on the upper left corner of each 

images. On pure Mg, collagen monomers agglomerated into a non-uniform structure and no long 

fibril was observed when the concentration was lower than 50 µg/ml. Some spherical particles 

were present on the surface of pure Mg in both 10 µg/ml and 50 µg/ml groups. When the 

collagen concentration reached to 100 µg/ml, a few fibrils started to appear. The structure 

changed from thin fibrils to wide bands as the initial concentration increased to 200 µg/ml. On 

AZ31 surface, long fibril started to appear as the collagen concentration reached to 50 µg/ml. In 

addition, sparsely dispersed woven structure composed of collagen fibers (fibril bundles) were 
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observed in the 100 µg/ml group. Multiple-layer network structure with collagen ribbon of 100 

nm width was the predominant structure in the 200 µg/ml group. Spherical particles in different 

sizes were present in all the groups. 

 

Figure 18. Representative SEM images of 200 µg/ml collagen self-assembly in DPBS with 

different pH values. 

4.3.2 Effect of pH. Effect of pH on collagen assembly was also investigated. SEM 

images of collagen self-assembly under different pH on SS materials for 2 hours are shown in 

Figure 18. At pH 7, collagen ribbons with width ~100 nm conjugated with other fibrils, forming 

a multiple layer network structure on pure Mg. A few nanofibril side chains connecting adjacent 

long collagen ribbon were also seen. On AZ31, some parallel collagen ribbons were connected 

with adjacent collagen ribbons by smaller branches and others merged with their proximal 

collagen, forming a uniform sheet. At pH 9, more collagen ribbons wove together spreading on 
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Mg surface. In addition, some bare areas and crevices were observable. The whole surface of 

AZ31 was almost covered by a collagen layer with some small holes. Few long collagen fibrils 

were present on pure Mg when pH rose to 11. On AZ31, thin fibrils randomly crossed with 

others, resulting in a network structure. A lot of nano-spherical particles attached to the collagen 

fibrils. 

 

Figure 19. Representative SEM images of 200 µg/ml collagen self-assembly on Mg and AZ31 

for 4 h and 8 h. 

4.3.3 Effect of reaction time. Figure 19 shows the structures of collagen assembling for 

different time periods on SS materials at neutral pH. The concentration of collagen solution is 

200 mg/ml. Arrows in black color indicates the large fiber bands. After 4 hours assembling, a 

cancellous underneath layer was covered by some long collagen ribbons on pure Mg. Similar 

cancellous structure was found on AZ31, but less thin collagen fibrils could be observed on the 

top. When the assembly time reached 8 hours, micrometer-wide fibers were present on both pure 

Mg and AZ31. On pure Mg, a lot of small lamellar sheets were observed between two thick 

fibers. 



   47 

   

 

Figure 20. 3-D surface topography of Mg sample polished by different SiC paper (A: 180 grit; 

B: 800 grit; C: 1200 grit).  

4.3.4 Effect of surface roughness. Representative 3-D topographical images of materials 

after polished by different SiC paper are shown in Figure 20. The average roughness (Ra) and the 

corresponding root mean squared roughness (Rq) were also calculated (Figure 20). Figure 21 

shows the collagen self-assembly on the samples with different surface roughness. On the RS 

Mg materials, long collagen fibers interwove with each other resulting in a compact woven layer 

with a few fish-like scales on the top. The woven layer on RS AZ31 was less dense compared 

with that on RS Mg. Larger and more fish-like scales structures could be seen on the RS AZ31. 

For both AZ31 and pure Mg with SR, collagen fibers aligned parallelly to each other at some 

places while randomly intertwined at other places. On SS of both materials, collagen bands were 

similar as described previously (Figure 17).  
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Figure 21. Representative SEM images of 200 mg/ml collagen self-assembly on Mg (A, C, E) 

and AZ31 (B, D, F) with different surface roughness (A–B: RS; C–D: SR; E–F: SS).  

4.3.5 Collagen assembly quantification. We also quantified the amount of collagen on 

the material surface during its assembly. A standard curve for quantification of collagen content 

was established (Figure 22A). The optical absorbance at 540 nm versus collagen content 

displayed reasonable linearity within the range from 5 to 60 µg/ml. Collagen dynamic adsorption 

curves on Mg and AZ31 surfaces are shown in Figure 22B and Figure 22C. For both AZ31 and 

pure Mg, less collagen was able to be absorbed onto the SS materials at the initial phase (0.5 h) 

compared with RS and SR materials. The amount of attached collagen increased as the 

adsorption time increased and reached equilibrium state after 4 h for all three groups of AZ31. 

Collagen on the pure Mg with SS kept increasing slowly from 0.5 to 2 h. In comparison, collagen 

on pure Mg with RS peaked at 2 h and then started to drop. Among all the groups, the highest 
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amount of adsorbed collagen was 30.69±1.96 µg on RS Mg at 2 h. Two-way ANOVA analysis 

revealed that both time and surface roughness had significant effect on collagen adsorption on 

pure Mg.  

 

Figure 22. Collagen adsorption quantification. Standard curve for quantification of collagen (A). 

The amount of collagen absorbed on Mg (B) and AZ31 (C) with different surface roughness.  

 

Figure 23. Representative SEM images of MC 3T3 cell attachment on collagen self-assembled at 

Mg and AZ31 with different surface roughness. 
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4.3.6 Bone cell attachment and proliferation. After Mg and AZ31 with different 

surface roughness were treated by 200 µg/ml collagen solution for 2 h, the materials were used to 

test subsequent bone cell attachment (Figure 23). SEM images showed that both round cells and 

cells with filopodia were observed on RS AZ31 and pure RS Mg. On SR materials, most cells 

were well attached with flattened morphology and a few fibroblast-like cells with webbing could 

also be seen. In addition, super long filopodia from some cells span over a large distance and 

reached the edge of other cells or an empty area. On the SS materials, most cells were well 

flattened with very large cell surface area. Cell density on SR and SS was significantly higher 

than that on RS. 

 

Figure 24. Representative fluorescent images of MC 3T3 cells growing on collagen self-

assembled at AZ31 with different surface roughness for 1, 4 and 7 d.  

Fluorescent live/dead cell analysis was then performed to examine the bone cell 

proliferation. MC 3T3 cells on AZ31 and Mg treated with 200 µg/ml collagen solution for 2 h 

are shown in Figure 24 and Figure 25, respectively. 
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Figure 25. Representative fluorescent image of MC 3T3 cells growing on collagen self-

assembled at Mg with different surface roughness for 1, 4 and 7 d.  

Cells displayed healthy morphology in all the groups after one day. Cell densities on SR 

and SS AZ31 were significantly higher than that on RS AZ31 (Figure 24). Some dead cells were 

visible after first day on RS AZ31. Small gas bubbles were present in all the materials. After 

three days’ incubation, cell density on all the AZ31 materials increased. On the RS AZ31, cells 

elongated at the same direction. After seven days, cell density further increased and multiple 

layers of cells could be seen in all the three groups. Most of the cells on the RS group still 

aligned in the same direction. Larger gas bubbles emerged in all groups. On pure Mg, cell 

densities significantly decreased at 4th and 7th day. At the first day, cells showed similar uniform 

elongation on the RS pure Mg. However, normal spreading cells could barely be observed on the 

SS Mg at 4th and 7th day. 
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Table 11 

pH value of the cell culture media after incubated with cells on materials 

 

 

 

 

 

Table 11 summarizes the pH value of cell culture media during the culture. In both AZ31 

and Mg groups, the materials with RS showed significantly higher pH change than the materials 

with SR and SS after the first day. Mg2+ concentration (Figure 26) after collagen was incubated 

with Mg and AZ31 of different surface roughness for 2 h was all around 25 mM (Error bars were 

omitted for clarity purpose). In contrast, Mg2+ concentration in the cell culture media was 

significantly lower than that in the collagen solution for the AZ31 group from 1 day to 7 day. 

 

Figure 26. Mg2+ concentration after the materials (A-AZ31; B-Mg) were incubated with collagen 

solution for 2 h and cocultured with cells for 1, 4 and 7 days. 

Material pH 
1 day 4 day 7 day 

AZ31 
RS 7.93±0.05 7.88±0.03 7.94±0.03 
SR 7.70±0.08  7.92±0.03 7.85±0.05 
SS 7.75±0.08 7.91±0.06 7.76±0.07 

Mg 
RS 8.30±0.14 7.95±0.03 7.96±0.03 
SR 8.01±0.06 7.92±0.03 7.92±0.03 
SS 8.13±0.06 7.95±0.03 7.87±0.03 
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4.4 Endothelialization of Mg-RE Alloys with Fluoride and Collagen Coating. 

4.4.1 Surface morphology of HF conversion coating. Surface morphology of the three 

materials after treated with HF for 3 days was shown in Figure 27. Pure Mg surface was 

converted into a layer of granular and columnar structure. The diameter of the granules was ~50 

nm and the length of the columnar structure was ~200 nm. In both R1 and R2, the granular 

structures from the converted layers were much smaller than that on the pure Mg surface. 

Compared to pure Mg, grain size refinement by rare earth elements or direct reactions between 

rare earth elements with HF may cause such finer porous structures on HF treated Mg-RE alloys. 

The addition of Zn in R2 could be the reason for the different alignment of the granular structure.  

 

Figure 27. SEM images of fluoride coating morphologies.  

The coating thickness in all samples was about 20 µm (Figure 28). The first row is the 

SEM images displaying cross sections of Mg fluoride coating in epoxide resin. The images at the 

second row and third row are EDS mapping (Mg in green color, fluorine in red color). 

Transection images of SEM showed that there was a distinctive boundary between Mg substrate 

and the MgF2 modified layer. 
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Figure 28. EDS Mapping for cross section of fluoride coating. (Scale bar: 10.0 µm). 

4.4.2 Endothelialization on coated Mg material. Live/Dead kit including calcein AM 

and Ethidium homodimer-1 (EthD-1) was used to test how cells directly interact with alloys and 

coatings. Calcein AM could be metabolized by ubiquitous intracellular esterase activities 

resulting in presence of green fluorescence in live cells. EthD-1 is excluded by the intact plasma 

membrane of live cells. Upon binding to nucleic acids, the emission intensity of EthD-1 at 635 

nm undergoes a 40-time enhancement. Representative images of direct endothelialization for 1, 2, 

and 3 days on bare Mg, Mg coated with collagen and Mg treated with HF are shown in  

Figure 29. HF treated Mg yielded most attached and viable cells (green) in all groups. 

Cell density slightly decreased from 1st day to 3rd day on pure Mg treated with HF. For the non-

treated pure Mg control group, some dead cells (red) were still observed on the very first day but 

none were observed either on day 2 or 3. A few live cells appeared on the surface of collagen 

coated Mg but the density was much lower than that on Mg treated with HF. In addition, on days 

2 and 3 only, dead cells could be seen on collagen coated group. Collagen coating was used as 
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positive control in this study since it is the most abundant extracellular matrix protein which 

provides adhesion points for cell attachment and migration.  

 

Figure 29. Endothelial cells cultured on bare Mg, collagen coated Mg and HF treated Mg from 

day 1 to day 3. (Scale bar: 10.0 µm). 

  

Figure 30. Endothelial cells cultured on bare R1, collagen coated R1 and HF treated R1 alloys 

from day 1 to day 3. (Scale bar: 10.0 µm). 
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Figure 30 shows the representative images of direct endothelialization on bare R1, R1 

coated with collagen and R1 treated with HF. Results were similar to that of pure Mg group. 

Fluoride treated R1 had most viable cells while bare R1 had the least. Better cell attachment was 

shown in HF treated R1 group on the 1st day compared to the same one in pure Mg group. Also, 

cell density on the 3rd day in HF treated R1 group didn’t decrease.  

 

 

Figure 31. Endothelial cells cultured on bare R2, collagen coated R2 and HF treated R2 alloys 

from day 1 to day 3. (Scale bar: 10.0 µm). 

Cell attachment and proliferation on R2 group (Figure 31) were very similar to that in the 

R1 group. The most different one was the collagen coated group, and much better 

endothelialization was observed compared with R1 and pure Mg groups. Some fully spreading 

cells appeared at the very first day which demonstrated that collagen could improve the 

cytocompatibility to a certain degree. On the second day, most cells were dead and only a few 

cells were alive however in a stressed condition. 
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CHAPTER 5 

Discussion and Future Research 

5.1 Discussion  

5.1.1 Endothelial responses exposed to metal ions. Endothelial cells form a semi-

permeable endothelium monolayer which separates the blood components from the underlying 

tissues. It plays important role in immune response, coagulation, growth regulation, modulation 

of blood flow and production of extracellular matrix [100]. After a stent is deposited into the 

blood vessel, the surface of the stent will directly contact endothelial layer. Re-endothelialization 

onto the inner layer of the stent is a very important step for vascular reprogram. Late restenosis, 

re-narrow of the blood vessels after stent implantation, is a major problem for current stent 

materials. The interaction between stent material and endothelial cells, therefore, is of great 

importance. Hence, we examined the responses of HCAECs after exposure to ions of different 

individual alloying elements. 

The majority of the alloying elements will be released from the material during the course 

of degradation. However, it is hard to mimic the real in situ concentrations of different ions for 

the in vivo scenarios. The concentration of degradation production could be much higher at the 

local microenvironment of stent-endothelial interface than that in the blood stream or other 

tissues.  Previous studies provide some information on the concentration of Mg ion after 

degradation of the alloys in vitro. For example, Mg2+ concentration in DMEM incubated with 

Mg-Ca alloy for 72 h was ~57.96 mM [101] and Mg2+ concentration in cell culture media after 

Mg-Nd-Zn-Zr alloy was co-cultured with human umbilical vein endothelial cells for 7 days was 

9.53 mM [102]. Therefore, we used a concentration range of 10-100 mM for Mg ion in our in 

vitro tests. Technically, the final Mg2+ concentration is the summation of 3 mM MgSO4 from the 
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ECM and additional supplemented MgCl2. Since Mg is the major component of Mg-based alloy, 

the tested concentrations for other alloying elements Ca, Zn, Al and REs were much lower.  

To rule out the potential interference from the Cl- present in the solution, 10-200 mM 

NaCl solution was used and no significant effect on cell viability was observed up to 100 mM 

NaCl. Besides the direct effects of ions on cellular activities, pH and osmolality changes in the 

solution induced by the ions may also affect cells. We did not observe significant pH changes in 

all the final ion solutions used. As for osmolality, similar results were observed except when 

MgCl2 concentration was higher than 66.7 mM. 66.7 mM MgCl2 solution has the similar 

osmolality as 100 mM NaCl. Therefore, both osmolality stress and Mg2+ ion may play a role in 

reduced cell viability when MgCl2 concentration is over 66.7 mM, the EC50 value in our case. 

Feyerabend et al. showed that the EC50 of MgCl2 on MG63 cells and human umbilical cord 

perivascular cells (HUCPCs) were 53 mM and 73 mM, respectively [48]. The tolerance of 

HCAECs (EC50 of 66.7 mM) on MgCl2 is between that of MG63 cells and HUCPCs. The EC50 

of ZnCl2 measured here for endothelial cells is ~130 µM, comparable to that of mouse 

macrophage cell line (~203.89 µM) [103]. The slight differences between these measurements 

are probably because of different types of cells. The pH and Ca2+ may also interfere with MTT 

assay. Our test showed that the absorbance of the blank control without cells significantly 

increased when the Ca2+ concentration is higher than 60 mM. This false positive result is most 

likely caused by the aggregates of sodium dodecyl sulfate in solution with excess Ca2+  [104]. It 

is also mentioned by Fisher et al. that highly alkaline environment may induce false-positive 

result as well [101]. Hence, MTT test should be applied with caution at the situations where pH 

is highly alkaline or the alloy degradation products include Ca2+. The toxicity of REs on cells is 

most likely caused by the displacement of Ca2+ ion from functional biomolecules as they have 



   59 

   

the similar radius as Ca2+ ion [105]. It was shown by Drynda et al. that REs under 100 µg/ml 

(around 500 µM) didn’t lead to significant metabolic changes of smooth muscle cells [105]. 

Feyerabend et al. also demonstrated that REs under 1,000 µM didn’t reduce human osteosarcoma 

cell line MG63 viability. All REE ions had significant toxic effects on endothelial cell viability 

when their concentrations were higher than 400 µM, indicating that endothelial cell is more 

sensitive to REs.  

The effects of MgCl2, CaCl2, ZnCl2, AlCl3, and REs on HCAECs membrane were studied 

by LDH assay, which is also widely used to test the biocompatibility of Mg-based alloys [106-

108]. LDH, an indispensable cytoplasmic enzyme for all cells, is rapidly released to extracellular 

space upon damage of the plasma membrane. Han et al. reported that the decreased LDH level in 

cells treated by 20 µg/ml CuSO4 for 24 h is caused by LDH inactivation by Cu2+ [109]. Cells 

treated with MgCl2, CaCl2, ZnCl2 and AlCl3 all showed a decreased LDH tendency when the ion 

concentration is higher than certain thresholds. This may also be caused by the inactivation of 

LDH due to high ion concentration.  

In comparison with LDH and MTT tests, BrdU is not dependent on direct enzymatic 

reaction so that the interference from Mg corrosion products is negligible. Based on this fact, 

some researchers believe that BrdU is a more appropriate test for cytotoxicity of Mg materials 

[110]. It was also shown that cell proliferation rate by BrdU assay was more sensitive than MTT 

test for some metal ions. For example, cell viability was not significantly affected at 30 mM 

MgCl2 (Figure 2A) while the proliferation rate (Figure 4) was significantly reduced to 63±9%. 

Moreover, 20 mM CaCl2 demonstrated significant inhibition on cell proliferation rate. This 

reduced proliferation is probably caused by ionic imbalance and production of reactive oxygen 

species (ROS). Ionic imbalance may lead to altered signaling pathway related to cell cycle, 
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reduced enzymes activities and increased DNA replication errors. It is well known that metal 

corrosion products can induce ROS production [111,112]. Extra ZnCl2 can induce serious 

mitochondrial dysfunction and remarkable intracellular ROS production [112]. Depending on the 

level of ROS, it may increase the cell proliferation at low level or cause damages to DNA and 

other biomacromolecules, leading to decreased proliferation or even cell apoptosis at high level 

[113]. Therefore, higher cell proliferation rate at the low ion concentration was likely caused by 

lower amount of ROS induced by metal ions. As the metal ion concentration is increased, the 

increasing ROS production caused the dampened proliferation. Also, Mg2+ is a cofactor for DNA 

polymerase and other important enzymes participated in DNA replication. Previous study by 

Maier et al. showed that 10 mM MgCl2 could stimulate endothelial proliferation [114], consistent 

with the BrdU proliferation result (114±0.70%) reported here. 

Endothelial cell migration is essential for both angiogenesis and endothelialization. As 

the re-endothelialization on the stent progresses, the chance of coagulant molecules or platelets 

attaching to the stent reduces. We used scratch wound assay to study how Mg ion affect 

endothelial cell migration as it is a simple, inexpensive and very reliable method for cell 

migration study [115-117]. Our results show that at 10 mM and 20 mM, MgCl2 increased the 

migration of endothelial cells within a few hours. This results is in line with a previous study by 

Banai et al. showing that 4 mM Mg2+ can stimulate capillary endothelial cell migration [118]. 

This might be a very beneficial characteristic for Mg-based stent materials if the degradation 

product concentration is maintained within this range. The exact mechanism responsible for this 

increased cell migration ability is not fully clear. One of the factors could be the fast assembling 

of actin cytoskeleton into stress fiber, filopodia, and lamillipodia [97]. Nitric oxide (NO) as an 

important cell migration, vasodilation and angiogenesis regulator may be another factor [119]. In 
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the 10 mM MgCl2 treated group, NO synthase III (NOS3) was up-regulated to 3.429 fold of 

control. Up-regulated NOS3 may lead to enhanced production of NO and further increase cell 

migration ability. In addition, ROS generated by NADPH oxidase may also play an important 

role in endothelial cell migration by stimulating some redox signaling pathways [115].  

However, higher MgCl2 concentration of 50 mM not only decreased endothelial cell 

migration rate but also led to the detachment of a large amount of cells along the edge of the 

scratched wound. This could be due to the weakened cell-cell junctions and reduced cell-matrix 

adhesion. This interpretation is supported by the fluorescent staining result (Figure 6) where cell-

cell connection was affected and some discontinuities between the cells could be observed when 

MgCl2 was above 40 mM. The changes in junction protein expression could be one of the 

reasons. Vascular endothelial cadherin, platelet endothelial cell adhesion molecule (PECAM), 

occludin, claudin, and endothelial cell selective adhesion molecule (ESAM) are the major 

transmembrane adhesive proteins at endothelial junctions [120]. It was found that CDH5 

(cadherin-5, type 2) was up-regulated to 1.56±0.16 fold of control at 10 mM MgCl2 and 

1.65±0.05 fold of control at 50 mM (P<0.05), respectively. Occludin and PECAM didn’t show 

significant change. Further investigation is needed to explain the detailed changes of cell-to-cell 

junctions and cell-matrix adhesion. 

Gene expression profile is another important way to study how cells interact with 

biomedical materials. It could suggest the subtle cellular regulation changes when metabolic 

changes of cells are not detectable. MgCl2 at 10 mM and 50 mM had different effect on HCAEC 

gene expression in a concentration dependent manner. The expression fold change of CCL2 and 

CCL5 were 4.290 and 8.413 (P<0.01) respectively at 50 mM of MgCl2 indicating strong 

inflammatory chemokines regulation [121]. Since Mg2+ is a ubiquitous cofactor for a lot of 



   62 

   

biomacromolecules, it plays a wide range of roles in cell cycle and cell activities. Besides the 

direct effect of Mg2+ on enzymes, it is believed that increased Mg2+ could activate 

phosphorylation reactions of cell followed by changes of cellular signaling pathways [122]. The 

altered genes may have great potential to be used for gene-eluting stent. For instance, if down-

regulation of a certain gene causes the suppression of one cellular activity, it could compensate 

for such a negative effect induced by the biomaterial by delivery of the down-regulated gene 

through eluting. One example is the endothelial NOS gene (eNOS), and it was used in gene-

eluting stent [123]. Results showed that this eNOS-eluting stent demonstrated better re-

endothelialization and significant reduction in neotintimal formation. Despite that identifying the 

effective target genes and successfully deliver to the local tissue could be challenging, this is a 

very promising strategy for new type of drug-eluting stents.  

Nonetheless, the altered gene expression should not be interpreted as corresponding 

functional changes in the same way. More comprehensive studies on gene expression and protein 

expression are required to fully illustrate the underlying mechanisms. Mg-alloy degradation 

product often is a complex mixture of all the alloying elements. There is no doubt that the effect 

of individual elements on endothelial cells is important. The combinative effect of the mixture of 

those alloying elements should be further studied in the future as well in order to better 

understand how the degradation products affect endothelial cell activity as a whole. 

5.1.2 Biocompatibility of Mg-RE alloys. Platelet morphological and biochemical 

changes are good indicators for hemocompatibility [124,125]. At the beginning of stent 

development, 20 % of self-expandable stents would suffer from subacute stent thrombosis [126]. 

Platelet activation and adhesion are the important initial steps of restenosis [127,128]. Individual 

platelets can be categorized as round, dendritic, spread-dendritic and fully spread corresponding 
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to different stages of activation. Static platelet adhesion test is the most convenient and accurate 

way to get information about whether the stent material will cause severe platelet adhesion in 

vivo. Because extracellular Mg ions can reduce the intracellular calcium ions, Mg alloys could 

inhibit platelet adhesion and aggregation [129]. We showed that the density of attached platelets 

on pure magnesium was the highest, and the morphology of the adherent platelets on all 

materials was almost the same, demonstrating that addition of RE elements into Mg alloys didn’t 

trigger the platelet activation. It is still unclear how platelet activation was initiated. We 

speculate that the unspecific absorption of von Willebrand factor (vWF) and other plasma 

protein caused the initiation of platelet adhesion. Circulating platelets can bind to vWF through 

their GPIb-V-IX receptor and lead to the activation cascade [130].  

Hemolysis rate was not affected by adding RE elements, indicating the release rate of 

those RE elements was very slow and didn’t reach the threshold causing severe red blood cell 

lysis. In fact, the hemolysis rate of R1 and R2 was even lower than that of pure Mg. The 

hemolysis effect was most likely caused by the degradation of Mg, and subsequent increased 

osmosis pressure and elevated pH level. 

Re-endothelialization on stent material surface has been suggested to be the key to reduce 

platelet adhesion, stent thrombosis and other adverse outcomes [70,131]. It was shown that 

increased endothelial coverage could significantly improve the long-term patency and reduce the 

interaction of blood components with artificial implants [9,132,133]. Some studies used L-929 

and MG63 cells to test the biocompatibility of Mg alloys [30,34]. Little was known about how 

endothelial cells would interact with Mg alloys. In this study, Indirect MTT showed that there 

was a decreased cell viability tendency in all groups as the increase of concentrations of extract 

solutions. This was most likely due to the higher pH level and degradation products, leading to 
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mitochondrial oxidative stress. It is also interesting that no further decrease in viability were 

observed for R1 and R2 on days 4 and 7. In R3 and R4, cell viabilities through all the seven days 

were not significantly different from pure Mg, which indicated the release of REs from these two 

alloys didn’t affect the HAECs viability. In addition, Figure 14 shows even on the 7th day, more 

than half of the cells were still in healthy morphology, which seems to contradict with the 7th day 

MTT test. One possible explanation is that extract solution did not cause lethal damage to cell 

membranes or genetic substances but only lead to decreased enzymatic activities or altered gene 

regulation.  

In direct cell attachment test, R1 and R2 had the lowest density of attached cells after 3 h 

indicating the surface of those materials were least favorable for cell adhesion and attachment. 

This is most likely caused by the combination effect of the presence of Dy and relative higher 

degradation rate compared with R3 and R4. As the degradation of R1 and R2 in ECM, Dy ions 

may inhibit the attachment of endothelial cells at the initial stage. Also, some swollen cells with 

green color were present on R1 and R2 indicating cells were dying though the cell membranes 

were still intact, therefore, retaining the green fluorescence. R3 had the comparable cell 

attachment and viability with the tissue culture plate control while R4 and pure Mg had moderate 

cell attachment. After 24 hours of incubation, most cells were dead on pure Mg and many gas 

bubbles emerged. A few live cells could still be observed on R1 and R2, but obviously in 

stressed conditions. In contrast, fully spread cells were the major population on R3 and R4 

surfaces but the densities were much smaller than that on tissue culture plate. The death of cells 

could be mainly caused by increased pH value as the degradation of Mg alloys progressed. 

Results demonstrated that all Mg-RE alloys exhibited better endothelialization than pure Mg 

control in the static culture environment. It would be totally different in dynamic system or in 
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vivo, and we expect that endothelial cells would have much better attachment, survival and 

growth in vivo as the dynamic circulation system will remove the degradation products and 

prevent the hike of local pH.  

5.1.3 Collagen self-assembly on Mg and subsequent cell attachment. Collagen, the 

ubiquitous ECM component, is a large family of triple-helical proteins. So far, around 28 types 

of collagen have been identified. Among them, type I collagen is the most abundant .It forms the 

backbone of ECM in a lot of tissues such as bone, dermis, and tendon. 90 % of the organic 

weight of bone is made up of type I collagen [134]. Type I collagen triple helix is composed of 

heterotrimer of two identical α1(I) chains and one α2(I) chain. Procollagen molecule is 

synthesized inside cells followed by post-translational modifications and then assembles into 

triple helix procollagen with diameter of 1.5 nm and length of 300 nm [134]. Then it is secreted 

to extracellular space by secretory vesicles and further processed by different proteinases. In 

vitro, collagen fibrils are formed by self-assembly into cross-striated fibrils with the 

characteristic D-period of 67 nm [135]. In natural bone tissues, collagen fibrils are the scaffold 

for biomineralization. It is believed that collagen molecules are secreted as amorphous and non-

crystalline forms and then transformed into crystalline forms gradually [136].  

Mg-based alloys have promising future for orthopedic applications with respect to their 

mechanical properties, degradation properties, and biocompatibility. While the exact mechanism 

of collagen fibril formation on Mg surface in vivo remains unknown, in vitro self-assembly 

model established in this work provides a simple and alternative way to study how Mg materials 

interact with collagen molecules.   

Collagen fibril formation on mica surface involves the adsorption of collagen molecules, 

surface diffusion, nucleation of fibrils and fibril elongation [137,138]. A lot of studies have 
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shown that collagen could self-assemble into axially aligned fibrils with D-period similar to 

native bone tissues [139,140]. However, the assembly of collagen on mica surface could be 

different from that on Mg-alloy surface due to their distinct surface characteristics and 

electrostatics. Once in contact with body fluid, the metal elements in Mg materials will be 

oxidized into metal cations followed by the formation of a layer of metal hydroxide [8]. Metal 

ion would be released to the fluid during the degradation process and biomacromolecules such as 

protein, proteoglycan, and glycoprotein can be absorbed to the metal hydroxide layer [8]. It is 

interesting that for both pure Mg and AZ31 with different surface roughness, Mg ion released to 

the collagen solution after 2 h incubation didn’t show significant difference. This is most likely 

due to the small total volume of solution (50 µl) and Mg ion was already saturated in the 

solution. At neutral pH, this metal hydrochloride layer is beneficial for collagen molecule 

adsorption since collagen molecule is positively charged. The absence of large fibril at low 

concentration of collagen monomer is most likely caused by the decreased chance for fibril 

nucleation. The concentration of collagen monomer can also affect the fibril growth rate and 

single fibrils grow independent from each other until they fuse with adjacent fibrils [137]. In 

addition, it was shown by Wang et al. that at low concentration collagen monomers form 

agglomerates in solution containing excessive Mg ions [141]. Similar agglomerates structure was 

also observed here on pure Mg and AZ31 surface at low collagen concentration. This might be 

caused by the high Mg2+/collagen ratio and excessive Mg2+ could bind to collagen side chain 

leading to the increase of protein hydrophobicity and the dehydration of collagen [142]. Besides 

the release of metal ions, pH change accompanying the degradation process is another important 

factor that could affect collagen assembly. In the absence of other electrolytes, the isoelectric 

point (pI) of collagen is around 9.3 [143]. When pH approximates pI, the surface charge of 
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collagen monomers is decreased resulting in minimized electrostatic repulsion and better fibril 

assembly. This is supported by our data (Figure 18) where collagen fibrils loosely aligned at pH 

of 7 while they formed a dense layer of sheet at pH 9. As pH increased to 11, negatively charged 

collagen monomers could inhibit the nucleation of collagen fibril as well as the further 

attachment to Mg hydroxide layer. With the increase of incubation time to 8 h, small collagen 

fibrils could merge with adjacent fibrils forming thicker fibers (Figure 19C and Figure 19D). It 

is interesting to see that in almost all experiments, spherical particles with different size attached 

to collagen fibrils irrespective of the diameter of collagen fibrils. The shape and size of those 

particles are very similar to the mineral nucleation reported by Ferreia et al [144]. 

It is well documented that implant surface roughness alters osteoblast proliferation, 

differentiation, and extracellular matrix production [145]. Mendonca et al. showed that rough 

surface topography can stimulate collagen biosynthesis and accumulation on titanium [146]. Mg 

materials with RS have relative larger surface area that increases the chance of collagen 

molecules adsorption. This is probably why the amount of collagen absorbed on the RS and SR 

materials was significantly higher than that on materials with SS. Also, surface energy could 

affect collagen adsorption and structural rearrangement. It is noticeable that the amount of 

absorbed collagen decreased at 8 h on the materials with RS and SR. This phenomenon is most 

likely caused by severe pitting corrosion on rougher surface compared with smoother surface 

[147,148]. In addition, surface roughness not only affected the amount of collagen absorbed but 

also the structure of the fibrils. The slight morphological difference of collagen fibrils on Mg and 

AZ31 is likely caused by the presence of Zn2+ and Al3+, the AZ31 degradation products [143].  

Enhanced cell attachment on the materials with SS is consistent with previous studies 

[149]. On AZ31 material, a lot of dead cells could be observed on the RS materials after the first 
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day. This is most likely due to the failure of cell attachment or hampered cell attachment on the 

RS where cells could only anchor themselves at reduced area caused by the existence of the 

grooves and ridges. The grooves and ridges showed contact guidance effect on cell alignment. It 

was demonstrated before that the tip of filopodia most likely attaches to the top of the ridges 

[150]. During cell migration, it would be much easier for cell to move the tip of the adhesion 

along the ridge than to move the tip of the adhesion perpendicular to the direction of ridges. That 

may be the reason why cells on the rough surface materials all aligned parallel to the direction of 

ridges. Cells showed similar proliferation results on AZ31 with different surface roughness 

indicating that surface roughness and collagen structure will not affect cell proliferation. 

However, cells did not show similar proliferation result on pure Mg at 4th day and 7th day. Cell 

density significantly decreased at the Mg with RS and SR. Healthy spreading cells could hardly 

be found on the SS pure Mg materials. At body temperature, melting time for human type I 

collagen is around several days [151]. Compared with AZ31, the relative faster degradation rate 

of pure Mg could lead to higher concentration of degradation products and higher pH in solution, 

which might accelerate dissociation of attached collagen and cause decreased cell density. In 

addition, the thick collagen ribbon structure doesn’t resemble native collagen structure in bone. 

The collagen fibrils in Figure 21C and Figure 21D showed high similarity with the 

demineralized circumferential lamellar bone [152]. Ideally, the preferable orthopedic implants 

should not only be able to stimulate bone cell growth but also to support the assembly of 

collagen monomer into native fibrils at the bone-implant interface.  

This in vitro model was developed to mimic the in vivo interactions between collagen 

and the Mg implant at the interface. It provided useful information on the molecular mechanism 

of such an interaction that will influence the fate of the implant. However, limitations do exist in 
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this study . For example, different cell regulations and other protein interactions were neglected. 

Other types of bone cells and non-collagenous proteins also play important roles in collagen 

assembly [153]. Therefore, future studies are needed to address these factors. Specifically, one 

topic could be to investigate how mineralization happens around the interfaces.  

5.1.4 Endothelialization of Mg-RE alloys with fluoride conversion coating. Previous 

studies have shown that fluoride conversion coating can improve the corrosion resistance of Mg 

materials [57,154-157]. Fluorine is essential for human dental development. Mao et al. showed, 

that Mg-Nd-Zn-Zr alloy, after treated with HF solution for 12 hours, forms a porous layer of 

MgF2 on its surface [57].  It was shown that the bonding strength of interlayer of MgF2 in pure 

Mg treated with HF was found to be 34 MPa [158]. Wan et al. also reported a super-hydrophobic 

porous surface created by 1% HF treatment [67]. It is believed that the porous structure played 

an important role in trapping air, which leads to the hydrophobic surface. The porous structure 

with smaller cavities was observed in Figure 27. MgF2 is insoluble in water and the small 

cavities among the granular structure were able to trap air. The capability of the HF modified 

layer to ameliorate Mg degradation is mainly dependent on the size of those granular structures. 

The smaller cavities on the MgF2 layer, the more efficient they were at trapping air.   

Another consideration is that MgF2 layer on the material surface might be brittle 

according to a previous study [159], thus a modification of the mechanical properties has to be 

expected.  Therefore, one need be cautious when applying this HF treatment for balloon 

expandable stent materials.  

Direct endothelialization showed that HF treatment could improve endothelial cell 

attachment and proliferation compared with bare material and collagen coated material. Collagen 

coating was used as positive control in this study since it is the most abundant extracellular 
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matrix protein which provides adhesion points for cell attachment and migration. Ao et al. 

showed that type I collagen covalently combined with titanium  enhanced cell-material 

interactions and improved hMSC attachment, proliferation, and differentiation [160]. In addition, 

Collagen-coated Ti could promote expression of osteoblast phenotype and enhance bone 

formation around the implants [161]. However, on Mg surface collagen coating didn’t show 

much improvement for HCAECs attachment and proliferation. This is probably due to the 

different corrosion rate and corrosion mechanism. As the degradation of Mg alloys progressed, 

increased pH and excess alloying element ions could affect the 3-D structure of biomolecules, 

leading to the failure of recognition between extracellular matrix proteins and the cell membrane 

receptors. In addition, hydrogen gas production during the corrosion process could form gas 

bubbles on the Mg surface, which may have prevented both biomacromolecule attachment and 

cell adhesion. 

5.2 Future Research 

The cytocompatibility of Mg material degradation products on endothelial cell,  

hemocompatibility and endothelialization of Mg-RE alloys, collage self-assembly on bone 

orthopedic materials and the endothelializition on fluoride conversion coating Mg materials was 

studied in this research project.  The findings from this study provide useful information on cell-

metal ion interaction and preliminary safety evaluation of Mg-based stent material. Also, Mg 

alloying with REs and HF conversion coating could significantly improve the endothelial cell 

attachment in vitro showing great potential for clinical application. However, limitations do exist 

in each of the studies and there are several aspects that should be address in the future. The 

degradation products from stent material are the combination of all the metal elements instead of 

the single metal ion tested in this research. Therefore, to study how the mixture of Mg 
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degradation products affects cytocompatibility will be the next step for evaluating material 

toxicity in vitro. The effect of other factors such as pH change, air bubble formations and metal 

debris accompanying the degradation process on cell behavior should also be considered. In 

addition, it is also very important to study how those factors affect smooth muscle cell and blood 

cells. 

The endotheliallization experiments were carried out in a static environment. However, in 

vivo, both endothelial cells and stent materials are subjected to blood flow. For this reason, static 

endothelialization does not represent the same endothelial behavior or degradation propertied of 

Mg stent exposed to blood flow and it is important to simulate the flow condition for endothelial 

attachment experiment.  For the HF conversion coating, future research should elucidate the 

degradation mechanism of MgF2. What kind of finial degradation products this MgF2 layer will 

produce and how are those degradation products metabolized by cells? Is there any long-term 

toxic effect of fluorine? Those questions should all be answered before the application of HF 

coating on stent material.  In the collagen self-assembly on bone orthopedic materials, future 

work should also include how other molecules in bone tissues, such as some non-collagenous 

glycoproteins, hyaluronic acid, chondroitin sulfate and mineral deposition interact with Mg 

materials. Besides, it is also unknown how Mg interacts with osteoblasts, osteoclasts and 

osteocytes.  Those studies would further provide useful information to evaluate Mg-based 

orthopedic materials and stent materials.   
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