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Abstract 

Surimi seafood products are widely accepted and consumed in the U.S. and other parts of 

the world. In recent time, there has been increased demand for surimi seafood products nutrified 

with ω-3 polyunsaturated fatty acids (PUFAs) as a result of their reported health benefits, but this 

may have a negative effect on the storage time of the product due to lipid oxidation of fatty acids 

(FA). Bay (Laurus nobilis) essential oil (BEO) which has demonstrated antioxidant properties 

was incorporated to the surimi seafood to reduce lipid oxidation thereby extending storage time. 

The objectives of this study were to (1) evaluate the physicochemical properties (proximate 

composition, pH, water activity, texture and color) and (2) determine the fatty acid profile (FAP) 

and oxidation rate of surimi seafood nutrified with ω-3 PUFA-rich oils from flaxseed and salmon 

and stabilized with BEO during storage time. Alaska pollock surimi gels were formulated at 78% 

moisture by ice addition. ω-3 oils were added at 5% by replacing ice at 1:1 along with 0 

(control), 0.5, 1% BEO, followed by cooking (90
0
C for 30min) in hotdog casings, vacuum 

packed and stored at 4
0
C for 6 days. Texture properties of surimi gels were determined by 

Kramer shear and texture profile analysis. Color values were measured with L*a*b*. FAP was 

determined with gas chromatography, lipid oxidation with TBARS. Analysis of variances was 

performed using two-way ANOVA (SAS, version 16.0). Proximate analyses (ash, moisture, 

protein, and total fat) showed differences (P<0.05) in moisture and fat between the treatments 

containing ω-3 rich oils stabilized with BEO and the control. Whiteness of surimi gels increased 

significantly with the addition of BEO between treatments and storage time. Lipid oxidation 

significantly decreased over storage time for treatments with 1% BEO. Addition of BEO and ω-3 

rich oils had no detrimental effect on the texture of surimi gels. Significant difference (P<0.05) 

was observed between the FA content of surimi gels treated with flaxseed, and salmon oils and 

the control. These results suggest that the incorporation of BEO may allow food manufacturers 
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to nutrify surimi seafood with beneficial ω-3 rich oils without affecting product quality while 

extending storage time.  
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4 CHAPTER 1 

Introduction 

Surimi is a Japanese term for mechanically deboned fish flesh, washed with water and 

blended with cryoprotectants. It is an intermediate product used in the production of foods 

ranging from the traditional kamaboko products of Japan to other surimi seafood products. 

Alaska pollock (Theragra chalcogramma), the first large-scale source of fish in the United States 

is regarded as the premium fish species for production of surimi seafood products (Tina, Nurul, 

& Ruzita, 2010). It is the largest white fish biomass in the world, harvested from various habitats 

in the North Pacific Ocean, covering from Hokkaido (Japan), Kamchatka (Russia), Alaska 

(United States), to Vancouver Island (Canada). 

Surimi has been consumed in North America as “imitation crabmeat” (Park & Lin, 2005) 

and is a much enjoyed food product in most countries and available in many shapes and textures 

(Hall, 2011; Park & Lin, 2005). Surimi popularity remains high and continues to grow due to the 

low-cholesterol, low-fat, and high nutrient content of surimi seafood (Campo & Tovar, 2008).  

According to the American Heart Association, cardiovascular disease (CVD) has had an 

unquestioned status of the number one cause of death in the U.S. since 1921 (American Heath 

Association, 2009). Omega-3 polyunsaturated essential fatty acids (ω-3 PUFAs), particularly 

alpha linolenic acid (ALA, 18:3ω3), eicosapentaenoic (EPA, 20:5 ω-3) and docosahexaenoic 

(DHA, 22:6 ω-3) FAs are associated with multifaceted health benefits, including lowering blood 

triglycerides and improving cardiovascular health in humans. DHA and EPA are primarily found 

in fatty fish such as salmon, char and mackerel; whereas ALA is found in plants and seeds. 

Current Western diets include high amounts of omega-6 polyunsaturated fatty acids (ω-6 

PUFAs) and low amounts of ω-3 PUFAs, with a ω-6/ω-3 ratio at 15-20/1 (Simopoulos, 2002). 
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Recommended ω-6/ω-3 ratios range from 1:1 – 1:5 to promote the suppression of chronic 

inflammatory diseases like CVD. 

Therefore, in an effort to improve cardiovascular health, health and professional 

organizations recommend increased consumption of foods rich in ω-3 PUFAs. Although 

consumers are becoming familiar with the benefits of ω-3 PUFAs, surimi seafood is not fortified 

with these essential nutrients. Due to its low fat content, nutritional quality and high functional 

proteins, surimi is a logical vehicle for functional additives such as ω-3 PUFAs. The food 

products nutrified with ω-3 PUFAs provide a means to achieve desired biochemical effects of 

these nutrients without the ingestion of dietary supplements, medications or a major change in 

dietary habits (Tahergorabi, Matak, & Jaczynski, 2014). However, a potential consequence of the 

ω-3 PUFAs fortification is increased lipid oxidation, which may lead to rancidity, texture and 

color deterioration, as well as loss of nutrients, especially the ω-3 PUFAs (i.e., ALA, EPA, and 

DHA). 

Various synthetic antioxidants, such as butylated hydroxyanisole (BHA), butylated 

hydroxytoluene (BHT) and tertiary butyl hydroquinone (TBHQ) have been widely used to help 

meat and seafood preservation. However, over the past few years, increasing consumer demand 

for more natural “preservative-free” products has led the food industry to consider the 

incorporation of natural antioxidants in a range of products. The use of natural antioxidants has 

the advantage of being more acceptable by the consumers as these are considered as ‘‘non 

chemical”. This antioxidant effect of plant EOs and extracts are mainly due to the presence of 

hydroxyl groups in their chemical structure (Shahidi, 2000; Shahidi, Janitha, & Wanasundara, 

1992). 
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In the last years, many researchers have evaluated the antioxidant properties of extracts 

from different plants and vegetables (Chen, Wong, Leung, He, & Huang, 2002; Ibanez et al., 

2003). Fresh or dried bay leaves (Laurus nobilis) are used in cooking for their distinctive flavor 

and fragrance. The leaves are often used to flavor soups, stews, braises and pâtés in 

Mediterranean cuisine. The antioxidant activity of BEO is mainly related to 1, 8-cineole, eugenol 

and methyl eugenol which are considered three effective free-radical scavengers (Politeo, Juki, & 

Milo, 2007). The antioxidant activity of these molecules has been compared to that from other 

recognized antioxidant substances. Politeo et al. (2007) indicated that the antioxidant potential of 

these compounds was comparable to that of BHT and BHA. Nevertheless, the protective activity 

of BEO against lipid oxidation of nutrified surimi with ω-3 rich oils remains unknown. 

The overall objective of this study was to improve oxidative stability of surimi seafood 

containing salmon and flaxseed oils by incorporation of BEO during refrigerated storage. The 

specific objectives of our study were to: 

1. Evaluate the physicochemical properties of the studied surimi seafood.  

2. Determine the fatty acid composition and oxidation rate of the studied surimi seafood. 
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5 CHAPTER 2  

Literature Review 

2.1   Surimi 

Surimi is referred to as a refined fish proteins produced through various step-by-step 

processes including heading, gutting, filleting, deboning, washing, dewatering, refining, mixing 

with cryoprotectants, and freezing. Minced and deboned fish is washed to remove sarcoplasmic 

proteins, pigments, lipids, enzymes, and heme compounds resulting in whiter color values, which 

is an indicator of a higher quality surimi product (Hastings, Keay, & Young, 1990). This 

production process further increases the concentration of actin and myosin in the final product 

resulting in a product with better gelation qualities (Hall, & Ahmad, 1997). Excess water is 

pressed out of the surimi and cryoprotectants are added to prevent protein denaturation during 

freezing (Hall, & Ahmad, 1997). After production, the surimi can be stored at very low 

temperatures for later use (Park, & Lin, 2005).  

Over the past few decades, production of the processed fish-based product, surimi, has 

constantly increased. In Europe, France is the first consumer of surimi-based products and 

approximately 500,000 tons were produced worldwide in 2008 (Guenneugues, & Morrissey, 

2005). The history of surimi production started with the Japanese fish processing industry and 

has expanded into the United States, Korea, and Southeast Asia. Guenneugues, & Morrissey 

(2005) reported that the surimi production in recent years is estimated at 600,000 metric tons a 

year, and for the last 25 years consumption of U.S. surimi seafood has increased to 200 million 

pounds. World demand for surimi, a raw food ingredient, continues to grow due to its unique 

textural properties, storage properties and high nutritional value (Park, & Morrissey, 2000; 

Bourtoom, Chinnan, Jantawat, & Sanguandeekul, 2009).  
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Alaska pollock is mostly used for surimi production and is shaped, textured and flavored 

to imitate some other fish products (ex. surimi sticks/shredded, crab, lobster, scallops). Mansfield 

(2003) reported that Alaska pollock (Theragra charcogramma) is the third most abundantly 

harvested species in the world and the main source for surimi production. This is mainly as a 

result of its high whiteness values and lack of protease activity which contribute to a higher 

quality product. Its production is divided into two major sections: raw materials are first 

transformed into the “surimi base” then additives such as starch, egg white, aromas and colorants 

are added. The product is then cooked and packaged (Lee, 1999). In general, Alaska pollock is 

favored in the production of surimi because it has fewer color pigments and fewer lipids (Hall, 

2011). 

 

Figure 1. A Block of Frozen Surimi (Usually formed in 10kg blocks) 
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Below (Figure 2) is a flowchart for surimi manufacturing process. It begins with whole fish, 

sorting by size and ends with frozen storage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow Diagram for Surimi Processing (Park, 2013) 
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2.2 Omega-3 Polyunsaturated Fatty Acids (PUFAs) 

Fat, as reported by (Burr, & Burr, 1929), is an essential component of the diet and the 

fatty acids have different roles in the human body. Bjerregaard, & Dyerberg (1988) reported that 

Danish researchers in the early 1970s discovered that Greenland Inuit who consumed large 

amounts of marine lipids had lower cardiovascular mortality when compared to Danes who 

consumed lower amount of these lipids. This discovery hence triggered new research into the 

role of long-chain polyunsaturated fatty acids in the development of cardiovascular disease and 

its beneficial effect when incorporated into foods. This long chain polyunsaturated fatty acids 

(PUFAs) can be divided into three groups: omega-3 (ω-3) PUFAs, omega-6 (ω-6) PUFAs and 

omega-9 (ω-9) PUFAs. The intake of ω-3 PUFA in industrialized countries is about 4-10 

percent; hence, several bodies have issued PUFA guidelines to encourage more consumption of 

ω-3 fatty acids to optimize its health benefits. Alpha linolenic acid (ALA, 18:3ω3) is the 

essential FA precursor for docosahexaenoic acid (DHA, 22:6 ω3) and eicosapentaenoic acid 

(EPA, 20:5n3). Humans are unable to synthesize ALA de novo as a result of the lack of delta (Δ) 

15 desaturase enzymes, which insert a double bond at carbon 15 from the delta end (Gebauer, 

Psota, Harris, & Kris-Etherton, 2006). Thus, ALA is considered an essential FA and must be 

obtained through the diet. 

According to the National Research Council (1993), flaxseed oil contains the highest 

concentration of ALA among plant-derived oils, and fish as well as other marine animals are the 

best sources of eicosapentanoic acid (EPA) and docosahexanoic acid (DHA) (Anselmino, & 

Hornstra, 2000). Oomah, & Maza (1998) have shown that flaxseed oil reduces hypertension, 

cholesterol, inflammatory markers, blood pressure, triglyceride level and cardiovascular disease. 

Weber, & Raederstorf (2003) reported that several mechanisms have been suggested to explain 



10 

 

the preventive effect of ω-3 PUFA on cardiovascular diseases. Furthermore, they stated that ω-3 

PUFA can reduce triglyceride levels by lowering hepatic triglyceride synthesis and by decreasing 

the release of triglyceride-rich very low-density lipoproteins (VLDLs) into the blood. 

Hypertension is another important cardiovascular risk factor. High doses of ω-3 PUFA have been 

shown to reduce hypertension by influencing membrane fluidity and the balance of the 

prostanoids that control the constriction and dilation of the small arteries and arterioles. Other 

studies have shown that ω-3 LC PUFA have anti-aggregant activity (Hirai et al., 1989). Dietary 

sources of EPA and DHA are primarily marine sources (i.e., algae and fatty fish).  Juturu (2008) 

went further to state that ω-3 PUFAs also improve endothelial functions, reduces 

vasoconstriction, platelet aggregation and the risk of sudden cardiac death. Hence, there is an 

increasing interest in the fortification of food products with ω-3 PUFAs.  

The Food and Drug Administration (FDA) in 2004 approved a health claim for reduced 

risk of cardiovascular diseases for foods containing ω-3 PUFAs, mainly EPA and DHA. This 

provided a marketing leverage for functional foods fortified with ω-3 PUFAs. Lanier, Martin, & 

Bimbo (1988) reported that since surimi seafood comprises formulated food products associated 

with marine sources of wide acceptance, it is therefore a suitable vehicle for increasing the 

consumption of ω-3 PUFAs without the need for dietary supplements in a pill or capsule form. 

Apart from the nutritional value of these oils, they also help to improve the texture and increase 

the whiteness of surimi seafood and prevent sponge-like texture development during extended 

frozen storage and reduce brittleness. They have the ability to replace water by 1:1 up to 6% 

without changing the shear stress and shear strain values.  
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2.3 Lipid Oxidation 

Lipid oxidation serves as a mediator of important processes in living biological systems. 

It is one of the major causes of deterioration in cold stored fish muscle and negatively affects 

color, odor and flavor, protein functionality and conformation, and overall nutritional content of 

fish muscle (Pearson, Gray, Wolzak, & Horenstein, 1983).  This deterioration in quality is due to 

the high content of PUFAs contained within fish muscle along with highly active pro-oxidants 

(Hultin, 1994). Notable reactants in lipid oxidation are oxygen and unsaturated fatty acids. 

Oxidized lipids in lipid-protein systems are known to induce polymerization of proteins resulting 

in decreased solubility and formation of colored complexes (Desai, & Tappel, 1963). 

Triacylglycerides (fats and oils) are largely removed during surimi manufacture by 

flotation, aided by mechanical action and possible melting/softening. Most of the depot fat is 

removed when fish are headed, gutted, and skinned because fish generally deposit most of their 

fat in these regions. There are, however, a small percentage of membrane phospholipids in fish 

muscle that is difficult to remove by washing. These phospholipids are highly unsaturated and 

often in contact with muscle heme iron and are therefore very sensitive to spoilage by oxidation. 

Such oxidation causes off-flavors and may hasten denaturation of the myofibrillar proteins 

(Lanier, 2000). Lipids in surimi are even more unstable if pro-oxidants, such as iron (e.g., from 

water pipes, machinery, or residual heme proteins), are present. Washing and mincing 

procedures generally incorporate a large amount of oxygen into the surimi, making lipid 

oxidation even more likely.  

With the addition of ω-3 PUFAs to surimi seafood, there is an increased risk of oxidation 

which may be due to the fact that PUFAs are unstable and more prone to oxidation. The 

production of volatiles is influenced by the degree of unsaturation of the oil (Pérez-Mateos, 
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Boyd, & Lanier, 2004). Lipid oxidation induces formation of an array of products, thereby 

directly or indirectly decreasing the sensory quality of fish and fish products (Jacobsen, 1999). 

Saeed, & Howell (2002) reported that oxidized lipids also interact with proteins inducing 

modification of textural properties. Also, Murakawa, Benjakul, Visessanguan, & Tanaka (2003) 

reported that oxidized lipids can interact with proteins causing denaturation, changes in 

functional properties, polymerization, and brings about an adverse effect on the quality of surimi 

products.  

 

2-Thiobarbituric Acid Reactive Substances (TBARS), as reported by Botsoglou et al. 

(1994), are naturally present in biological specimens and composed of lipid hydroperoxides and 

aldehydes which increase in concentration as a response to oxidative stress. The sensitivity of 

measuring TBARS has made this assay the method of choice for screening and monitoring lipid 

peroxidation which is a major indicator of oxidative stress. TBARS assay values are usually 

reported in malonaldehyde (MDA) equivalents, which is a compound that results from the 

decomposition of polyunsaturated fatty acid lipid peroxides. This assay is well-recognized and 

an established method for quantifying lipid peroxides.  

 

2.4 Bay Essential Oil  

Over the past years, and even recently, there has been great public concern about the 

safety of synthetic antioxidants (e.g. BHT, BHA and TBHQ) in food preservation besides health 

implications. These synthetic antioxidants are known to have toxic and carcinogenic effects on 

human and food systems (Siddhuraju, & Manian, 2006).  Synthetic antioxidants may cause liver 

swelling and influence liver system activities and cerebro-vascular diseases (Choi, Jeong, & Lee, 

2007). As a result, there is a strong need for effective and safer antioxidants based on natural 

sources, as alternatives, to prevent the deterioration of foods. Literatures show many reports of 
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extracts from natural sources that have demonstrated strong antioxidant activity (Descalzo, & 

Sancho, 2008). Descalzo, & Sancho (2008) reported that essential oils (EO) and extracts from 

botanical materials are known to have varying degrees of antioxidant activities. Some of these 

EOs and extracts have been reported to be more effective than synthetic antioxidants (Mimica-

Dukic, Bozin, Sokovic, & Simin, 2004).  

Bay (Laurus nobilis) is an evergreen tree of Luraceae family which is from the 

Mediterranean region. Its leaves have seen application in culinary and food industry as a spice 

and flavoring agent. It is also popular in the field of herbal medicine for its antifungal, 

antibacterial, anti-diabetes and ant-inflammatory properties (Fang et al. 2005). Because of the 

strong, spicy aroma of the essential oil of bay leaves as well as its dried form, they are therefore 

widely used as flavor enhancers for foods such as meats, soups, sauces, and confectionery 

(Marion, Audrin, Maignial, & Brevard, 1994). The chemical composition of bay leaf EOs from 

different origins has been studied by different researchers and in all cases, 1, 8-cineole was found 

to be the major component with percentages ranging between 31.4% and 56% (Pino, Borges, & 

Roncal, 1992); followed by R-terpinyl acetate, linalool, and several monoterpene hydrocarbons 

such as â-pinene and sabinene. Benzene compounds (eugenol, methyl eugenol, and elemicin), 

present in percentages ranging between 1% and 12%, are responsible for the spicy aroma of bay 

leaves and are important factors determining the sensory quality of bay leaves (Borges, Pino, & 

Sa´nchez, 1992).  

Bay, in addition to its antioxidant properties, also interests researchers as a result of its 

possible antimicrobial quality. Dadalioglu, & Evrendilek (2004) studied the antibacterial 

properties of bay EO using four different foodborne pathogens (Staphylococcus aureus, S. 

Typhimurium, Listeria monocytogenes and E. coli.O157:H7), they discovered strong 
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antibacterial activity in all the cases. Cherrat et al. (2014) introduced hurdle technology where 

EO extracted from bay were combined with physical methods (mild heat treatment, pulsed 

electric fields and high hydrostatic pressure) to study its antimicrobial activities. The 

antimicrobial activity was measured using agar disc diffusion method. This combined method 

showed strong antimicrobial activity compared to previous individual studies. Studies conducted 

by Da Silveira et al. (2014) using Tuscan sausages, which were reported to be affected by 

foodborne pathogens, were subjected to tests on antimicrobial activities using bay EO. The 

application of this EO reduced the amount of pathogens which resulted in an increase of shelf 

life by two days.  

 

2.5  pH and Water Activity 

The growth of microorganisms in foods can be affected by many factors, mainly 

temperature, nutrients, oxygen content, pH value, and water activity (aw) (Olsen, MacKinon, 

Goulding, Bean, & Slutsker, 2000). Therefore, controlling growth of microorganisms and 

production of toxins in foods is the main approach to preserving quality and ensuring safety of 

products. The presence of competing microorganisms as well as naturally occurring anti-

microbial substances are other factors which may also influence growth of microorganisms in 

foods. 

Myofibrillar proteins of various fish species are most stable at neutral pH. It is observed 

that the pH of minced fish and laboratory-prepared surimi samples increased during the storage 

and this is possible due to the production of amines and other basic products. Fukuda, 

Yamaguchi, Sakukida, & Kawamura (1981) in his work used ATPase activity to measure 

denaturation rate with respect to pH of mackerel actomyosin during frozen storage. Results 

showed that denaturation rate increased rapidly when pH was lower than 6.5. He further stated 
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that gel forming ability also decreases with reduction in pH. Lanier (1992) reported that pH of 

surimi relates to the water-holding and gel-forming properties of cooked gels. Changes in pH 

during frozen storage seem to be species dependent. Freshness of the fish when processed can 

also affect the pH of the surimi (Huss, 1988). Wicker, Lanier, Hamann, & Akahane (1986) stated 

that pH has a significant effect on the texture properties of various protein gels. They further 

went to state that alkaline pH was found to improve the texture properties of fish protein gels in 

terms of increasing gel strength and/or elasticity. 

Water activity is one of the factors that determine the growth of microorganisms in 

surimi. Water activity is a measure of water in food that is available for microbial growth and 

chemical reactions (Aberoumand, 2010). Reducing the water activity in surimi seafood generally 

results in retardation or inhibition of microbial growth. Most bacteria, including many foodborne 

pathogens, require a minimum water activity of 0.93 to grow. However, some bacteria, including 

Staphylococcus aureus, are salt tolerant and can grow at water activity as low as 0.86. Certain 

processes, including dehydration, refrigeration, freezing, and addition of preservatives, can be 

used to inhibit growth of microorganisms. These processes can either be used alone or combined 

together to increase the shelf life of products. Surimi seafood can be formulated to contain low 

water activity (<0.85), high salt content (>20%), or low pH (<4.6) for extended storage (Jay, 

2000). 

 

2.6  Texture  

Texture remains one of the ultimate criteria of product acceptability by the consumer. 

Food industry efforts are to develop the proper texture for food products (Rohm, 1990; 

Sundaram, & Ak, 2003). The International Organization for Standardization (1992) defines the 

texture of food as the rheological and structural attributes of a food product which is perceived 
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by human senses. There are different methods that can be used to measure texture, each of which 

provides slightly different information: Texture Profile Analysis (TPA), Kramer shear. 

Texture is one of the most important factors governing the quality of surimi as it is with 

other foods. It is a major component when measuring the functional characteristics of raw surimi 

materials, as well as the properties of the finished surimi seafood product and effects of 

manufacturing conditions. The gel-forming properties of surimi make it a valuable texture-

building agent in formulated muscle foods. This however, goes a long way to determine 

consumers’ preference and acceptance of processed foods as they always go for soft textured 

foods. There are different methods which can be used to measure texture, each of which provides 

different information: Texture Profile Analysis (TPA), and Kramer shear, which are considered 

empirical tests that characterize results so that they can be directly related to overall acceptance 

or hedonic ratings (Kim, Park, & Yoon, 2005). 

2.6.1 Texture Profile Analysis 

The texture profile analysis quantifies specific characteristics that are directly related to 

the overall acceptance of surimi seafood and has been widely used for the empirical 

determination of a number of textural attributes of muscle foods and surimi gels. These specific 

attributes according to Mallikarjunan (2006), include: cohesiveness, springiness, chewiness, 

resilience, gumminess and hardness. Hardness is measured as the maximum force (N) detected 

during first compression. Cohesiveness is the ratio of the positive force during the second 

compression to the positive force during the first compression, and it determines the deformation 

of a material before it breaks. Gumminess is the product of hardness and cohesiveness while 

springiness is determined as the ratio of the distance from the second area to the second probe 

reversal over the distance and shows the ability of a material to recover its original shape after 
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the removal of applied force. Chewiness is a measure of the energy required to chew a solid food 

to the point adequate for swallowing and is the product of gumminess and springiness. 

Resilience shows the degree of how well a sample recovers from deformation in relation to speed 

and force applied (Alvarez, Canet, & Lopez, 2002). Apart from hardness, it is worthy to note that 

cohesiveness, gumminess, springiness, resilience and chewiness have no units.  

TPA test involves repeatedly compressing a bite-size piece of food, a cube approximately 

2cm, to 25% of its original height, between two parallel surfaces, recording force versus 

displacement. This process imitates the action of the human jaw. From the resulting force–time 

curve, the aforementioned textural attributes that correlate well with the sensory evaluations of 

those parameters are determined (Szczesniak, 1986). 

2.6.2 Kramer Shear Force 

The Kramer shear is a typical system that has 6 shear blades which are 3.2 mm thick and 

separated by a distance equal to its thickness. To carry out this test, the sample holder is filled 

with the food of 8cm in length, and then shear blades are forced through the material until they 

pass through the bars in the bottom of the sample container. Force on the ram holding the blades 

is measured over time and correlated to the firmness of the product. Parameters usually measured 

include maximum force at a given sample weight, slope, and energy of the force-deformation 

curve. Some food products do not display a linear relationship between maximum force and 

sample weight. Therefore, it has been advised to use a constant weight of sample in the test cell 

unless a linear relationship is demonstrated between sample weight and maximum force for that 

food (Bourne, 2002).   
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2.7 Color 

According to Froning (1995), color is an important meat quality which greatly affects 

consumers’ preference. The heme pigment – myoglobin and hemoglobin are responsible for the 

color of meat, with myoglobin as the determining factor for meat color because the hemoglobin 

(blood pigment) is mainly removed after slaughter. Color is seen as another important feature of 

surimi seafood. The three color hue values commonly measured in the surimi seafood industry 

are L*, a*, and b* with color quality determined by whiteness (Park, 1995). In this regard, the 

moisture content of the surimi sample is an important factor influencing the color measurement. 

Hence, if the sample has more water content, because of greater light reflection, it will have 

higher lightness value.  

The L* indicates lightness; a* and b* are the color coordinates. While a* is the red/green 

axis (“+” being toward the red and “−” being toward the green), b* is the yellow/blue axis (“+” 

being toward the yellow and “−” being toward the blue). Park (1995) further reported that the a* 

values of pollock and whiting gels were consistent regardless of moisture contents, cook-

ing/setting conditions, sample size, or frozen storage. Wang, Martinez, & Olsen (2009) stated 

that about 40-50% of the total fish harvested around the world is made up of dark-muscle 

species.  They went further to say that many of these could be utilized as raw material for surimi 

based products if the flesh color could be lightened. Lightness in fish flesh can be estimated by 

the “L value,” which will be higher for white-fleshed fish than for dark-muscle species (Wang et 

al., 2009). Lanier (2000) associated lower L-values with a high concentration of heme proteins in 

blood (hemoglobin). Lanier also noted that for complete removal of the heme containing 

substances from the muscle during refining, the heme proteins are required to be maintained in a 

nearly “native or undenatured” state. If the protein is denatured, the heme component will bind to 
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myofibrillar proteins and leave the surimi darkened. Vegetable fat-based substances and 

hydrophilic colloids regarded as whitening agents have been tested and known to whiten fish 

flesh and the resultant surimi. Lanier (2000) also claimed that the addition of sodium tri-

polyphosphate to a bleaching solution had a synergistic effect on both color and texture; 

provided that the temperature was kept below 15
0
C. 
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17 CHAPTER 3  

Methodology 

3.1 Objective 1 

3.1.1  Surimi 

Frozen blocks of Alaska pollock (Theragra chalcogramma) surimi containing 

cryoprotectants (4% sugar, 5% sorbitol, 0.15 g/100 g of sodium tripolyphosphate and 0.15 g/100 

g of tetrasodium pyrophosphate) were purchased from Trident Seafoods Corps. (Seattle, WA.). 

The frozen blocks were shipped overnight in large coolers surrounded with ice to Food and 

Nutritional Sciences Laboratory at North Carolina Agricultural and Technical State University. 

On arrival, the frozen surimi was cut into approximately 1000g blocks, individually vacuum 

packed and stored frozen at –80
0
C until used in surimi paste preparation.  

 

 

3.1.2 Surimi Paste Preparation   

Surimi paste was prepared using a procedure described by (Jaczynski, & Park, 2004) with 

slight modifications. Frozen surimi blocks (~1000 g) were partially thawed at refrigeration 

temperature (4
°
C) overnight. Blocks were then cut into cubes (2-3 cm), weighed (~833.33g) and 

chopped in a universal food processor (UM 5 universal, Stephan Machinery Corp, Columbus, 

OH, USA) equipped with cooling jacket. Surimi was chopped at low speed (1,800 rpm) for 1 

min. A surimi paste was obtained by adding 2 g/100g of NaCl and chopping continued at low 

speed (1,800 rpm) for 30sec. Moisture content of surimi was adjusted to 78% by adding ice 

before continuing to chop at low speed (1,800 rpm) for 1 min. The ω-3 PUFA-rich oils (flaxseed 

and salmon oils) were obtained from Jedwards International Inc. (Quincy, MA) and were added 

at 5 g/100g by replacing ice (1:1) added to the surimi paste. Bay essential oil (New Directions 

Aromatics, Cheektowaga, NY) was also added at 0.5 and 1% to each treatment except the control 
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samples. The blend treatment was prepared as (flaxseed: salmon, 4:1).The chopping continued 

under vacuum (0.5 bar) and at high speed (3,600 rpm) for 3mins. The paste temperature was 

controlled between 1–4 °C during chopping. Surimi pastes were prepared in 1 kg batches. The 

last chopping step resulted in the formation of the final surimi paste.  

 

3.1.3 Surimi Gel Preparation 

The prepared paste was packed into a polyethylene bag and vacuum sealed using a 

vacuum machine (Vacu-Fresh TC-420-F-G-C; CA, USA) to remove air pockets. Then surimi 

paste was placed into a sausage stuffer (The Sausage Maker, Buffalo, NY) and force applied to 

stuff the surimi paste into plastic hotdog casings (Lem Products Direct; West Chester, OH) 

(diameter:2.6 cm, length: 17.5 cm), then tied with knots. The stuffed “hotdog-like” surimi paste 

were then cooked in water bath at 90 °C for 30mins and subsequently cooled in an ice bath for 

20mins. After cooling, the gel was extruded from the hotdog casing, vacuum sealed and stored 

for 6 days at 4 
ͦ
C for laboratory analysis.  Prepared gel was used to determine proximate 

composition, pH, water activity, texture properties, color, lipid oxidation and fatty acid profile. 

 

3.1.4 Proximate Composition of Surimi Gels 

Moisture content, crude protein content, total fat, and ash content were determined for 

surimi gels. Each parameter was determined using about 2g of surimi sample. For moisture 

determination, sample was placed on an aluminum dish (Fisher Scientific Co., Fairlawn, NJ) and 

oven dried at 105
°
C for 24 h (Association of Official Analytical Chemists, 1995). Crude protein 

was determined by Kjeldahl assay and expressed as g/100 g (wet weight basis) (AOAC, 1995). 

Ash content was performed by incinerating samples in a muffle furnace at 550
 
ͦ C for 24h and 

expressed as g/100 g (wet weight basis) (AOAC, 1995). Total fat content was determined 
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according to the Soxhlet extraction method and expressed as g/100 g (wet weight basis) (AOAC, 

1995). All proximate analyses are reported as mean values of at least three replicates.  

 

3.1.5 Change in pH Value 

The pH values were measured using a hand-held pH meter (Oakton, Illinois, U.S.A) and 

the probe was calibrated before each measurement (Xu, Xia, Yang, & Nie, 2010). 

 

3.1.6 Water Activity (aw) Measurement 

The water activity of the surimi gel was measured at 25°C (±0.2°C) using an electronic 

dew-point water activity meter (Aqualab Series 4 model TE, Decagon Devices, Pullman, WA). 

The aw meter was equipped with a temperature control to maintain a constant temperature. The 

measurements were performed in triplicate and mean values ± standard deviation are reported. 

 

3.1.7 Texture Properties of Surimi Gels 

Two methods for determination of textural properties were employed in this study: 

texture profile analysis (TPA) and Kramer shear test, each characterizing different textural 

parameters. These methods provide a comprehensive understanding of textural properties of 

surimi gel, hence their use in the present study. Surimi gels cut into cylindrical shapes (length = 

8.0 cm, diameter = 2.6 cm) per treatment were subjected to Kramer shear test using a texture 

analyzer (Model TA-XT2, Texture Analyzer, Texture Technologies Corp., Scarsdale, NY) with a 

Kramer cell attachment consisting of five 3.0-mm thick and 70-mm wide shear blades passing 

through a cell with a corresponding number of slots. The weight of each individual gel sample 

was recorded and gel placed under the blades in the Kramer cell. Shear force was measured at a 

120mm/min crosshead speed and expressed as maximum peak force (N peak force/g of gel 

sample). The texture profile analysis was performed according to Bourne (2002) with some 
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modifications. At least six cylindrical gels (height = 2.50 cm, diameter = 2.6 cm) per treatment 

were subjected to two-cycle compression (50% compression) using the texture analyzer 

equipped with a round 70-mm diameter TPA plate attachment moving at a speed of 90mm/min. 

from the resulting force-time curves, hardness, cohesiveness, springiness, gumminess, 

chewiness, and resilience were determined as defined by Bourne (2002). 

 

3.1.8 Color Properties of Surimi Gels 

The surimi gel samples were cut to 2.5cm in length and used to determine the color of the 

samples. The color properties of surimi gels were determined using a Minolta Chroma Meter 

CR-400/410 colorimeter (Konica Minolta Co. Ltd., Osaka, Japan) calibrated with white 

calibration plate (L* = 97.57, a* = -1.08 and b* =1.25) supplied by the manufacturer which was 

placed under the orifice of the instrument (Chen, & Jaczynski, 2007a; 2007b). Using CIE 

(Commission Internationale d’Eclairage of France) color system, the L* (lightness) a* (red to 

green) and b* (yellow to blue) tristimulus color values were determined (Lanier, 1992). 

However, at intervals of measuring the color, the surface of the colorimeter was lightly patted 

dry with kimtech wipes. This is to minimize the ‘shininess’ effect, caused by surface moisture, 

which would artificially increase the lightness and whiteness value recorded. At least 3 replicates 

were performed per treatment and readings were taken on day 0, 3, and 6 at room temperature. 

Whiteness of gels was calculated by the following equation (National Fisheries Institute, 1991; 

Taskaya, Chen, & Jaczynski, 2010): 

Whiteness = 100 - [(100 - L*)
 2

 + a*
2
 + b*

2
]
1/2 
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3.2 Objective 2 

3.2.1 Lipid Oxidation of Surimi Gels 

Oxidative rancidity of surimi gel was measured by 2-thiobarbituric acid reactive 

substance (TBARS) assay of malonaldehyde (MDA) as described (Chen Nguyen, Semmens, 

Beamer, & Jaczynski, 2008; Jaczynski, & Park, 2003). MDA is a major compound generated 

from the oxidation of fatty acids. The absorbance was measured at 535 nm using a Genesys 

spectrophotometer (model 10S UV-Vis; Thermo Fisher Scientific Inc., Shanghai, China). The 

TBARS values were calculated using molar absorptivity of MDA (156 000 M
−1

 cm
−1

) and results 

reported as mg MDA/kg of sample. The TBARS values are reported as mean values ± standard 

deviation of at least three replicates for days 0, 3 and 6. 

 

3.2.2 DPPH Assay of Bay Essential Oil  

1, 1-diphenyl-2 picrylhydrazyl (DPPH•) scavenging activity is an assay to test the 

capacity of a substance to neutralize free radical either by donating electron or hydrogen. This is 

based on the reduction of DPPH radical to non-radical form by an antioxidant. DPPH• is a stable 

free radical because the unpaired electron spreads out over the whole molecule. The solution of 

this radical is characterized by purple color with maximum absorption at 517nm. When DPPH• 

radical is reduced by accepting hydrogen or electron from an antioxidant, the color of the 

solution becomes yellow which is determined by spectrophotometer (Molyneux, 2004). 

 

 

 

Figure 3. Reduction of DPPH radical to non-radical form by an antioxidant 

Antioxidant 

1, 1-diphenyl-2 picrylhydrazyl (free radical) 1, 1-diphenyl-2 picrylhydrazine (nonradical) 
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DPPH assay was performed using a method described by Yu et al. (2002) with some 

modifications. Different concentrations (%, v/v) of BEO were prepared. BEO was prepared in 

0.00625, 0.0125, 0.025, 0.05, 0.1, 0.5 and 1 (%, v/v).  BEO concentrations were dissolved in 

methanol. 100 µL of essential oil and 900 µL of 70 µM DPPH• solution were mixed in a tube. 

Methanol was used as blank. After mixing this solution, they were kept in dark for 30 min at 

room temperature. The reaction was measured by using a Genesys spectrophotometer (model 

10S UV-Vis; Thermo Fisher Scientific Inc., Shanghai, China) at 517nm. The experiment was 

performed in triplicate. Data collected was calculated as % radical scavenging activity using the 

following equation: 

% scavenging activity = [1 – (Abs sample/Abs control)] x 100  

Abs control = Absorbance of DPPH solution  

Abs sample = Absorbance of essential oil 

 

3.2.3 Fatty Acid Profile (FAP) of Surimi Gels 

Fatty acid profile (FAP) as described by Chen et al. (2008) was determined for surimi 

gels by extracting lipids with acid hydrolysis into ether followed by methylation to fatty acid 

methyl esters (FAMEs). The FAMEs were measured quantitatively using a capillary gas–liquid 

chromatograph (GLC) (Model 7890A equipped with a 7683B series injector, Agilent 

Technologies, Santa Clara, CA) against an internal standard (C19:1). Helium was used as carrier 

gas at 0.75 ml/min flow rate and a 200:1 as split ratio. The initial temperature of 100
0
C was held 

for 4 min and then increased to the final temperature of 240
0
C at a heating ramp of 3

0
C /min. The 

final temperature was held for 15 min. The injector and detector temperatures were 225
0
C and 
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285
0
C, respectively. The data are reported as mean values (±standard deviation) of at least three 

replicates and the mean values are expressed as percent of a fatty acid in total fatty acids. 

 

3.3 Statistical Analysis 

  The experiments were independently triplicated (n=3). Results were reported as mean 

values ± standard deviation (SD). Analysis of variances was performed using two-way ANOVA 

(SAS, version 16.0) (SAS Institute Cary, North Carolina). Differences among the mean values of 

the various treatments and storage periods were determined using Duncan’s test, and significant 

difference was defined as p < 0.05. 
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29 CHAPTER 4 

Results  

4.1 Objective 1 

4.1.1 Physicochemical properties of surimi 

The physicochemical properties (proximate composition, pH, water activity, texture, and 

color) of surimi seafood nutrified with ω-3 PUFA-rich oils from flaxseed, salmon, and blend 

(flaxseed: salmon 4:1) and stabilized with BEO during storage time (6 days) at 4
0
C were 

assessed. The explanation of different treatments is represented in Table 1 along with the 

experimental codes representing each treatment on the tables and graphs. 

 

4.1.1.1 Proximate composition of heat-set surimi gels  

Proximate composition of surimi gels was determined and shown in Table 2. Reported 

proximate composition of surimi (wet weight basis) according to the United States Department 

of Agriculture (2010) is 76.3, 15.2, 0.9, and 0.6, g/100 g for moisture, crude protein, total fat and 

ash respectively. In the present study, surimi gels without the addition of oil had a proximate 

composition of 77.15, 15.97, 1.67 and 2.23 g/100 g for moisture, crude protein, total fat and ash, 

respectively (wet weight basis). Expectedly, the proximate composition for total fat, ash and 

moisture (wet weight basis) content for surimi with the addition of oil was significantly different 

(P < 0.05) from the control (no oil) due to the development and formulation of surimi paste. 

There was no significant difference (P > 0.05) in the protein content of the control sample as 

compared with the other treatments. Moisture content was observed to be higher in the control 

sample with treatment 8 (flaxseed: salmon: bay; 4:1:1) having the least moisture content. There 

was interaction in moisture content between the other samples. Statistical difference exists 

between the samples in terms of fat content with the control having the least because of no added 
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oil. The ash content values ranged from 2.23-2.11 g/100g with treatment 8 having the least ash 

content although statistical interaction was observed between the treatments.  

 

4.1.1.2 pH value and water activity of heat-set surimi gel 

The pH and water activity of heat-set surimi gel was determined over a storage time of 6- 

days and results obtained are shown in Table 3. There was significant differences in pH values 

between the control sample (no added oil) and the other treatments in terms of storage time 

(P<0.05). Same difference was seen between treatments. The average pH of surimi gel is seen to 

be slightly acidic ranging from 6.69-6.97. The optimum pH for gelation is reported to be within 

the range of 6.5-7.5 and the pH for this study was found to lie between this ranges. Between 

treatments, the pH value was found to increase for control and treatment 1 and decreases for all 

other treatments with increase in storage time. 

The water activity which is an indicator for level of microbial activity was also 

determined. Table 2 shows the results obtained for a 6-day storage time. The water activity of 

heat-set surimi was observed to be between 0.96-0.98 which is within the expected range for 

meat and fish products (Rodel, Scheuer, & Wang, 1990). Significant difference was observed 

between and within treatment in relation to storage time. The addition of flaxseed and salmon 

oils and BEO had no significant effect on the mean value for water activity of the samples.  
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Table 1  

Description of Experimental Treatments and Treatment Codes 

Experimental 

Codes 

Flaxseed Oil 

(g/1000g) 

Salmon Oil 

(g/1000g) 

Bay Essential Oil 

(g/1000g) 

Surimi 

(g/1000g) 

Salt 

(g/1000g) 

Ice (g/1000g) Batch 

Weight (g) 

1 0 0 0 833.3 20 146.7 1000 

2 50 0 0 833.3 20 96.7 1000 

3 0 50 0 833.3 20 96.7 1000 

4 50 0 5 833.3 20 91.7 1000 

5 50 0 10 833.3 20 86.7 1000 

6 0 50 5 833.3 20 91.7 1000 

7 0 50 10 833.3 20 86.7 1000 

8 40 10 10 833.3 20 86.7 1000 
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Table 2  

Proximate Composition
a
 of Heat-set Surimi Gels Developed with the Addition of Flaxseed Oil, Salmon Oil, and Bay Essential Oil 

(BEO), and Blend (blend was flaxseed: salmon: BEO, 4:1:1) 

Experimental Treatment Codes
b
 

 

a
Data are given as mean values ± standard deviation (n = 3). Different letters within the same row and column indicate significant 

differences (Duncan Test, P<0.05) between mean values. 
b
Experimental Treatment codes are shown in Table 1.  

 

 

 

 

 1 2 3 4 5 6 7 8 

Moisture 

(g/100g) 

 

 

77.15±0.07
 a
 

 

71.79±0.10
cb

 

 

71.85±0.03
b
 

 

71.01±0.28
ed

 

 

71.50±0.60
cbd

 

 

71.07±0.38
ed

 

 

71.27±0.35
ced

 

 

70.77±0.29
e
 

Protein 

(g/100g) 

 

 

15.97±1.27
a
 

 

15.87±1.19
a
 

 

15.43±0.61
a
 

 

16.90±0.28
a
 

 

15.35±0.78
a
 

 

15.15±0.92
a
 

 

15.30±1.67
a
 

 

15.60±2.12
a
 

Fat 

(g/100g) 

 

 

1.67±0.30
b
 

 

3.15±0.58
a
 

 

2.98±0.68
a
 

 

2.50±0.61
ba

 

 

2.30±0.58
ba

 

 

3.01±0.46
a
 

 

2.71±0.92
ba

 

 

2.26±0.69
ba

 

Ash 

(g/100g) 

 

 

2.23±0.53
 bac

 

 

1.99±0.03
c
 

 

2.49±0.06
ba

 

 

2.54±0.13
a
 

 

2.23±0.12
 bac

 

 

2.33±0.08
bac

 

 

2.16±0.06
bc

 

 

2.11±0.12
 c
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Table 3  

pH
a
 and Water Activity

a
 of Heat-set Surimi Gels Developed with the Addition of Flaxseed Oil, Salmon Oil, and Bay Essential Oil 

(BEO), and Blend (blend was flaxseed: salmon: BEO, 4:1:1) 

 

Experimental Treatment Codes
b
 

 
a
Data are given as mean values ± standard deviation (n = 3). Different letters within the same row and column indicate significant 

differences (Duncan Test, P<0.05) between mean values. 
b
Experimental Treatment codes are shown in Table 1.  

Storage 

Time 

(Days) 

1 2 3 4 5 6 7 8 

pH 

1 6.69±0.26
h
 6.77±0.01

hgf
 6.76±0.03

hgf
 6.96±0.01

ba
 6.86±0.01

ebdacf
 6.83±0.03

ebdacf
 6.91±0.01

ebda

c
 

6.94±0.01
bac

 

3 6.97±0.01
a
 6.78±0.01

hgf
 6.71±0.01

hg
 6.77±0.02

hgf
 6.92±0.01

ebdac
 6.81±0.01

edgf
 6.93±0.01

bdac
 6.79±0.01

ehgf
 

6 6.94±0.01
bdac

 6.92±0.01
ebdac

 6.83±0.01
ed

gcf
 

6.74±0.01
hgf

 6.87±0.02
ebdacf

 6.84±0.0
1ebdacf

 6.76±0.01
hgf

 6.84±0.01
ebdacf

 

Water Activity 

1 0.97±0.00
c
 0.97±0.00

bc
 0.98±0.00

ba
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

dc
 

3 0.98±0.00
 a
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.01

dc
 

6 0.98±0.00
 a
 0.97±0.00

bc
 0.97±0.00

bc
 0.97±0.00

dc
 0.96±0.00

d
 0.97±0.01

bc
 0.97±0.00

bc
 0.97±0.01

dc
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4.1.1.3 Texture profile analysis of heat-set surimi gel 

The texture profile analysis (TPA) of surimi gels with and without added oil was 

measured and obtained results are shown in Table 4 and Figure 3 for TPA and hardness, 

respectively. These results show that addition of oil resulted in treatments with the greatest 

(P<0.05) chewiness, and gumminess as compared with the control in which no oil was added. In 

terms of springiness, resilience and cohesiveness, no difference (P<0.05) was detected among the 

treatments and storage time although there was interaction between the control and other 

treatments for control day 1(cohesiveness) and treatment 1, day 1 (resilience). This signifies that 

addition of oil does not affect these parameters within quantity tested in this study. There was a 

decrease in gumminess among treatments and increase in gumminess between days for all 

treatments. This may be as a result of type of oil used and amount added to each treatment. 

However, the blend had significantly greater gumminess and chewiness than other treatments 

except treatment 1 (having only flaxseed oil). For TPA parameter tested, it can be seen from the 

table that each parameter especially chewiness and gumminess tends to increase over storage 

time for each treatment and tends to vary between treatments.  

The hardness of surimi gels (Figure 3) was determined and results showed that the 

treatment with only flaxseed oil (treatment 1) had the greatest hardness between treatment and 

storage time, followed by treatment 6 and varied among all other treatments and days with the 

control (no oil) day 1 having the least hardness. In general hardness increased with addition of 

oils. These results indicate that addition of flaxseed oil (50g) will produce gels with greater 

hardness and gumminess. 
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4.1.1.4 Kramer shear test of heat-set surimi gel 

The Kramer shear test is another measure of gel strength (Figure 4). Treatment with 50g 

salmon oil demonstrated the highest Kramer force (P<0.05), followed by the treatment with 50g 

flaxseed oil. The Kramer force tends to increase within treatments over storage time with the 

exception of treatment 1 and the blend (Treatment 8) which decreased with storage time. The 

Kramer force correlates with TPA results in that both tends to increase with increase in storage 

time. This is an indication of gel strength of heat-set surimi gels.  

 

4.1.1.5 Color determination of heat-set surimi gel 

Table 5 and Figure 5 shows the tristimulus color values (L* a* b*) and a plot of the 

whiteness values respectively. L* is a scale, 0-100, of blackness and whiteness with 0 being 

more black and 100 being more white. The value a* correlates with redness (positive values) and 

greenness (negative values), and b* is a measure of yellowness (positive values) and blueness 

(negative values). Results from the tristimulus (L* a* b*) color test reported in Table 5 indicate 

statistical changes in color of surimi over storage time (P<0.05). With the addition of flaxseed, 

salmon, BEO and blend oils, the L* value ranged from 89-91 as compared to the control (no oil) 

with an L* value of 85.  The lightness, or L* value, of experimental treatments were statistically 

different from control sample. Surimi gels with added flaxseed oil, salmon oil and blend 

measured lighter in color than the control. Measurements of a* over time, between control and 

treatment showed significant difference (P<0.05) although no difference was observed between 

day 3 and 6 for treatment 3, day 1 and 3 for treatment 4 and 5, and day 3 and 6 for treatment 8. 

This slightly negative value indicates very little greenish hues. Positive b* values indicate 

yellowish coloration while negative b* values represent bluish coloration. Statistical difference 

was observed in the b* values between the control and experimental treatments over time 
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(P<0.05). The values for control were the least significant and values obtained for the 

experimental treatment ranged from 5.63-10.91.  

The whiteness value (Figure 5) was the highest (P<0.05) for gels with blend of salmon 

and BEO (treatment 5 and 6) followed closely by treatment with salmon oil only. The whiteness 

of heat-set surimi gel tends to remain constant within storage time for each treatment. This 

variation in whiteness between treatments may be as a result of pigmentations in the oils used. 
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Table 4  

Texture Profile Analysis
a
 of Heat-set Surimi Gels Developed with the Addition of Flaxseed Oil, Salmon Oil, and Bay Essential Oil 

(BEO), and Blend (blend was flaxseed: salmon: BEO, 4:1:1) 

 Experimental Treatment Codes
b
  

Storage 

Time 

(Days) 

1 2 3 4 5 6 7 8 

Resilience 

1 0.40±0.03
a
 0.40±0.01

ba
 0.40±0.00

a
 0.40±0.00

a
 0.33±0.01

c
 0.40±0.01

a
 0.40±0.00

a
 0.37±0.00

ba
 

3 0.40±0.00
a
 0.40±0.00

a
 0.40±0.01

a
 0.40±0.00

a
 0.33±0.00

bc
 0.40±0.00

a
 0.40±0.01

a
 0.40±0.01

c
 

6 0.40±0.01
a
 0.40±0.01

a
 0.40±0.00

a
 0.40±0.01

a
 0.36±0.01

ba
 0.40±0.01

a
 0.40±0.01

a
 0.40±0.01

a
 

Cohesiveness 

1 0.73±0.00
cb

 0.70±0.00
c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 

3 0.70±0.00
c
 0.70±0.00

c
 0.75±0.00

b
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 

6 0.70±0.00
c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.70±0.00

c
 0.73±0.01

cb
 

Springiness 

1 0.90±0.00
b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 

3 0.90±0.00
b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 0.97±0.1

b
 0.90±0.00

b
 0.90±0.00

b
 

6 0.90±0.00
b
 0.90±0.00

b
 0.90±0.00

b
 1.23±0.60

a
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 0.90±0.00

b
 

Gumminess 

1 21.70±1.00
m

 27.97±0.1
ced

 24.83±1.30
kjl

 23.83±0.60
l
 27.57±0.90

fed
 25.30±1.20

ikhjl
 27.97±1.50

ced
 25.53±0.20

ikhjg
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Table 4 

Cont. 

3 22.37±0.90
m

 29.37±0.7
cb

 28.65±0.30
cbd

 26.87±1.00
fheg

 25.80±0.90
ikhjg

 24.90±0.50
kjl

 27.53±0.30
fed

 25.13±1.00
ikjl

 

6 24.27±0.20
kl

 29.73±0.40
b
 31.43±0.10

a
 26.63±1.10

ifheg
 27.07±0.50

feg
 28.0±70.30

ced
 26.87±0.40

fheg
 26.13±0.60

ifhjg
 

Chewiness 

1 21.90±0.70
bdc

 25.53±0.60
bdc

 26.00±1.71
bdc

 21.40±0.53
dc

 24.27±1.00
bdc

 22.87±0.91
bdc

 25.27±1.53
bdc

 22.47±0.13
bdc

 

3 20.43±0.82
 dc

 26.63±0.58
bdc

 26.70±0.59
bdc

 24.40±1.11
bdc

 23.20±0.81
bdc

 23.97±2.78
bdc

 24.88±0.38
bdc

 22.77±1.25
bdc

 

6 20.00±0.19
d
 27.27±0.42

bac
 28.90±0.36

ba
 24.00±1.01

bdc
 24.67±0.61

bdc
 25.57±0.04

bdc
 24.63±0.72

bdc
 23.97±0.77

bdc
 

 
a
Data are given as mean values ± standard deviation (n = 3). Different letters within the same row indicate significant differences 

(Duncan Test, P<0.05) between mean values. 
b
Experimental Treatment codes are shown in Table 1. 

 

 

Table 5  

Color Properties
a
 of Heat-set Surimi Gels Developed with the Addition of Flaxseed Oil, Salmon Oil, and Bay Essential Oil (BEO), 

and Blend (blend was flaxseed: salmon: BEO, 4:1:1) 

 Experimental Treatment Codes
b
 

Storage 

Time 

(Days) 

1 2 3 4 5 6 7 8 

L* 

1 85.21±0.27
i
 89.54±0.26

g
 89.41±0.22

hg
 90.90±0.10

ed
 91.54±0.02

bac
 91.18±0.06

dc
 91.90±0.06

a
 91.51±0.38

bc
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Table 5 

Cont. 

3 83.76±0.23
j
 89.48±0.10

hg
 89.31±0.05

hg
 90.63±0.38

ef
 91.42±0.11

bc
 90.50±0.03

f
 91.46±0.25

bc
 91.34±0.40

bc
 

6 83.53±0.29
j
 89.49±0.29

hg
 89.13±0.04

h
 90.72±0.16

ef
 91.58±0.15

ba
 90.92±0.13

ed
 91.26±0.18

bdc
 91.28±0.05

bdc
 

a* 

1 -3.05±0.11
e
 -3.50±0.01

h
 -2.39±0.04

a
 -3.71±0.05

ji
 -3.77±0.04

jk
 -2.56±0.02

cbd
 -2.56±0.03

cb
 -3.69±0.05

i
 

3 -3.16±0.04
f
 -3.64±0.02

i
 -2.50±0.06

cb
 -3.78±0.04

jk
 -3.83±0.01

lk
 -2.57±0.06

cd
 -2.48±0.05

b
 -3.79±0.03

k
 

6 -3.31±0.04
g
 -3.66±0.01

i
 -2.49±0.02

cb
 -3.89±0.06

l
 -3.97±0.02

m
 -2.63±0.03

d
 -2.53±0.02

cb
 -3.80±0.03

k
 

b* 

1 3.06±0.21
f
 10.37±0.18

b
 5.65±0.12

ed
 10.92±0.10

a
 10.80±0.16

a
 5.81±0.13

d
 5.76±0.09

d
 10.17±0.17

b
 

3 2.17±0.15
g
 10.18±0.09

b
 5.63±0.08

ed
 10.91±0.04

a
 10.91±0.09

a
 5.76±0.05

d
 5.71±0.09

ed
 10.15±0.17

b
 

6 2.35±0.21
g
 9.88±0.08

c
 5.68±0.13

ed
 10.67±0.17

a
 10.88±0.06

a
 5.58±0.11

ed
 5.57±0.09

ed
 9.83±0.03

c
 

 
a
Data are given as mean values ± standard deviation (n = 3). Different letters within the same row indicate significant differences 

(Duncan Test, P<0.05) between mean values. 
b
Experimental Treatment codes are shown in Table 1.  
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Figure 4. Hardness

a
 of heat-set surimi gels developed with the addition of flaxseed oil, salmon oil, and bay essential oil (BEO), and 

blend (blend was flaxseed: salmon: BEO, 4:1:1). 

a
Data are given as mean values ± standard deviation (n = 3). Different letters on the top of data bars indicate significant differences 

(Duncan test, P<0.05) between mean values. Experimental Treatment codes are shown in Table 1. 
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Figure 5. Kramer shear force

a
 values of heat-set surimi gels developed with the addition of flaxseed oil, salmon oil, and bay essential 

oil (BEO), and blend (blend was flaxseed: salmon: BEO, 4:1:1). 

a
Data are given as mean values ± standard deviation (n = 3). Different letters on the top of data bars indicate significant differences 

(Duncan test, P<0.05) between mean values. Experimental Treatment codes are shown in Table 1.   
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Figure 6. Whiteness

a
 of heat-set surimi gels developed with the addition of flaxseed oil, salmon oil, and bay essential oil (BEO), and 

blend (blend was flaxseed: salmon: BEO, 4:1:1). 

a
Data are given as mean values ± standard deviation (n = 3). Different letters on the top of data bars indicate significant differences 

(Duncan test, P<0.05) between mean values. Experimental Treatment codes are shown in Table 1.
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4.2 Objective 2 

4.2.1 Chemical characterization of fatty acid composition and their oxidation 

The fatty acid content of heat-set surimi with and without (control) addition of oil is 

represented in Table 6a. The fatty acid content was determined on day 1 and day 6. The major 

fatty acid in flaxseed oil is ALA– α-linolenic (18:3 ω-3) (Chen, Nguyen, Semmens, Beamer, & 

Jaczynski, 2006); therefore, experimental surimi gels formulated with flaxseed oil and blend 

contained the highest (P<0.05) amount of ALA as compared to other experimental surimi gels. 

For the control sample, the ALA was below detectable level. Storage time had little or no effect 

on the ALA content for treatment 4. Surimi gels developed with salmon oil had the greatest 

(P<0.05) level of EPA–eicosapentaenoic (20:5 ω-3) and DHA–docosahexaenoic (22:6 ω-3) as 

compared to other surimi gels whereas DHA was detected at the highest (P<0.05) level in 

experimental surimi gels developed with salmon oil. (Przybylski, 2005) reported that surimi with 

added flaxseed oil, a rich source of ALA, had expectedly greater amounts of ALA than salmon 

oil. 

 

The major fatty acid groups (ω-3 PUFA, ω-6 PUFA, SFA and UFA) in heat-set surimi 

gel with and without the addition of flaxseed or salmon oils are shown in Table 6b. The main ω-

3 PUFAs detected in heat-set surimi gels was ALA, DHA and EPA, whereas the main ω-6 

PUFAs detected was LA. The concentration of ω-6 PUFAs ranged from 0.01-0.06% for all gel 

samples, with the control sample having the least concentration and was below detectable level 

for day 6. It was observed that the ω-3 fatty acid content of all treatment increased (P<0.05) over 

storage time except for treatment 3 (50g salmon oil) which decreased over storage time. 

Furthermore, samples containing flaxseed oil recorded the highest content of ω-3 fatty acids. 

Difference was observed in the ω-3 FAs and ω-6 FAs content for control and all other samples. 



42 

 

All Samples were observed to contain significantly more ω-3 PUFAs and less ω-6 PUFAs 

(P<0.05).  Also the UFA content of all samples was observed to increase (P<0.05) over storage 

time but decreased for sample 3. On the other hand, the SFA content of sample 3 increased over 

time as well as that of other samples. Total UFAs were similar between groups of flaxseed oil 

and its blends; salmon oil and its blends; however, the UFAs and SFAs for heat-set surimi gels 

were lower (P<0.05) in salmon oil added samples. The addition of BEO did not alter the fatty 

acid profile of different treatments and also over storage time. 

 

4.2.1.1 Lipid oxidation of heat-set surimi gels 

Malondialdehyde (MDA) is the main secondary product of lipid oxidation and is 

measured with the thiobarbituric reactive substances (TBARS) assay (Nielsen, & Jacobsen, 

2009). Results from TBARS analysis are shown in Figure 6. Results indicated significant 

differences in MDA concentrations between experimental treatments (P<0.05) which is 

dependent on storage time. Concentrations of MDA in heat-set surimi gels ranged from 

0.5mg/kg - 2.00 mg/kg over a 6-day storage period. Experimental treatment containing only 

flaxseed oil had the highest MDA concentration value (P<0.05) between treatment and storage 

time with the control sample (no added oil) having the least value. On the other hand, treatments 

with blend of flaxseed oil and BEO showed a reduction in the MDA concentration. Between 

storage times, greatest difference was observed in treatment 3 and 4. Oxidation rate was the 

lowest in treatment 4 and 5 when compared to other experimental treatments. This is likely to be 

as a result of lower amount of long chain ω-3 PUFAs, EPA and DHA and BEO addition. 
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Table 6a  

Major Fatty Acid Content
a
 (%) of Heat-set Surimi Gels Developed with the Addition of Flaxseed Oil, Salmon Oil, and Bay Essential 

oil (BEO), and Blend (blend was flaxseed: salmon: BEO, 4:1:1) 

Experimental Treatment Codes
b
 

Storage 

Time 

(Days) 

1 2 3 4 5 6 7 8 

LA 

1 0.00±0.00
o
 0.06±0.00

f
 0.01±0.00

j
 0.06±0.00

e
 0.06±0.00

b
 0.01±0.00

l
 0.01±0.00

m
 0.00±0.00

n
 

6 BDL 0.07±0.00
a
 0.01±0.00

k
 0.06±0.00

d
 0.06±0.00

c
 0.01±0.00

i
 0.01±0.00

h
 0.05±0.00

g
 

EPA 

1 0.01±0.00
l
 0.01±0.00

m
 0.05±0.00

b
 0.01±0.00

o
 0.01±0.00

j
 0.04±0.00

f
 0.04±0.00

g
 0.05±0.00

c
 

6 0.00±0.00
p
 0.01±0.00

i
 0.04±0.00

e
 0.01±0.00

n
 0.01±0.00

k
 0.05±0.00

d
 0.05±0.00

a
 0.01±0.00

h
 

DHA 

1 0.01±0.00
m

 0.01±0.00j 0.06±0.00
a
 0.01±0.00

n
 0.01±0.00

i
 0.05±0.00

f
 0.05±0.00

g
 0.06±0.00

b
 

6 0.01±0.00
p
 0.01±0.00

h
 0.05±0.00

e
 0.01±0.00

l
 0.01±0.00

k
 0.06±0.00

c
 0.06±0.00

d
 0.01±0.00

o
 

ALA 

         

1 0.00±0.00
o
 0.18±0.00

f
 0.01±0.00

j
 0.23±0.00

b
 0.21±0.00

e
 0.01±0.00

m
 0.01±0.00

n
 0.17±0.00

g
 

6 BDL 0.27±0.00
a
 0.01±0.00

l
 0.23±0.00

c
 0.23±0.00

d
 0.01±0.00

k
 0.01±0.00

i
 0.17±0.00

h
 

 

a
Data are given as mean values ± standard deviation (n = 3). Different letters within the same row indicate significant differences 

(Duncan Test, P<0.05) between mean values. ALA– α-linolenic (18:3 ω-3), EPA–eicosapentaenoic (20:5 ω-3), DHA–

docosahexaenoic (22:6 ω-3), and LA–linoleic (18:2 ω-6). 
b
Experimental Treatment codes are shown in Table 1.  BDL: Below 

Detection Limits. Detection limits vary by fatty acid but usually > 0.0005% 
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Table 6b 

Major Fatty Acid Groups
a
 (%) of Heat-set Surimi Gels Developed with the Addition of Flaxseed Oil, Salmon Oil, and Bay Essential 

Oil (BEO), and Blend (blend was flaxseed: salmon: BEO, 4:1:1) 

Experimental Treatment Codes
b
 

Storage 

Time 

(Days) 

1 2 3 4 5 6 7 8 

ω-3 

1 0.02±0.00
o
 0.19±0.00

f
 0.12±0.00

h
 0.24±0.00

b
 0.22±0.00

e
 0.10±0.00

m
 0.09±0.00

n
 0.11±0.00

i
 

6 0.01±0.00
p
 0.28±0.00

a
 0.10±0.00

l
 0.24±0.00

c
 0.24±0.00

d
 0.11±0.00

k
 0.11±0.00

j
 0.19±0.00

g
 

ω-6 

1 0.00±0.00
o
 0.06±0.00

f
 0.01±0.00

j
 0.06±0.00

e
 0.06±0.00

b
 0.01±0.00

l
 0.01±0.00

m
 0.00±0.00

n
 

6 BDL 0.07±0.00
a
 0.01±0.00

k
 0.06±0.00

d
 0.06±0.00

c
 0.01±0.00

i
 0.01±0.00

h
 0.05±0.00

g
 

UFA 

1 0.02±0.00
o
 0.30±0.00

f
 0.17±0.00

h
 0.40±0.00

d
 0.34±0.00

e
 0.15±0.00

m
 0.13±0.00

n
 0.16±0.00

j
 

6 0.01±0.00
p
 0.41±0.00

a
 0.15±0.00

l
 0.40±0.00

c
 0.40±0.00

b
 0.16±0.00

k
 0.17±0.00

i
 0.29±0.00

g
 

SFA 

1 0.02±0.00
o
 0.05±0.00

m
 0.07±0.00

g
 0.05±0.00

n
 0.05±0.00

k
 0.08±0.00

e
 0.08±0.00

f
 0.09±0.00

b
 

6 0.01±0.00
p
 0.05±0.00

i
 0.09±0.00

c
 0.05±0.00

l
 0.05±0.00

j
 0.09±0.00

d
 0.09±0.00

a
 0.06±0.00

h
 

 

a
Data are given as mean values ± standard deviation (n = 3). Different letters within the same row indicate significant differences 

(Duncan Test, P<0.05) between mean values. ω-3– Omega-3 fatty acids, ω-6–Omega-6 fatty acids, UFA–unsaturated fatty acids, and 

SFA–saturated fatty acids. 
b
Experimental Treatment codes are shown in Table 1.  BDL: Below Detection Limits. Detection limits vary 

by fatty acid but usually > 0.0005% 
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Figure 7. Thiobarbituric reactive substances (TBARS)

a
 values of heat-set surimi gels developed with the addition of flaxseed oil, 

salmon oil, and bay essential oil (BEO), and blend (blend was flaxseed: salmon: BEO, 4:1:1).  

a
Data are given as mean values ± standard deviation (n = 3). Different letters on the top of data bars indicate significant differences 

(Duncan test, P<0.05) between mean values. Experimental Treatment codes are shown in Table



46 

 

 

4.2.1.2 Radical Scavenging Activity 

Free radicals are part of the propagation of autoxidation and are considered the main 

reactants. To test essential oil’s capacity to neutralize free radicals, DPPH radical scavenging 

activity was measured. Figure 7 shows the DPPH radical scavenging activity of BEO and it was 

found to have very high scavenging activity. The scavenging activity was 11.21±1.30% at 

0.006255% concentration. An increase in concentration significantly increase the radical 

scavenging activity (P<0.05). At 0.0125, 0.025, 0.05 and 0.1% concentrations the scavenging 

activity was 22.67±2.04, 36.75±1.47, 51.77±1.67 and 64.78±2.06% respectively. 0.5% and 1% 

of BEO showed higher scavenging activity of 92.53±0.44 and 96.04±0.21% respectively. 

 

 

 

Figure 8. DPPH free radical scavenging activity of BEO. Data are given as mean values ± 

standard deviation (n = 3). Different letters within the same row indicate significant differences 

(Duncan Test, P<0.05) between mean values. 
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30 CHAPTER 5 

31 Discussion and Future Research 

In this study, the physicochemical properties of surimi seafood nutrified with ω-3 

PUFAs-rich oils from flaxseed, salmon, and oxidation rate of fatty acid composition were 

determined. Surimi gels were stabilized with BEO during storage time at 4 ͦ C for 6 days.   

The proximate composition of heat-set surimi gel as expected was significantly different 

(P<0.05) from the control. Again, the changes observed in moisture with the addition of flaxseed 

and salmon oil were similar to results in a study by Hsu, & Chiang (2002). Total ash and fat 

content of control samples were similar to crab flavored surimi gels reported in Pietrowski, 

Tahergorabi, Matak, Tou, & Jaczynski (2011). However, protein and ash (wet weight basis) were 

generally the same between treatments. 

Heat-set surimi gels treated with BEO and control samples had an initial pH ranging from 

6.69 to 6.94. These values increased during the storage period. Results obtained in this study are 

similar to that reported by Da Silveira et al. (2014) except for the first day of storage; the pH of 

control samples was significantly higher (P < 0.05) than in those treated with BEO. This pH 

increase might be related to the microbial growth during the storage period. Jay (2000) reported 

that when the supply of simple carbohydrates is depleted, species like Pseudomonas, as well as 

psychrotrophic Gram-negative bacteria, use proteinaceous compounds as energy source 

producing ammonia, and thereby increasing the food's pH.  (Tassou, Nychas, & Skandamis, 

2004) reported that the activity of antimicrobial agents is affected by the pH of a specific food. In 

general, EOs inhibits microbial growth through the damage caused in the cell membrane by its 

compounds, which disturbs the cell pH and inorganic ion balance (Burt, 2004; Shylaja, & Peter, 

2004).  
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The water activity of meat products lies in the upper range of aw-scale for foods because 

of their high moisture content. Fresh meat has the highest water activity (aw > 0.99). During 

processing of the meat to meat products, the water activity of the products drops depending 

largely on the common salt content. E.g. frankfurter-types sausages generally have a water 

activity of 0.96 to 0.97 (Rodel, Scheuer, & Wagner, 1990). Kim, & Park (2008) reported that 

addition of salt during processing helps to control microbial growth by lowering the water 

activity of the product. Water activity is an indicator of the level of microbial activity in food 

products. Results obtained in this study shows that the water activity declined between 

treatments over storage time when compared with the control. 

The Texture Profile Analysis (TPA) measures certain textural properties which include: 

springiness-the ratio of the product’s height on second compression to the original compression 

distance which measures the ability of the product to retain its shape and size after compression; 

cohesiveness-the ratio of the second compression to the first compression that measures 

resistance of the product during chewing; hardness-the peak height on the first compression that 

measures product’s resistance during a bite; gumminess-the product of hardness and chewiness. 

This measures the strength required in chewing; chewiness-the product of gumminess and 

springiness which is a measure of the energy used in chewing; resilience-the measure of a 

product’s ability regains its original position (Cardoso, Mendes, Pedro, & Nunes, 2008). 

Previous studies of oil incorporation in surimi show mixed results with some reporting a 

decrease in gel strength and hardness, and others reporting an increase in these measures 

(Cardoso, Mendes, & Nunes, 2007; 2008; Sánchez-Alonso, Haji-Maleki, & Borderias, 2007). 

Dickinson, & Chen (1999); Wu et al. (2009); Yost, & Kinsella (1992) postulates that oil may 

occupy the void spaces of the protein matrix restraining the protein matrix against movement and 
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possibly interacting with the matrix to increase gel strength. They attributed the increase in gel 

strength to the substitution of water with the same amount of oil used in their study. Cardoso, 

Mendes, Vaz‐Pires, & Nunes (2009) reported that surimi with lower protein content is known to 

produce less firm gels, which affects the textural properties of gels. In this study, protein 

concentration was constant. This may explain the increase in hardness, chewiness and 

gumminess within storage time. Similar results for cohesiveness were reported by Pérez-Mateos, 

Boyd, & Lanier (2004), although addition of BEO results in a slight increase. These results likely 

vary due to the differences in oil types used and amount added to surimi. Again, results obtained 

in this study are similar to the report of Cardoso et al. (2009) which showed an increase in 

hardness, gumminess, and chewiness during refrigerated storage of surimi gel. They 

acknowledged that increase in hardness over time may be attributed to water loss during storage. 

Table 4 and Figure 4 shows the tristimulus color values (L* a* b*) and a plot of the 

whiteness values respectively. L* is a scale, 0-100, of blackness and whiteness with 0 being 

more black and 100 being more white. The value a* correlates with redness (positive values) and 

greenness (negative values), and b* is a measure of yellowness (positive values) and blueness 

(negative values). In terms of consumer acceptability of surimi seafood products, the white 

coordinate, or high L*, is considered the most desirable hue from the color spectrum. Similar 

results were reported by Pérez-Mateos et al. (2004) stating that with the addition of menhaden 

oil, fish oil concentrate, and purified marine oil L* value was improved as compared to no oil 

(control).  The enhancement of L* value has been attributed to the dispersion of light that results 

from the emulsion created when oil is comminuted with fish muscle proteins and water (Pérez-

Mateos et al., 2004; Park, & Lin, 2005). Whiteness was calculated using L*, a*, and b* as 

previously described. Overall whiteness was the lowest for control and highest for treatment 6. 
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Treatment 1, 3 and 4 were significantly less white than treatment 2, 5 and 7. This trend is 

consistent with current literature (Pietrowski et al., 2011; Pérez-Mateos, Lanier, & Boyd, 2006; 

Chen, & Jaczynski, 2007b). However, Pérez-Mateos et al. (2006) suggested that lipid droplet 

suspension in the surimi gel scatters light, thus increasing light reflection and subsequently L* 

values. Negative a* values represent a greenish color. Addition of bay essential increased L* 

value significantly (P<0.05) but generally did not affect the a* and b* values. However, no 

significant change was observed during storage time. This is in accordance with Pérez-Mateos et 

al. (2006).  

The thiobarbituric reactive substances (TBARS) assay makes use of light 

spectrophotometry to measure red pigmentation produced when a secondary product of lipid 

oxidation called malondialdehyde (MDA),  reacts with thiobarbituric acid (TBA) (Wang et al. 

2002). Pietrowski et al. (2011); Pérez-Mateos et al. (2004) reported that the concentration of 

MDA has been used to predict oxidative stability of surimi seafood products. (Pérez-Mateos et 

al. 2004) further reported that surimi gels incorporated with ω-3 PUFAs may be more susceptible 

to oxidation due to the high degree of unsaturation, hence, undesirable in seafood-derived 

products due to development of undesirable flavors, rancidity, and possible changes in taste, 

texture, shelf life and appearance (McClements, & Decker, 2000). Lipid oxidation was evident in 

this study, but the addition of BEO reduced the rate of oxidation to an acceptable level. There 

was no significant change over time in MDA concentrations of treatment 1. Furthermore, 

Schormuller (1969) proposed that the maximum level of TBARS indicating good quality of 

seafood products is less than 5 mg MDA/kg, but they may be consumed up to 8 mg MDA/kg. In 

the present study, TBARS for all of the samples were much lower than the proposed limit. 

Therefore, examining changes in TBARS values between samples and over time is an indication 
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of oxidative stability. Sebranek, Sewalt, Robbins, & Houser (2005) reported similar antioxidant 

activities of rosemary essential oils regarding MDA generation in refrigerated sausages. 

The antioxidant activity of BEO was determined using DPPH radical scavenging test. 

BEO was found to have highly effective DPPH radical scavenging activity at 0.5 and 1% 

concentrations. Gas chromatography analysis of BEO revealed its different chemical 

composition constituting 1, 8-cineol (40%) and linalool (12.5%).  Therefore, the strong 

scavenging activity of BEO is possibly due to the presence of these chemical compounds. 

Studies by Lee, Umano, Shibamoto, & Lee (2005) showed promising result in antioxidant 

activities of 1, 8-cineole and linalool as individual components. Politeo et al. (2007); Cherrat et 

al. (2014) reported that BEO has almost similar activity to standard BHT in terms of DPPH 

radical scavenging. Therefore, the strong activity of BEO may be as a result of presence of other 

minor and major components and the synergistic effect between these components. 

Fish and its derivatives are recommended for consumption by health authorities, not only 

for their high-quality protein content, but also due to their high concentration of polyunsaturated 

fatty acids (PUFAs) like the ω-3 series of fatty acids which are highly beneficial for human 

health. Linolenic acid (ALA, 18:3ω-3), eicosapentaenoic acid (EPA, 20:5ω-3), and 

docosahexaenoic acids (DHA, 22:6ω-3) were the main ω-3 PUFAs, which are potentially 

beneficial in reducing the risk of cardiovascular diseases and inflammation (Kris-Etherton, 

Harris, Appel, & Committee, 2002; Morris et al., 2003). Linoleic (LA, 18:2ω6) was the main ω-6 

PUFAs present in heat-set surimi gels. Sell, Beamer, Jaczynski, & Matak (2014) reported that the 

total UFAs present in surimi franks were similar between groups and with SFAs, were lower in 

cooked surimi franks nutrified with salmon oil. Furthermore, Pietrowski et al. (2011) reported 
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that surimi gels developed with flaxseed oil had the most (P<0.05) UFAs. These results are 

similar to those obtained in this study. 

Alaska pollock surimi was used for development of heat-set surimi gels with flaxseed, 

salmon and a blend of oils. The surimi gels were treated with BEO to stabilize occurrence of 

oxidation which may lead to spoilage over storage time at 4
0
C. Evaluation of quality parameters 

showed that although textural properties varied, pH, water activity, color and TBARS values 

were generally within the acceptable range during the 6-day refrigerated storage period. BEO 

showed effective antioxidant effect on lipid oxidation of heat-set surimi gels thus will enable the 

manufacture of functional foods using heat-set surimi gels. The incorporation of BEO may allow 

food manufacturers to nutrify surimi seafood with beneficial ω-3 rich oils without affecting 

product quality while extending storage time. 

However, future studies should be conducted to evaluate the microbial load of heat-set 

surimi gels as well as sensory evaluation to determine acceptability by consumers in order to 

know the market potential of this type of product.  
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