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Abstract 

Software security is extremely important, and even thoroughly tested code may still have 

exploitable vulnerabilities. Some of these vulnerabilities are caused by logic flaws. Due to the 

nature of application or business logic, few automated tools can test for these types of security 

issues. Therefore, it is important for students to learn how to reduce the number of logic flaws 

when developing software, and how to test for them manually. A course module with a case 

study was created to teach students about this topic. Case-based teaching methods are used 

because it allows students to better apply learned skills to real world industrial settings, and there 

is a lack of case studies available for current software engineering curriculum.  

The course module includes an introduction, a quiz on the reading, an animated 

PowerPoint about the case, and a set of discussion questions. The introduction covers what logic 

flaws are, reducing logic flaws during software development, and how to test for them manually. 

The case is about eCommerce merchant software Bigcommerce using PayPal Express to collect 

payment. A flaw lets attackers complete an expensive order using the payment intended for a 

cheaper order. An animation was created to trace the HTTP interactions and back-end code 

representing the steps of the exploit from this case, and explain the manual testing method used 

to discover the exploit. A set of discussion questions has students apply this method to similar 

code, to find potential vulnerabilities and then fix them.  

This course module was taught in COMP 727 Secure Software Engineering at North 

Carolina A&T State University in the Spring 2015 semester. A pre-survey and post-survey on 

the learning objectives shows students felt they improved their knowledge and skills relating to 

application logic flaws. A quiz based on the reading shows students understood the material. The 

quality of student discussions was very high. Discussion question results were graded using a 
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rubric, and three-quarters of the class received an 85% grade or higher. Overall, this case study 

was effective at teaching students about application logic flaws. It will be made available to other 

universities, and can be easily integrated into existing curriculum.
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1 CHAPTER 1 

Introduction 

This chapter introduces the topic of application logic flaws, the course module on 

application logic flaws developed in this research, and the contributions and limitations of this 

research. 

1.1 Application Logic Flaws 

Software that is thoroughly tested for security vulnerabilities still has an estimated 5 

vulnerabilities per Thousand Lines of Code (KLOC) [1, 2]. If the software is only tested for 

functionality, and not security, that number is closer to 50 vulnerabilities per KLOC [1-3]. This 

has an enormous impact when the code base may be millions of lines long. Windows 7, for 

example, was reported to have approximately 40 million lines of code in 2009 [4]. 

Vulnerabilities are caused by defects in code. Security expert Gary McGraw separates 

these into two categories: bugs, and flaws [1, 2]. Bugs are defined as implementation problems in 

software, such as an off-by-one error, buffer overflows, and using unsafe methods. Bugs will 

only exist at the code level, can be discovered using static analysis scanning tools, and can 

typically be fixed on one line or in a localized area. Flaws, on the other hand, are issues that exist 

at both the code level and the design and software architecture level. Examples include poor 

access control, insufficient process validation, lack of encryption, and bad error handling (fail-

open) [2, 5, 6]. Flaws are typically related to application and business logic, or the architectural 

design. There could be problems with the logic itself, or with the code that implements the logic. 

To fix flaws, the logic or software architecture may need to be redesigned, and it could affect 

multiple areas of code. 
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An estimated 50% of software security vulnerabilities are flaws [1, 2]. For example, there 

could be an estimated 100,000 to 1 million flaws in Windows 7, which controls just over half the 

global market share of desktop operating systems [7]. These software security issues have the 

potential to adversely impact a huge number of individuals, businesses, and government. 

Logic flaws encompass a range of vulnerabilities relating to privilege manipulation and 

transaction control manipulation [8]. Most static analysis tools use rules based on defined 

patterns, and are effective at identifying bugs. Several automated security testing tools, such as 

Fortify [9] or AppScan Source Edition [10], can trace tainted input through applications’ 

components. The scan results show the data flow path that the tainted input takes through the 

code, from the source (user controlled-input) to the sink (a dangerous function call or operation). 

These types of static analysis scanners can be used to check for vulnerabilities related to 

malicious input, such as poor input validation flaws, or bugs such as unsafe methods. 

Application logic, however, is inconsistent and does not follow defined patterns. For example, 

one web application may implement the majority of authentication logic on the server side, while 

another places it on the client side. It is important to note that logic on the client side is extremely 

bad practice [11], but still occurs frequently
1
. Testing for logic flaws also depends on the type of 

exploit [12]. Since there are no well-developed automated tools available to identify logic flaws, 

it must be done manually [2, 8, 12].  

At Blackhat Europe 2011, Los and Jagdale asserted that “Logic implies human thought 

required” [8]. It is important for computer science students to learn how to reduce the number of 

                                                
1 CWE-603: Use of Client-Side Authentication is a child of CWE-287: Improper Authentication, which maps to two 

entries on OWASPs’ 2013 Top 10 List: A2-Broken Authentication and Session Management (Widespread 

Prevalence), and A4-Insecure Direct Object Reference (Common Prevalence).  
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logic flaws when developing software using recommended industry standard best practices, and 

how to identify and mitigate flaws in existing software. Testing software early in the 

development lifecycle, as opposed to late in development, can also significantly reduce the cost 

and time it takes to fix vulnerabilities [2, 13-16], especially if the software architecture or logic 

has to be redesigned. In addition to refactoring the design or architecture, there would likely need 

to be new code development, software testing, deployment, and more, all of which increase the 

cost to mitigate the vulnerability [17]. Research by Shull et al., with support from companies 

such as IBM and Lockheed Martin, found that “Finding and fixing a software problem after 

delivery is often 100 times more expensive than finding and fixing it during the requirements and 

design phase.” [15]. The Microsoft Security Response Center estimated each security issue 

requiring a security bulletin cost around $100,000 [17].  

However, the topic of application logic flaws seems to be poorly addressed or omitted in 

both software engineering courses and textbooks. A course module with a case study was 

developed to teach students about this topic. Case-based teaching methods are used because they 

allow students to better apply learned skills to real world industrial settings. They can bridge the 

gap that exists in current software engineering education between theoretical concepts and 

industry-related skills [18]. There is also a need to develop case studies that are few in the 

current software engineering curriculum [19]. 

1.2 A Course Module on Application Logic Flaws  

The course module has a document that introduces the topic of logic flaws and explains 

where logic flaws come from, how to reduce logic flaws during development, and adding logic 

flaw testing alongside functional testing. It also describes the manual code review method used 
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to discover an exploitable logic flaw in the case being studied. A short quiz based on the required 

reading helps ensure the introduction was read and understood. 

The case used here is the eCommerce software Bigcommerce (previously known as 

Interspire Shopping Cart) when it used the third-party cashier PayPal Express to collect payment, 

presented in the research article How to Shop for Free Online: Security Analysis of Cashier-as-a-

Service Based Web Stores [20]. Using a manual code review method, and treating PayPal 

Express as a black box where only the inbound and outbound messages could be observed due to 

closed-source code, an exploit was discovered in Bigcommerce where an attacker could use one 

session with a successful payment status to pay for a different order created in a second session. 

It allowed the attacker to complete an expensive order using the payment intended for a cheaper 

order. 

This case study covers the logic involved in maintaining state between three parties, 

maintaining state in an eCommerce transaction, and enforcement of transaction workflow. It is a 

simple but powerful illustration on how a logic flaw could cause an exploitable security 

vulnerability. The cause of the logic flaw was that the order ID number was not bound to the 

session ID number, and a digitally signed argument containing information about the order was 

still created and made accessible to the attacker even if payment failed. 

A PowerPoint animation (Figures 1, 2) was created to trace through the HTTP 

interactions and back-end code representing the steps of the exploit from the case, and help 

explain the manual testing methods used to discover the exploit. A set of discussion questions 

was developed based on Blooms Taxonomy [21] to have students apply this testing method to 

similar code in order to find and fix potential vulnerabilities. The effectiveness of the 

coursemodule was evaluated through pre- and post-surveys rating students’ knowledge level, 
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student responses to the discussion questions using a rubric for grading, and the quality of 

discussion results.  

The course module was taught in the COMP 727 Secure Software Engineering course at 

North Carolina A&T State University in the Spring 2015 semester. 

1.3 Contributions and Limitations  

This course module is meant to be easily integrated into an existing upper-level 

undergraduate or graduate computer science course, and can be used either in-class or online.  

The course module should have 2 lecture hours and 1 hour for student discussion (or equivalent 

of one week instruction). It fits under the Software Engineering Knowledge Area in the 

Computer Science Curricula 2013 written by ACM and IEEE [22], specifically the topic of 

Software Verification and Validation, if being used for an upper-level undergraduate course. It 

can also be taught as part of the Secure Software Engineering topic in the Information Assurance 

and Security (IAS) Knowledge Area. In the Software Assurance Curriculum Project [23] for 

undergraduate courses by CERT Software Engineering Institute (SEI) at Carnegie Mellon 

University, the course module could be used in Software Security Engineering courses for the 

topics of secure software architecture and design or secure coding and testing, or in Software 

Quality Assurance courses for testing methods topic. For graduate-level courses, this course 

module could be used under the core body of knowledge areas 6.2.1 Development methods and 

6.3.5 Testing for assurance [24]. Software engineering or security testing courses that use 

Building Security In [2] as a textbook can use this course module after the Architectural Risk 

Analysis chapter.  
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The limitation of evaluating this course module is that it only includes results from only 

one university. While the results were promising, they are from a sample that was too small for 

significant statistical analysis results. 

The case being used is a web-based application, and students may have difficulties 

applying this manual testing method to software that does not have client-server interactions, as 

the code structure may be different. It is also about an eCommerce transaction, and students may 

have difficulties applying this manual testing method to other types of software, as the process 

workflow may be different.  

The rest of the thesis is organized as follows: Chapter 2 provides a literature review of 

using case studies in computer science education, existing resources on application and business 

logic flaws, and prototypes of automated testing for logic flaws. Chapter 3 describes the 

materials developed for the course module on application logic flaws. Chapter 4 describes the 

results and teaching experience. Chapter 5 concludes the thesis and discusses future work. 
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2 CHAPTER 2  

Literature Review 

This chapter covers the use of case studies as a teaching method, existing resources on 

application and business logic flaws, prototypes for automated testing of logic flaws, and 

information about the case used in this course module. 

2.1 Using Case Studies for Teaching 

Case studies are effective teaching tools, and widely used in disciplines such as business, 

law, and medicine [25-28].  Engineering fields including Mechanical Engineering, Civil 

Engineering, and Chemical Engineering [29-32] use case studies as well. Computer Science has 

more recently adopted case studies into university level education. For example, use of case 

studies was mentioned several times in the ACM/IEEE Computer Science Curricula 2013 [22] 

for teaching ethics in computing, the effects of computing on a variety of populations, causes of 

computer failures, parallel programming, and distributed systems. However, in the 2008 interim 

revision [33], only one case study was mentioned, which was on object recognition and tracking 

for graphic and visual computing.  The computer science field lacks a breadth and depth of 

relevant case studies [19]; most commercially available Harvard-style case studies are focused 

on business or management, and cases designed for Information Systems or Information 

Technology still lack necessary technical details [19]. As security in general lacks coverage 

within computer science, it is reasonable to assume there is also an inadequate number of 

software security focused case studies available.  

 Research has shown that case studies are an important and effective teaching method that 

engages students in active learning, help students develop skills such as problem solving and 

working as part of a team, and increase students’ motivation to learn since the topic is more 
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enjoyable [18, 34-37]. Benefits of case studies in university education include providing a real-

world context to the topic being covered, requiring students to apply critical thinking and 

analysis, and helping students synthesize the content of the course [38]. Daun et al. noted that 

“Even theoretical disciplines are beginning to adopt more experience-oriented instruction as 

opposed to passive, lecture-oriented instruction.” [39].  

 The computer science field also suffers from a gap between academic theory and industry 

skills and best practices [39-41]. Computer science students may understand the examples used 

in academia, but have little knowledge of challenges and practical aspects faced by industry [39, 

42].  Garg [43] and Wohlin [44] found that additional instruction was needed before students 

could apply skills learned in university courses to industry settings. A multi-year study [39] 

showed that using industry-based case studies in a graduate-level requirements engineering 

course resulted in higher quality discussions, more in-class participation, higher exam results, 

and higher self-reported levels of positive learning experience, compared to a more traditional 

approach for teaching the course. Students also self-reported higher levels of problem solving 

skills, ability to work independently, and interest in the course, compared to other courses in the 

department [39]. Several case studies on information security topics have also been taught at the 

undergraduate and graduate level with successful results [23, 34-35, 45-46]. Students reported 

they were confident about applying the learned knowledge to future jobs [45]. 

2.2 Resources on Application and Business Logic Flaws  

Flaws may be present in the business or application logic, or in the software architecture. 

Flaws related to software architecture, such as badly defined trust boundaries, may be difficult to 

identify without proper knowledge and an accurate overview of the system, and can be found by 

performing an architectural risk analysis [2]. Flaws related to logic can be very subtle, and are 
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typically found by manually testing and tracing manipulated data and manipulated data flows 

through the entire process [4, 12, 20].  

Several organizations maintain updated databases of different types of business or 

application logic flaws. A taxonomy of business logic vulnerabilities is available in the Common 

Weakness Enumeration (CWE) by MITRE, a non-profit organization that operates federally 

funded research and development centers [47]. This database also maps to other software 

security databases, such as the Common Attack Pattern Enumeration and Classification 

(CAPEC) database also operated by MITRE [48]; the Threat Classification database created by 

Web Application Security Consortium (WASC), a non-profit comprised of security experts and  

industry practitioners working to develop standards for web application security; CERT Secure 

Coding Standards by SEI; and several others.  The non-profit Open Web Application Security 

Project (OWASP) also lists categories of flaws to address during testing [12] and a Business 

Logic Security Cheat Sheet [49]. Table A-1 in Appendix A [50] cross-links OWASPs’ 2013 Top 

10 List [51] of web application weaknesses with 2011 CWE/SANS Top 25 Most Dangerous 

Software Errors [52], and categorizes them into bugs and flaws. Seven out of the Top 10 web 

application weaknesses and 16 out of the Top 25 software errors are flaws. 

Several resources provide specific examples of logic flaw exploits and explain how they 

could be prevented during software development, but do not cover testing for logic flaws in 

existing software. Seven Business Logic Flaws That Put Your Website At Risk [6] walks through 

seven real-world attacks to break down how the applications were exploited and how this could 

have been prevented. The Web Application Hacker's Handbook [5] reviews eleven exploits and 

their prevention methods relating to poor input validation, circumvention of workflow, 

information leakage, and abuse of functionality. Top 10 Business Logic Attack Vectors [53] lists 
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ten logic flaw exploits using a sample application, and how to test for those flaws. However, 

these recommendations are fairly specific to the types of flaws or the type of application. For 

example, do not display full usernames on an online auction website, since an attacker can take 

advantage of the mechanism that locks accounts when multiple login attempts are made with an 

incorrect password, to lock competing bidders out of their accounts in order to win auctions.  

Recommendations for preventing logic flaws during software development are more 

general than the recommendations for testing, and are covered in Building Security In [2] and 

OWASP’s Business Logic Security Cheat Sheet [49]. These industry standard best practices are 

summarized as follows, though this is not an all-inclusive list by any means.  

 Use detailed and thorough software requirements for both functionality and security [2]; 

security will be incorporated into the software from the start, and functional and security 

testing are based on the requirements [54]. 

 In addition to defining use cases during the requirements phase of software development, 

misuse and abuse cases should be defined as well [2, 49]. This helps explain what the 

software shouldn’t do, how it should react to attacks or failures, defines how the software 

should respond to abnormal input or manipulated data flows, and may be used for some 

types of security testing [2].  

 During development, the design of the application should be reviewed. Assumptions 

made by the application should be challenged and the dependencies and interactions 

between different components should be checked. Documentation of the software should 

be detailed, thorough, and up-to-date [2, 5], especially for the business logic, design, and 

software architecture.  
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 Risks should be tracked throughout the development lifecycle, and may be used for risk-

based security testing [2].  

 All input, from either the user or another server, should be verified [5].  

 Finally, if the software is an online web application, the server should control the 

application logic, not the client side, or it may be bypassed by an attacker [5, 8]. 

2.3 Automated Testing Prototypes  

There are several prototypes developed to automate the process of finding logic flaws, 

however they have many limitations. Unlike bugs, flaws don’t have a common ‘signature’ to 

scan for [5].  Humans can identify behavioral patterns better than software tools, and in these 

prototypes human input is still needed for extracting the logical model of the application or 

verifying the results. As with traditional automated security scanning tools, there can be false 

positives and false negatives, therefore scan results cannot be fully relied on to ensure the 

software is free of vulnerabilities [5, 55]. Automation generally relies on patterns, but logic may 

be unique to an application. It is possible that tools could be developed where the custom 

business logic of an application would be input during setup, and then the tool performs 

repeatable testing [8].  

Pellegrino and Balzarotti [56] state that only general logic vulnerabilities may be found 

through existing automated tools, and vulnerabilities specific to a particular application must still 

be found through manual inspection.  They used an automated black-box approach by 

monitoring network traces when users interact with an application, and then extracting 

behavioral patterns. The goal was not to create an accurate model of the application, but to show 

a simple model of the application logic was sufficient to identify logic flaws during automated 

reasoning. The prototype did not require the source code of the application. It was successful at 
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identifying flaws, but has several limitations. First, it is focused only on the classes of logic flaws 

found in eCommerce applications, and does not cover instances where the attacker is a malicious 

merchant or the attacker can tamper with messages sent between the merchant and payment 

service. The final results from the tool still needed manual review to distinguish between 

presentation issues, where the internal state is correct but displayed data is not, and cases where 

the internal state is not correct [56]. 

Felmetsger et al. [57] developed a prototype called Waler that monitors normal execution 

of Java servlet-based web applications, and infers relationships between variables. The goal was 

to identify the specifications of the application without human feedback. Limitations include the 

need to monitor real users interacting with the application, though it may be possible to use a 

scripting tool such as Selenium [58] to automate simulated user browsing activity. Waler relies 

on verifications already implemented in the applications’ code; this means that if the application 

never verifies that a number input by the user is negative when it should be positive, Waler 

assumes both positive and negative numbers are permissible. Currently, an invariant detector 

called Daikon [59] is used to derive the program specifications from the data gathered by Waler. 

Therefore, Waler is bound by the scalability issues of Daikon, which has trouble scanning large 

trace files and may run out of memory if too many variables are checked or too many invariants 

created [60]. Waler is also only able to scan Java servlet-based web applications [57]. 

After discovering several logic flaws using a manual code review method, Wang et al. 

used a tool called Corral [61] (previously known as Poirot) developed by the Microsoft Research 

Team to scan for application logic flaws. The goal was to check if Corral could find these flaws 

using a model of the logic in Bigcommerce; it found all the flaws they discovered with manual 

testing as well as several others. Corral can be used on C, .NET, or Java programs and “…uses 
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bounded goal-directed symbolic search techniques to find assertion violations” [62]. Wang et al. 

manually extracted the logic of Bigcommerce and PayPal Express into a C header file containing 

implemented variables and methods, and created a symbolic driver program in C. The symbolic 

driver called five API methods in a nondeterministic order, using nondeterministic argument 

values, and completed by calling the final checkout method for Bigcommerce. Corral generated a 

verification condition (VC) based on whether there was a correct payment record corresponding 

to a completed order. A correct order payment meant the payment amount matched the total 

price of the order, the merchant was the receiver of payment, and the payment was intended for 

that order specifically. The VC was then verified by the theorem prover Z3 [63]. Corral could 

loop through the symbolic driver program multiple times, and the number of loops it was set to 

run bounded the number of API method calls made during execution.  

Limitations of Corral include only accepting C, .NET, and Java source code, and the need 

for developing a driver program with assertions designed for use with Corral.  Installation 

requires several other programs, such as Z3, and an intermediate program used to convert the 

source code to an Intermediate Verification Language called Boogie. The intermediate program 

varies depending on the source code language, and may have its own installation requirements. 

Wang et al. encountered an out-of-memory error if Corral was looped more than six times on 

their symbolic driver program, and it also took up to four hours to run six loops [20]. Despite the 

limitations, Wang et al. said automated verification is necessary; when looping six times through 

the symbolic diver, there were hundreds of thousands of times Corral had to backtrack to where a 

decision was made previously and, branch to another data flow path, which is unrealistic for 

manual testing [20].  
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2.4 The Case Study 

The article How to Shop for Free Online [20] covered two popular merchant softwares: 

NopCommerce and Bigcommerce, and four cashier services: PayPal Standard, PayPal Express, 

Google Checkout, and Amazon Payments. Serious logic flaws were discovered in 

NopCommerce and Bigcommerce with how they integrated PayPal Standard, PayPal Express, or 

Google Checkout to collect payments, and with Amazon Payments itself. These logic flaws 

allowed an attacker to complete an order for free or at a reduced price, use a replay attack to 

complete an order of the same price multiple times but only pay for the first order, or complete 

additional orders for free after paying for one small order.  

Wang et al. found at least one serious logic flaw in each case they reviewed, using a 

manual testing method described below. They then verified these flaws using Corral, as 

mentioned in Section 2.3. The flaw for Bigcommerce and PayPal Express involved using two 

sessions, and replacing the digitally signed argument from one session with one in a second 

session. The attacker could pay for a cheap order, but stop the final step of the checkout process 

from completing. The first session now has a stored payment record associated with it. Then, the 

attacker creates an expensive order in a second session, but skips the payment step. A digitally 

signed variable containing information about the expensive order is still generated by 

Bigcommerce, even though the checkout fails. Finally, the signed argument from the second 

session is used to replace the signed argument in the first session, and the final step of the first 

checkout process is resumed. Thus, the expensive order is completed with the payment intended 

for the cheaper order. 

The testing method used by Wang. et al. was to:  
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1) Manipulate the data. Identify all arguments used by the API methods in the web application. 

If an argument is unsigned, test unexpected values such as manually changing the value 

during the checkout process and leaving the argument value empty. If an argument is 

digitally signed, test reusing the argument in a replay attack, replacing it with the same 

signed argument generated from a second session, and leaving the argument value empty.  

2) Manipulate the workflow with expected user input. Try skipping one or more steps of the 

checkout process, and try running the steps in an incorrect order.  

3) Manipulate the workflow with data manipulations from step 1.  

For each of the steps 1-3, manually trace through the entire checkout process to identify 

how each argument affects the internal state of the application. Additional tests for step 1 not 

used by Wang et al. would be to remove the whole argument from the HTTP request, or add 

extra arguments to the HTTP request for arguments used at a later step in the checkout process, 

since attacker can manually add them to the HTTP request at an earlier step [5]. 

Wang et al. also created a case study based on their research [64]. The C header file 

mentioned in Section 2.3 was provided, along with a template C driver program.  Students must 

sift through the header file to discover the logic flaws for each of the four cashier services, either 

using the manual code review method, or by following the logic flaw outlined in How to Shop 

for Free Online: Security Analysis of Cashier-as-a-Service Based Web Stores [20], and complete 

the driver program. Variables used by the attacker would be given values and then methods from 

the C header file would be called in the right order to exploit the logic flaw, using the attacker-

accessible variables as the method arguments. One solution was given as an example. The 

symbolic C driver program for Corral, mentioned in Section 2.3, was also provided along with an 

installation of Corral.  



18 

 

 

3 CHAPTER 3 

The Course Module on Logic Flaws 

This chapter discusses the learning objectives of this course module, the rationale for 

developing this course module, the materials that were created, and the methodology for 

evaluating this course module.   

3.1 Learning Objectives  

Logic flaws are consistently among the primary causes of commonly exploited software 

vulnerabilities [2, 14, 51, 52]. Since logic flaws are issues at both the code and design and 

software architecture level, computer science students must learn to move beyond the traditional 

software security paradigm, and understand how to test input validation in combination with 

workflow manipulation. Application logic does not follow defined, repeatable patterns, which 

makes it a poor candidate for automated testing tools. However, there are existing manual testing 

methods specifically used to identify logic flaws, as discussed in Sections 2.2 and 2.4 

The goal of this course module is to help computer science students understand the 

concept of logic flaws and why they must be tested for manually. They should also be able to 

identify, critique, and then fix logic flaws in the source code provided in the discussion 

questions. To guide the development of this course module, a set of learning objectives (Table 1) 

was created. The discussion questions are directly related to the learning objectives, in order to 

evaluate if the learning objectives were met. See Table 2 in Section 3.3.4 for a mapping of the 

discussion questions to the learning objectives. 
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Table 1  

List of Learning Objectives for the Course Module 

 Learning Objective 

1 Explain what an application logic flaw is. 

2 Explain why it is difficult for an automated tool to find logic flaws. 

3 Identify potential areas for logic flaws in HTTP interactions. 

4 Critique back-end code for HTTP interactions, which has logic flaws. 

5 Fix logic flaws in back-end for HTTP interactions to secure it. 

 

3.2 Rationale 

The use of technology is widespread and increasing rapidly. The software for these 

technologies needs to be protected from the consumer level up to critical infrastructures. In 2013, 

Information Assurance and Security was added as a new Knowledge Area in the ACM/IEEE 

Computer Science Curricula 2013 [22]. This was in recognition of the importance of software 

security, and that security concepts need to be taught as part of general undergraduate computer 

science curriculum.  

Existing resources on logic flaws provide very specific categories to test for, but do not 

show how to handle logic that is custom to an application. The course module was designed to 

teach both the concept of logic flaws, and give students the skills to identify logic flaws in 

existing software.  

Logic flaws are a complex topic, and not something many students have been exposed to 

before. The case study provided by Wang et al. (Section 2.4) is difficult to complete without 

extensive work to understand the material. It is not easily integrated into existing computer 
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science curricula; the instructor would likely need to spend time reviewing the How to Shop For 

Free article to thoroughly understand it, and then complete the case study themselves since only 

one solution was provided. The article did not cover prevention of logic flaws during software 

development, or other resources on manual testing methods like those covered in Section 2.2. As 

an alternative, this case study is meant to be more easily understood while maintaining the same 

real-world example, and is part of a complete course module on the topic of logic flaws.  

In addition to using the learning objective as a guide for the content of the discussion 

questions, Blooms Taxonomy was referenced for the types of questions asked. The taxonomy 

categorizes different levels of learning based on cognitive complexity, and can be used to guide 

the development of course materials with the goal of increasing student’s comprehension and 

problem solving skills [65]. The discussion questions focused on the cognitive levels of 

Application, Analysis, and Synthesis 

3.3 Course Module Materials 

This section covers the introduction, reading quiz, animation, discussion questions, 

virtual machine for running an automated testing tool, and instructor materials developed for this 

course module.   

3.3.1 Introduction. The Introduction to Logic Flaws includes material previously 

discussed in Chapters 1 and 2 of this thesis in more detail. Students were also instructed to read 

the research article the case study is based on, How to Shop for Free Online: Security Analysis of 

Cashier-as-a-Service Based Web Stores [20]. The introduction provides information directly 

addressing the first two learning objectives in Table 1. Application logic flaws are defined, and 

where logic flaws come from is covered. Since logic flaws require skill and knowledge to find, 

the importance of finding and fixing these kinds of vulnerabilities is stressed.  
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A Section on testing explains how logic flaw security testing can be performed alongside 

traditional functional testing. Specific testing recommendations from The Web Application 

Hacker's Handbook [5] and OWASP [12] are listed and reviewed, followed by a detailed 

description of the manual code review method used in the case. Current automated prototypes 

are reviewed, including the automated tool used by Wang et al., to show the use and limitations 

of automated testing for logic flaws. 

While not covered in the discussion questions, there are resources that provide 

recommended practices to reduce logic flaws during software development. Security should be 

addressed throughout the entire software development cycle, and is more effective when 

intentionally built-in to the software [2, 66, 67]. These recommendations are compiled and 

organized by the category of logic flaw. 

Finally, the case study is described in detail. It explains the exploit in the Bigcommerce 

and PayPal Express case, and how Wang et al. used the manual code review method to find the 

exploit, then verified it with an automated tool. The remaining materials, such as the animation 

and discussion question, are also described. 

3.3.2 Reading Quiz. A quiz with ten questions based on the Introduction to Logic Flaws 

was developed to verify if students actually read the introduction. A variety of question formats 

are used, such as matching, true/false, multiple-choice, and multi-answer. They can be 

administered online using an online learning environment such as Blackboard and graded 

automatically. They were not designed to be difficult, but were used to ensure students read the 

introduction before viewing the animation and answering the discussion questions. 

3.3.3 Case Study Animation. The animation was developed in PowerPoint, and covers 

the case study. Before the animation, there are several slides reviewing the logic flaw, and how it 
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was found using the manual code review method. The testing method is summarized with a list 

of steps on how to manipulate the API arguments and application workflow. The notations used 

in the animation are explained, such as the difference between an unsigned parameter, which is 

transmitted in cleartext, and a parameter with a digital signature. Different text colors are used 

for the three parties involved in the transaction (Attacker, Merchant, and PayPal Express). The 

three colors are used to signify parameters and back-end code used by each of the three parties. 

There is a list of the API arguments and public API methods for the Merchant and PayPal 

Express, which are visible or accessible to the Attacker.  

Before starting the animation, a sequence diagram shows the overall HTTP interactions 

performed when completing a normal checkout transaction (Figure 1). The animation then 

reviews two manipulated transactions that lead to an exploitable logic flaw. Each step of the 

checkout has two stages in the animation. First, it animates the HTTP interactions in a sequence 

diagram.  
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Figure 1 Sequence Diagram with HTTP interactions 

All parameters are color-coded by the last party who could modify them. For example, unsigned 

parameters sent out by the Merchant may be modified by the Attacker. Then, it traces through 

the back-end code representing that step. As the code is displayed, a table maintaining the 

current state of the variable values is updated (Figure 2). The table is also color coded to show 

which variables are used by the Attacker, Merchant, and PayPal Express.  

 The back-end code used in the animation was modified from code provided in the case 

study accompanying How to Shop for Free Online, which actually covered four cases. Unneeded 

code was removed for clarification, such as if-statements based on which third-party cashier was 

being used. Since only PayPal Express was used for this course module, any references to 
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Amazon SimplePay, Google Checkout, and PayPal Standard in the original case study were 

removed. The API method names used in the course module were modified to match the method 

names used in the How to Shop for Free Online article. 

 

Figure 2 Back-end code accompanying sequence diagram in Figure 1 

Any variables that were accessible or set by the attacker were changed to the format: 

myVariable. This helps show how the attacker-accessible variables are used by the Merchant and 

PayPal Express throughout the entire checkout transaction.  

After the animation Section is complete, there are slides that explain what steps the 

Merchant and PayPal Express took to ensure the transaction was secure and correct, such as 
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verifying that payment was attempted and did not fail. Then the logic flaw is described in detail, 

explaining which steps led to the exploit. 

3.3.4 Discussion Questions. There are eight discussion questions, most of which are 

based on the learning objectives. These questions were designed to be difficult, and intended to 

be given to students in groups of 2-3. Not all questions need to be given to students; a subset of 

the questions can be chosen. Some questions could be used in a quiz or test. See Table 2 for a 

mapping of discussion questions to Blooms Taxonomy cognitive levels, and to the learning 

objectives.  

Table 2 

Mapping of Discussion Questions to Learning Objectives and Blooms Taxonomy 

Learning 

Objective 

ID 

Question 

ID 

Case Study Discussion Questions Blooms Taxonomy 

Cognitive Level 

1, 2 1 What is a logic flaw, and why are they 

difficult to identify? 

Level 1 - Knowledge 

Level 2 - Comprehension 

 2 Why is it NOT a security vulnerability that 

the token, payerID, sessionID, and 

PayPalExpress URL parameters from the 

Bigcommerce and PayPal Express case are 

unsigned? 

Level 4 - Analysis 
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Table 2 

Cont. 

3 3 Read through the following URLs 

representing HTTP interactions between 

three parties. Suggest potential security 

flaws for each of the arguments. 

Level 4 - Analysis 

4 4 Read through the following code and 

critique it. 

Level 6 - Evaluation 

5 5 Fix the following code to better secure it. Level 5 - Synthesis 

 6 Propose methods to test for logic flaws 

(does not have to be automated) 

Level 5 - Synthesis 

 7 Given the following code and variable table, 

trace through the variables at each stage. 

Level 3 - Application 

 8 The following URLs/code sequence is out 

of order. What is the correct sequence? 

Level 3 - Application 

 

The discussion questions are listed with more detail in Appendix C. 

Questions 1 and 2 ask students about what logic flaws are, and about the case study from 

the animation. Questions 3-5 are part of a set, and use the same example code. This code 

represents the case Bigcommerce and Google Checkout from How to Shop for Free Online, and 

modified for clarification, in a similar manner as the PayPal Express case. The questions are 

about identifying potential security flaws in API arguments using the HTTP interactions, 

identifying potential security flaws in the back-end code for the case, and then fixing any 
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discovered flaws. Students are directed to use the manual code review method outlined in the 

animation.  

Question 6 asks students to propose testing methods for finding logic flaws. The last two 

questions, 7 and 8, use the case Bigcommerce and PayPal Standard. This code was also modified 

from the original case study for clarity. Only one question from this set should be chosen to give 

to the students. The first question asks students to trace through the given back-end code and fill 

out a table representing the current state of the variable values, similar to the animation. The 

second question provides the code with the trace table already completed; however, the steps of 

the checkout transaction are out of order. Students must find the correct order of API method 

calls.  

3.3.5 An Automated Testing Tool - Corral. VMware was used to set up a Virtual 

Machine running Windows 7 with the prerequisites needed to run Corral, the automated tool 

used by Wang et al. to confirm the logic flaws discovered using manual methods. This machine 

was distributed to students with code from the original case study designed for use with Corral. 

Students ran the tool, and submitted their review on its uses and limitations. Due to licensing of 

the operating system, this Virtual Machine will not be made available to other universities along 

with the other course module materials. However, instructions for setting up a Virtual Machine 

for installing and running Corral will be provided, as the prerequisites for Corral and Corral itself 

are either open-source or available for free.  

3.3.6 Instructor Materials. Instructors are provided with the answers to the reading quiz, 

and a rubric for grading the discussion questions. Since different subsets of the discussion 

questions may be chosen, and different point values may be given to each question, the rubric 

provides a percentage of points to assign for each answer instead of fixed point values. For 
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example, the question asking students to suggest potential security flaws for each argument in a 

set of API methods has 6 total parameters. If 5 or more parameters are answered correctly, 100% 

of the points are given for this question. If only 4 are correct, 75% of the points are given. 

 Some of the questions were designed to be open-ended and use higher levels of thinking. 

Potential answers are given in the rubric, but they are not the only acceptable answers to these 

questions. 

3.4 Course Module Evaluation 

Prior to starting the course module, students were given a pre-survey asking them to rate 

their level of knowledge of application logic flaws, based on the learning objectives, on a 5-point 

Likert scale. A post-survey with the same questions from the pre-survey was given once the 

course module was completed. It also asked students to review the usefulness of the module on a 

5-point Likert scale, and what they learned or problems that were encountered as open answer 

questions. These surveys were approved by the Institutional Review Board (IRB) at North 

Carolina A&T State University, and are listed in Appendix B. 

 The surveys and reading quizzes were completed individually, and the discussion 

questions were completed in groups of 3. As this course module was taught in an online course, 

students were instructed to record their discussion in a Blackboard online forum. One forum was 

created for each group. The forums allowed the discussions to be reviewed for how active or 

lively they were.  
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4 CHAPTER 4 

Results 

 This course module was taught in COMP 727 Secure Software Engineering at North 

Carolina A&T State University in the Spring 2015 semester. There were 21 students registered 

for the course. Students were given approximately three weeks, including spring break, to 

complete the course module.   

4.1 Survey Results   

A voluntary pre-survey and post-survey, approved by the IRB and North Carolina A&T 

State University, was given to students in COMP 727 Secure Software Engineering via 

Blackboard. The surveys asked students to rate their level of knowledge or skills for each of the 

learning objectives described in Table 1. The fourth and fifth learning objectives were simplified 

in the surveys to “Critique code with logic flaws” and “Fix code with logic flaws to secure it”. 

The surveys were also anonymous, but students were asked to provide a 4-digit ID number so 

paired statistical analysis could be done. Participants in the survey were graduate-level computer 

science students. More detailed demographics were not collected. Aggregate survey results are 

listed in Appendix D, 

Out of 21 students registered for the course, three submitted blank or partially blank pre-

surveys. For the post-survey, 17 surveys were completed, and three were blank. As an unequal 

number of surveys were completed for the pre- and post-surveys, and in the post-survey several 

students declined to respond with the four-digit number being used to pair responses, a paired 

statistical analysis could not be performed. Instead, a Mann-Whitney U test was more 

appropriate, with the before and after data treated as independent samples. It is a nonparametric 

test of the null hypothesis that two populations are equal. 
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The null hypothesis H0 is that the two populations are equal, and the research hypothesis 

H1 is that the two populations are not equal. With N1 = 18, N2 = 14, and α = 0.05, the calculated 

critical value for this test is 74 [68]. Thus, H0 is rejected if U ≤ 74. 

Table 3 

Mann-Whitney U test results of students’ ranking of their knowledge/skills on logic flaws on a 5-

point Likert scale  

Learning Objective: 1 2 3 4 5 

U 49.5 72.5 41 57 67 

Asymptotic 2-tailed p-

value 

.002 .032 .001 .004 .013 

  

The results in Table 3 show that students felt they improved their knowledge or skills for most of 

the learning objectives described in Table 1. All of the p-values indicate these results are 

statistically significant, and H0 is rejected for each learning objective. As this was calculated 

using a relatively small sample size, the results of this Mann-Whitney U test may not be 

representative of the population of university-level computer science students.  

The post-survey included additional questions asking students to rate their interest in the 

topic of logic flaws and to review the course module.  

Table 4  

Results of how much the students agree or disagree with the statements on the post-survey 

Question Response 

The case study was useful to help you understand the material 29% Strongly Agree 

50% Agree 
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Table 4  

Cont. 

You were motivated to learn about application logic flaws 29% Strongly Agree 

29% Agree 

You enjoyed the case study 29% Strongly Agree 

36% Agree 

The learning objectives were met 7% Strongly Agree 

71% Agree 

The case study helped you to develop problem solving and 

critical thinking skills, and ability to think independently 

21% Strongly Agree 

43% Agree 

 

Overall, these responses show students enjoyed the case study, and felt it was useful. Most 

importantly, 78% of students felt the learning objectives were met and 63% of the students felt 

they improved their problem solving and critical thinking skills. 

The post-survey also asked students several open-ended questions: what was the most 

important thing they learned, if any problem were encountered while completing the case study, 

and if they had any additional comments. The most common things they learned were: 1) never 

trusting input from the client side of a web application, and 2) how seemingly simple 

vulnerabilities can lead to serious logic flaws.  A few comments reiterated that students enjoyed 

the analytical thinking. Problems were encountered with 1) running Corral on the virtual 

machine, 2) understanding the article by Wang et al., and 3) with tracing the state of variables 

through each step of the transaction when doing the manual code review. Notable comments 
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were: “It was an interesting concept to learn.” and “The case study was really good. It helped me 

a lot in enriching knowledge on application logic flaws.” 

4.2 Graded Reading Quiz   

The average score on the quiz about the reading was 89.80. Quiz grades are listed in 

Appendix D. Out of ten questions, four were missed by at least 20% of the class.  

 One question was matching the terms bug, flaw, logic flaw, and vulnerability to their 

definitions. Three students mixed up flaws and logic flaws, and two mixed up flaws, 

logic flaws, and vulnerabilities. The definition of a software vulnerability can be added to 

the introduction on logic flaws. 

 One question was multiple-choice, asking about what can cause flaws during 

development. Four students answered with the example of a bug or a flaw, instead of 

elements of the software development lifecycle that can affect the quality of the software. 

In the introduction, the section on what causes flaws can be expanded or clarified. 

 One question was on the possible number of flaws in a software application, given the 

number of lines of code, and the number of vulnerabilities per thousand lines of code. It 

was emphasized that the question asked for the number of flaws only. Five students 

answered with the total number of vulnerabilities, which included both bugs and flaws. 

These students also had incorrect answers to the term matching question. There is an 

example in the introduction that estimates the number of flaws for an application; this can 

be expanded to also estimate the number of bugs, to help make a distinction between the 

two. 

 For one question, half the class’ answers were partially incorrectly. The question was on 

methods that can be used to find logic flaws; multiple answers could be selected. Nine 
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students selected the three correct answers, but also one incorrect answer, indicating 

either the question or the introduction was not clear enough on this subject. The 

introduction can be clarified to say that logic flaw testing can be done alongside 

functional testing, but functional testing is not used to specifically find logic flaws. The 

question can also be modified to ask which testing methods are used primarily for finding 

logic flaws. 

4.3 Discussion Questions   

While the reading quiz and surveys were individual, the discussion questions were 

assigned to students in groups of three, for a total of seven groups. Out of the eight available 

questions for the case study covered in Section 3.3.4, five were chosen: questions 2-5 and 8 from  

Table 2. The last question for the assignment was to run Corral on a virtual machine using the C 

header file and symbolic driver program mentioned in Section 2.3, and describe their experience 

using an automated prototype to test for logic flaws. Question 1 from Table 2 was given on a 

mid-term exam after the course module was completed.     

Students’ grades for the course module were based on several factors. Their individual 

participation and the quality of their posts on the online Blackboard forum was worth 25 points. 

The quality of the discussion for the group as a whole, based on the forum posts, worth of 20 

points. Finally, the answers to the discussion questions themselves in the final group report were 

worth 55 points, for a total of 100 points for the course module.   

A limitation of the results presented for this section is that members from at least three 

groups participated in one large discussion. The reports for these groups were based on this 

collaboration, and therefore have similar content. This means there are essentially four unique 

sets of responses that can be evaluated instead of seven. 
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4.3.1 Quality of Discussion Overall the discussion on the online Blackboard forums was 

high-quality and indicated that most of the groups had very active discussions. Some groups met 

in person and recorded their conversations as best as possible, while other groups communicated 

almost entirely through the Blackboard forums. The posts show that students were in fact able to 

perform the high level of analysis, synthesis, and evaluation that was asked of them. Table 5 

shows excerpts from student online discussion of one group. 

Table 5 

Excerpts from student online discussions 

“You are right about number 1. I was wrong when I said that modifying myPrice would have any 

kind of effect. Since it's not being used in the code sample we have then there is not a 

vulnerability present. But for #3…I think that it is still vulnerable to a replay attack. What if we 

initiated an order with a cheap piece of merchandise in order to get a signed SESSIONID, 

CART, and IPNHANDLER” 

“I think you are right. We may have been overthinking this stage of the order processing. If the 

cahsier sends over the price information for verification then that would be sufficient as long as 

the merchant can always verify the origin of the message as coming from a cashier and not from 

an attacker.” 

 

The online discussions will be also be used as part of a research project at A&T State University 

on collaborative learning. 

4.3.2 Graded Discussion Questions The rubric described in Section 3.3.6 was used to 

grade each of the discussion questions presented in the reports submitted by each group. The five 

main discussions questions covered in Section 4.3 were out of 10 points each, and the question 
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on students experience running Corral was 5 points. Grades ranged between 42.5 and 55, out of 

55 points, as shown in the box-and-whisker plot in Figure 3. Discussion question grades are 

listed in Appendix D.  

The question students struggled with the most was question 3 (Table 2). Instructions 

mentioned that this was related to the BigCommerce and Google Checkout case in the research 

article by Wang et al. Instead of providing their own responses based on the HTTP arguments, 

students summarized each step of the code, referencing the article. The rubric was based on 

general potential vulnerabilities, and not on the source code behind the HTTP request. For 

example, unsigned arguments are sent in cleartext and could be modified, and the source code 

may not include verifications to check the validity of the arguments’ value. 

 

Figure 3 Box and Whisker graph of graded discussion questions 
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Question 4 (Table 2) seemed to be the question that students found most difficult. The 

three groups who were not involved in the multi-group collaboration did an excellent job on this 

question. They identified both vulnerabilities that led to a logic flaw and security measures 

present in the provided source code. The collaborated answer relied more on the article by Wang 

et al. than on the students’ own analysis, and did not mention the existing security measures. 

Some of their identified vulnerabilities were also incorrect. Question 5 (Table 2) used analysis 

from the previous question to fix the logic flaw; incorrect analysis led to some incorrect 

mitigation of vulnerabilties in the code.  Most of the groups did attempt the correct method for 

fixing the logic flaw present in this code, although it was not always properly implemented.  

 For question 1 (Table 2) on the mid-term exam, the average grade was an 8.3 out of 10 

points, and 12 students received the full 10 points. Students were able to describe what logic 

flaws were, and provided examples. They also understood why logic flaws are difficult to 

identify, for both manual and automated testing methods.  
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5 CHAPTER 5 

Discussion and Future Research 

Based on the overall results, this course module was successful at teaching graduate-level 

computer science students about application logic flaws. It adds to the number of case studies 

available for computer science education, specifically supporting secure software engineering or 

software security testing courses. It should help bridge the gap that exits between academia and 

industry best practices for software engineering. 

Future work can be done to improve the course module as a whole, and more case studies 

on logic flaws can be developed to supplement the existing case. The animation relies on correct 

alignment of images and text, but may be formatted incorrectly when opened in applications 

other than PowerPoint 2010 on Windows computer. By switching to a cross-platform medium 

such as HTML 5, the animation formatting will be more consistent when viewed on different 

devices. As mentioned in Section 4.2, one of the reading quiz questions was partially incorrect 

by half of the class. Both the introduction document and the question can be clarified.  

The grading rubric for the discussion questions (Section 3.3.6), does not contain all 

possible answers, since some of the questions are open-ended. Student responses to these 

questions included quality answers not currently listed in the rubric; these can be added to 

expand the set of possible answers.  

For the case study, students recommended that the animation include a description of the 

source code. Each step showed the HTTP interactions in a sequence diagram, followed by the 

back-end code. A summary can be added to each step, explaining what is actually happening. For 

example: The attacker added one cheap item to their cart, and started the checkout process. Some 

of the terminology used in the article by Wang et al. and the case study was new to the students, 
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which led to difficulty understanding the details of application logic flaws. Both the introduction 

to logic flaws and the animation can be updated to include a list explaining the terms being used. 

Code used in the animation was modified to clarify which arguments were accessible by the 

attacker, but confused the students if they tried comparing the case study source code to the 

examples given in the article by Wang et al. Before the animation starts, the modifications can be 

listed and explained.  

Students said tracing the state of variables through each step of the transaction when 

doing the manual code review was difficult. Either a table similar to the one used in the 

animation can be provided as part of that discussion question, or the introduction and the 

animation can be updated to explain the steps for creating their own table. They also had a 

difficult time coming up with ways to mitigate the logic flaws in the code. A section in the 

introduction and the animation can be added to address this explicitly. For example, in the case 

study the sessionID could be bound to the orderID, and the digitally signed argument containing 

the shopping cart information should not be created if payment to PayPal Express failed, or at 

least not made available to the user. Finally, the instructions for running Corral on the virtual 

machine can use some clarification, as well as an explanation of what the scan results mean.  

As this course module has only been taught and evaluated once, with a relatively small 

sample size, future work would include using the module in other universities or again at NC 

A&T State University. It can be taught as part of a software engineering or software security 

testing course, as discussed in Section 1.3. Several professors from other universities have 

already expressed their interest in using this course module as part of their curriculum.  
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Appendix A 

Table A-1 [50]  

OWASPs’ 2013 Top 10 [51] cross-linked with 2011 CWE/SANS Top 25 Most Dangerous Software Errors [52] 

Bug/Flaw 

Categorization 

 OWASP Top 10 2013   2011 CWE/SANS Top 25 

Bug A1 Injection 1 CWE-89 Improper Neutralization of Special 

Elements used in an SQL Command ('SQL 

Injection') 

2 CWE-78 Improper Neutralization of Special 

Elements used in an OS Command ('OS 

Command Injection') 

Flaw A2 Broken Authentication and Session 

Management 

5 CWE-306 Missing Authentication for Critical 

Function 

7 CWE-798 Use of Hard-coded Credentials 

10 CWE-807 Reliance on Untrusted Inputs in a Security 

Decision 

5
0
 



 

 

 

Table A-1 [50] 

Cont. 

Flaw A2 Broken Authentication and Session 

Management 

14 CWE-494 Download of Code Without Integrity 

Check 

21 CWE-307 Improper Restriction of Excessive 

Authentication Attempts 

Bug A3 Cross-Site Scripting (XSS) 4 CWE-79 Improper Neutralization of Input During 

Web Page Generation ('Cross-site 

Scripting') 

Flaw A4 Insecure Direct Object References 6 CWE-862 Missing Authorization 

9 CWE-434 Unrestricted Upload of File with 

Dangerous Type 

13 CWE-22 Improper Limitation of a Pathname to a 

Restricted Directory ('Path Traversal') 

15 CWE-863 Incorrect Authorization 

 

5
1
 



 

 

 

Table A-1 [50] 

Cont. 

Flaw A4 Insecure Direct Object References 16 CWE-829 Inclusion of Functionality from Untrusted 

Control Sphere 

Flaw A5 Security Misconfiguration 11 CWE-250 Execution with Unnecessary Privileges 

17 CWE-732 Incorrect Permission Assignment for 

Critical Resource 

Flaw A6 Sensitive Data Exposure 8 CWE-311 Missing Encryption of Sensitive Data 

19 CWE-327 Use of a Broken or Risky Cryptographic 

Algorithm 

25 CWE-759 Use of a One-Way Hash without a Salt 

Flaw A7 Missing Function Level Access 

Control 

   

Bug A8 Cross-Site Request Forgery (CSRF) 12 CWE-352 Cross-Site Request Forgery (CSRF) 

Flaw A9 Using Components with Known 

Vulnerabilities 

16 CWE-829 Inclusion of Functionality from Untrusted 

Control Sphere 

5
2
 



 

 

 

Table A-1 [50] 

Cont. 

Flaw A10 Unvalidated Redirects and Forwards 22 CWE-601 URL Redirection to Untrusted Site ('Open 

Redirect') 

Bug  Buffer Overflow 3 CWE-120 Buffer Copy without Checking Size of 

Input ('Classic Buffer Overflow') 

18 CWE-676 Use of Potentially Dangerous Function 

20 CWE-131 Incorrect Calculation of Buffer Size 

23 CWE-134 Uncontrolled Format String 

24 CWE-190 Integer Overflow or Wraparound 

 

5
3

4 
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Appendix B 

Pre-Survey Questions 

Please rate your level of knowledge or skills in the following areas using a scale of: 

1(very low), 2(low), 3(medium), 4(high), 5(excellent) 

 Rating (1-5) 

1. Explain what an application logic flaw is  _________ 

2. Explain why it is difficult for an automated tool to find logic flaws   _________ 

3. Identify potential areas for logic flaws in HTTP interactions  _________ 

4. Critique code with logic flaws.  _________ 

5. Fix code with logic flaws to secure it.  _________ 

 

Post-Survey Questions 

Please rate your level of knowledge or skills in the following areas using a scale of: 

1(very low), 2(low), 3(medium), 4(high), 5(excellent) 

 Rating (1-5) 

1. Explain what an application logic flaw is  _________ 

2. Explain why it is difficult for an automated tool to find logic flaws   _________ 

3. Identify potential areas for logic flaws in HTTP interactions  _________ 

4. Critique code with logic flaws.  _________ 

5. Fix code with logic flaws to secure it.  _________ 
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1. The case study was useful to help you understand the material. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d.   Disagree                  e. Strongly Disagree 

 

2. You were motivated to learn about application logic flaws. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d.   Disagree                  e. Strongly Disagree 

 

3. You enjoyed the case study. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d.   Disagree                  e. Strongly Disagree 

 

4. The learning objectives (questions 1-5) were met. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d.   Disagree                  e. Strongly Disagree 

 

5. The introduction and animation provided enough information for the discussion questions. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d.   Disagree                  e. Strongly Disagree 

 

6. The case study material was organized. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d.   Disagree                  e. Strongly Disagree 
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7. The level of difficulty of this case study is appropriate. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d.   Disagree                  e. Strongly Disagree 

 

8. The case study helped you to develop problem solving and critical thinking skills, and ability 

to think independently. 

a. Strongly Agree        b. Agree                c. Neither Agree or Disagree   

d. Disagree                  e. Strongly Disagree 

 

9. What was the most important thing you learned from this case study? 

 

 

 

 

10. What problems did you encounter in completing this case study? 

 

 

 

 

11. Provide any general comments about the case study. 
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Appendix C 

Discussion Questions 

Note:  

Questions 3, 4, and 5 use the same example code. This should let the students try the manual 

code review method for finding logic flaws. All three questions should be given as a set. 

Questions 7 and 8 use the same example code; only one should be given. 

Notation used: 

 

Unsigned argument: argument 

Signed Argument: (ARGUMENT) 

Attacker-accessible argument in red text 

Attacker-accessible APIs in black text 

Store arguments and code in blue text 
Cashier arguments and code in green text 

1. What is a logic flaw, and why are they difficult to identify? 

 

2. Why is it NOT a security vulnerability that the price, payerID, result, sessionID, storeID, 

token, and PayPalExpress URL parameters from the Interspire and PayPal Express case are 

unsigned? Explain why for each variable. 

 

3. Read through the following URLs representing HTTP interactions between three parties. 

Suggest potential security flaws for each of the arguments. 

 

The cart is the cart object stored by the Store. The IPN_Handler refers to the Instant Payment 

Notification API method used by the Store, where GoogleCheckout notifies the Store 

immediately after the user makes a payment. Refer to Section III. B 3) in How to Shop for 

Free Online for details about this case. 

 

1. Store.com/updateCart?price&sessionID 

2. Store.com/checkout?price 

3. Google.com/pay?(SESSIONID)&(CART)&(IPN_HANDLER) 

4. Store.com/(IPN_HANDLER)?(SESSIONID)&(STATUS) 

5. Order has been completed 

 

4. Read through the following code and critique it. Refer to Section III. B 3) in How to Shop for 

Free Online for details about this case, and slides 5-10 of the PowerPoint. 
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1. Store.com/updateCart?myPrice&mySessionID 

if (mySessionID < 0 || mySessionID >= currentSessionID)  

return;  //sessionID is invalid 

carts[mySessionID].price = myPrice; 

 

2. Store.com/checkout?myPrice 

 

createCart(myPrice) 

 carts[currentSessionID].price = myPrice; 

 currentSessionID++; 

sign(currentSessionID-1); 

sign(carts[currentSessionID-1]); 

sign(IPN_HANDLER); 

 

3. Google.com/pay?(SESSIONID)&(CART)&(IPN_HANDLER) 

verifySignature( (SESSIONID)); 

verifySignature( (CART) ); 

verifySignature( (IPN_HANDLER) ); 

recordPayment( (CART).price, (SESSIONID) ) 

  payments[currentPaymentID].paymentAmount = (CART).price; 

  payments[currentPaymentID].orderID = (SESSIONID); 

  

4. Store.com/(IPN_HANDLER)?(SESSIONID)&(STATUS) 

 

status = OK; 

sign(status); 

IPN_Handler( (SESSIONID), (STATUS) ) 

if ( (STATUS) == OK){  

if ( (SESSIONID)< 0 || (SESSIONID) >= currentSessionID)  

return;  //(SESSIONID) is invalid 

      

createOrder(carts[(SESSIONID)].price, PAID, GoogleCheckout) 

orders[currentOrderID].orderID = currentOrderID; 

orders[currentOrderID].price = carts[(SESSIONID)].price; 

orders[currentOrderID].status = PAID; 

orders[currentOrderID].paymentType = GoogleCheckout;     

status = orders[currentOrderID].status; 

sign(status); 

} 

 

5. Order has been completed 
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5. Fix the code from Question 4 to better secure it. Refer to Section III. B 3) in How to Shop for 

Free Online for details about this case. 

 

6. Propose methods to test for logic flaws (does not have to be automated). 

 

7. Given the following code and variable table, trace through the variables at each stage.  

 

This is a replay attack, where the attacker gains access to a signed variable and can reuse it. 

They must pay for the first order, and leave the orderID argument in the URL empty. This 

means the orderID in the signed variable is empty. 

 

The flaw is that the store retrieves the orderID from the cookie, if the orderID in the signed 

variable is empty. The attacker can modify the orderID in the cookie to a new order, and 

complete additional orders at the same price as the first order, without paying for them.  

 

See the file: Question 7 – trace table.  

 

8. The following URLs/code sequence is out of order. What is the correct sequence (give the 

page numbers)? Refer to section III B. 2) in How to Shop for Free Online for details about 

this case. 

 

This is a replay attack, where the attacker gains access to a signed variable and can reuse it. 

They must pay for the first order, and leave the orderID argument in the URL empty. This 

means the orderID in the signed variable is empty. 

 

The flaw is that the store retrieves the orderID from the cookie, if the orderID in the signed 

variable is empty. The attacker can modify the orderID in the cookie to a new order, and 

complete additional orders at the same price as the first order, without paying for them.  

 

See the file: Question 8 – out of order.  

 



60 

 

 

Appendix D 

Table D-1 

Pre-survey aggregate data 

Learning 

Objective 

1 2 3 4 5 

1 3 4 5 5 5 

2 3 4 6 5 3 

3 10 7 6 8 9 

4 2 1 1 0 1 

5 0 2 0 0 0 

 

Table D-2 

Post-survey aggregate data for learning objectives 

Learning 

Objective 

1 2 3 4 5 

1 0 0 0 0 1 

2 1 1 1 2 0 

3 4 7 7 9 9 

4 8 6 6 3 4 

5 1 0 0 0 0 
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Table D-3 

Post-survey aggregate data for how much the students agree or disagree with these statements 

 Strongly 

Agree 

Agree Neither 

Agree nor 

Disagree 

Disagree Strongly 

Disagree 

The case study was useful to help 

you understand the material 

4 7 1 2 0 

You were motivated to learn 

about application logic flaws 

4 4 5 1 0 

You enjoyed the case study 4 5 3 2 0 

The learning objectives were met 1 10 3 0 0 

The introduction and animation 

provided enough information for 

the discussion questions 

1 8 3 2 0 

The case study material was 

organized 

2 7 4 1 0 

The level of difficulty of this case 

study is appropriate 

2 5 4 3 0 

The case study helped you to 

develop problem solving and 

critical thinking skills, and ability 

to think independently 

3 6 5 0 0 
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Table D-4 

Quiz Grades 

100 97.5 90 85 82.5 80 75 45.9 

11 1 1 1 1 2 3 1 

 

Table D-5 

Discussion Question Final Report Grades by Group 

100% 95% 90% 85% 75% 

2 2 1 1 1 

 

Table D-6 

Discussion Question Grades by Question 

Question 1 (mid-term 

exam) 

2 3 4 5 8 

100% 12 7 3 4 5 5 

75% 4  3 3  1 

50% 5  1  2 1 

25%       

0%       
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