
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Theses Electronic Theses and Dissertations

2014

Secure Android Code Helper (Sach): A Tool For Assisting Secure Secure Android Code Helper (Sach): A Tool For Assisting Secure

Android Application Development Android Application Development

Edward B. Hill
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/theses

Recommended Citation Recommended Citation
Hill, Edward B., "Secure Android Code Helper (Sach): A Tool For Assisting Secure Android Application
Development" (2014). Theses. 347.
https://digital.library.ncat.edu/theses/347

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie Digital
Collections and Scholarship. It has been accepted for inclusion in Theses by an authorized administrator of Aggie
Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

https://digital.library.ncat.edu/
https://digital.library.ncat.edu/theses
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/theses?utm_source=digital.library.ncat.edu%2Ftheses%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/theses/347?utm_source=digital.library.ncat.edu%2Ftheses%2F347&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

Secure Android Code Helper (SACH): A Tool for Assisting Secure Android Application

Development

Edward Hill

North Carolina A&T State University

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

 MASTER OF SCIENCE

Department: Computer Science

Major: Computer Science

Major Professor: Dr. Xiaohong Yuan

Greensboro, North Carolina

2014

ii

The Graduate School
North Carolina Agricultural and Technical State University

This is to certify that the Master’s Thesis of

Edward Hill

has met the thesis requirements of
North Carolina Agricultural and Technical State University

Greensboro, North Carolina
2014

Approved by:

Dr. Xiaohong Yuan
Major Professor

Dr. Kelvin Bryant
Committee Member

Dr. Huiming Yu
Committee Member

Dr. Sanjiv Sarin
Dean, The Graduate School

Dr. Gerry Dozier
Department Chair

iii

© Copyright by

Edward Hill

2014

iv

Biographical Sketch

Edward Hill has lived most of his life in Rockdale County, a very small town Southeast

of Atlanta, Georgia. He obtained his Bachelor of Science Computer Science degree from North

Carolina A & T State University, Greensboro, United States. While pursuing his education he

also played four years of football for the university as a scholar athlete.

In August 2013, he enrolled at the North Carolina A & T State University, Greensboro,

United States, to pursue his Master of Science Computer Science degree. Mobile security,

network security and cloud computing are some of his research interests.

v

Dedication

This work is dedicated to my parents Janice Morris, Tolbert Morris, Edward Hill Sr. and Betty

Hill.

vi

Acknowledgements

First acknowledgement goes to God.

I am grateful for the prayers and encouragement from my parents. I would like to

acknowledge every effort you all have made to provide me with tools I needed to succeed.

Further, I would like to acknowledge Dr. Gerry Dozier, Dr. Mohd Anwar, Prof.

Edmundson Effort and Cody Cannon for the inspiration and encouragement to pursue my

Master’s in Computer Science.

 In addition, I am very appreciative towards my advisor Dr. Xiaohong Yuan for her

guidance, advice, financial support and constructive criticism throughout my completion of

graduate school.

I would also like to express my gratitude to my committee members; Dr. Kelvin Bryant

and Dr. Huiming Yu whose efforts have help me bring this thesis to a completion.

My appreciation also goes to the other professor who shared their wealth of knowledge

with me and gave me wise advice.

Lastly, I would like acknowledge Sabrina Edmonds, Nate Isles, Adrian Burke and again

Cody Cannon for being a great friends and keeping me uplifted throughout my wonderful college

experience.

vii

Table of Contents

List of Figures .. ix

Abstract ... 1

CHAPTER 1 Introduction ... 2

CHAPTER 2 Literature Review .. 4

2.1 Top Ten Vulnerabilities ... 4

2.2 Causes of Data Leakage ... 5

2.3 Access Control Mechanism in Android ... 6

2.4 The CERT Oracle Secure Coding Rules for Android ... 7

2.5 Static Analysis ... 8

CHAPTER 3 SACH - A Tool for Assisting Secure Android Application Development............ 11

3.1 An Overview of SACH .. 11

3.2.1 Limit the accessibility of an application’s sensitive content provider 12

3.2.2 Do not broadcast sensitive data ... 14

3.2.3 Do not allow webview to access sensitive local resource through file scheme 17

3.2.4 Do not log sensitive information ... 21

3.2.5 Restrict access to activities .. 25

3.2.6 Do not release apps as debuggable .. 28

CHAPTER 4 Prototype implementation of SACH .. 30

4.1 Implementation .. 30

4.2 Testing and Results .. 30

viii

CHAPTER 5 Conclusion and Future Work .. 33

References ... 35

Appendix A .. 39

Appendix B .. 46

ix

List of Figures

 Figure 1. This figure is an overview of SACH ………...….……………………….…….…….11

Figure 2. This is an algorithm for limiting the accessibility of content provider….………….....14

Figure 3. This is an algorithm to detect if there is data leakage via broadcast intent……………16

Figure 4. This is an algorithm looking at the state attributes for plugin, allow file access

and Java script …………………………………………………………………….............……...21

Figure 5. This is an algorithm to detect the use of a log file……………………………………..23

Figure 6. This is an algorithm to parse FlowDroid output for data leakage to the log file……... 25

Figure 7. This is an algorithm to detect if an Android activity is public…………………….…...27

Figure 8. This algorithm is designed to detect if the Android application is debuggable…….… 29

Figure 9. Example output of SACH……………………………………………………………...32

Figure 10. SACH Results…………………………………………………………………...…....32

1

Abstract

Mobile devices now store a lot of sensitive data. With many users adapting to the

technical advancement of mobile devices, security of the user's sensitive data becomes

imperative. Security vulnerabilities in the mobile apps will lead to leakage of user’s sensitive

data. The goal of this research is to propose a tool to help programmers create secure Android

applications. The tool will warn developers about specific classes or methods that include

security vulnerabilities such as data leakage and access control vulnerabilities. The tool analyzes

Android source code using two approaches: 1) Parse the source code and XML to report

vulnerabilities based on CERT secure coding rules for Android application development and 2)

Run FlowDroid on source code, parse the output of FlowDroid and look for device ID, GPS

location data being leaked to a log file or through implicit intent. The results from these

approaches are combined into reports that inform developers of security vulnerabilities. The

proof of concept of the tool has been implemented and tested. Future work includes completing

implementation of the tool and running tests on a large number of source codes to evaluate its

effectiveness.

2

1 CHAPTER 1

Introduction

Open operating systems are no longer common to desktops and mainframes but are now

working their way to mobile devices. This new generation of mobile devices aids in connection

with already existing on-line services (Enck, 2009). Mobile devices have become warehouses,

storing a lot of sensitive data. While PC shipments have been significantly declining according to

a report by the International Data Center (IDC, 2013 b), mobile device shipments have been

significantly increasing. This could imply users are transitioning to the new generation of mobile

devices. With many users adapting to the new technical advancement of mobile devices, security

of the user's sensitive data is imperative.

The top software platform contenders are Blackberry, IOS, Windows Phone and Android.

Android accounts for 81.0% of smart phones (IDC, 2013 a). The Android operating system is

designed with security in mind, and uses Linux as its kernel to isolate an application from other

applications within the environment by using permissions (Clark, 2010). Although Android has a

solid foundation to protect the applications from other application within the environment, bad

design practices in the application themselves can lead to sensitive data being leaked. There is a

need to develop tools that can statically analyze developers’ applications before they are publicly

available.

Existing tools have been developed to analyze android applications. COPES (Bartel, 2012) is

a static analysis tool to address the issue of applications being given more permission than they

need to functionally perform. A related tool named Brox (Siyuan, 2013) uses static taint analysis

to detect if applications are leaking GPS information. LeakMiner (ZheMin, 2012) is another

3

static taint analysis tool used to detect if an application leaks sensitive information. FlowDroid

also analyze applications statically using taint analysis to detect sensitive data leakage (Artz,

2012).

This research proposes SACH (Secure Android Coding Helper), a tool that combines

statically analyzing developers’ code with static taint analysis to detect flow that can result into

unexpected data leakage. A combined report with both methods will give developers a better

understanding if their application is vulnerable to data leakage or susceptible to manipulation

from other applications. Unlike the previously mentioned tools, SACH analyzes vulnerabilities

by directly parsing the developer’s source code. Also SACH detects if the DevecidID or GPS

information is sent using a broadcast intent utilizing Android's inter process communication. The

algorithms designed for SACH are described. A prototype is implemented and tested on 73

programs.

The rest of the thesis is organized as follows: Chapter 2 provides a literature review of

vulnerabilities in the Android applications, cause of data leakage, access control, secure coding

practices and static analysis. Chapter 3 describes the overall design of SACH and the algorithms

used to detect vulnerabilities related to data leakage and access control. Chapter 4 describes the

prototype implementation of SACH. Chapter 5 concludes the thesis and discusses future work.

4

2 CHAPTER 2

Literature Review

This chapter provides literature review in the areas of vulnerabilities in the android

environment, data leakages, access control mechanisms in Android, secure coding practices and

static analysis.

2.1 Top Ten Vulnerabilities

OWASP describes the top ten vulnerabilities in mobile applications (OWASP, 2013). These

vulnerabilities are briefly described below:

• Weak Server Side Controls - Weak server side controls refers to mobile applications
having access to APIs provided by organizations such as Send Grid. The APIs can be
abused by the user, malware or a vulnerable application on the device.

• Insecure Data Storage - Insecure data being stored in SQLite databases, logs, xml or
manifest files, SD cards and cookies. Best practices are often to encrypt sensitive
information with AES 128, do not set the mode of shared preferences to world readable
unless needed, avoid hard coded encryption and decryption keys, use the “setEncryption”
API to encrypt local data and add an addition level of encryption.

• Insufficient Transport Layer Protection- Data on mobile devices are also susceptible to
insufficient transport layer protection due to threat agents such as malware, monitored
network and malware. The threat agents can take advantage in weak SSL
implementation.

• Unintended Data Leakage - Sensitive data can be leaked via malware, modified versions
of legitimate applications or if an unauthorized user has access to the device. Sensitive
data can be breached by using free forensic tools or by using API to access the vulnerable
data.

• Poor Authorization and Authentication - Authorization and authentication controls can be
bypassed by submitting automated input to the server. Server side authentication and
authorization must be enforced to prevent this type of attack. If the application requires
offline access, mechanisms should be put in place so the client mobile application can
check the integrity within the code for medications.

5

• Broken Cryptography - Encrypting data without proper protocols can result in broken
cryptography. Threat agents to encrypted data include a user gaining access to the device
or mobile malware representing the user. Vulnerable encryption is due to poor key
management, using custom algorithms and the use of insecure or deprecated algorithms.

• Client Side Injection - Applications are also vulnerable to client side attacks such as SQL
injection, JavaScript injection, local file inclusion and intent injection; This can happen
when untrusted data is sent via internal user, external users, the applications itself or
malware on the device.

• Security Decisions Via Untrusted Inputs - It refers to how applications can be vulnerable
to untrusted inputs via Inter Process Communication (IPC). Applications should restrict
incoming IPC communications and not send sensitive data using IPC.

• Improper Session Handling - The outcome of poor authentication can result in improper
session handling. This typically involves using insecure tokens, cookies that have not
been reset after authentication state changes and lack of timeout protection.

• Lack of Binary Protection - Lack of protection from reverse engineering is also an issue.
Applications need the ability to detect if it has been modified; Or if it is robust enough
against static analysis.

2.2 Causes of Data Leakage

Data leakage happens when data are vulnerable to access outside the scope of an application

resulting in the breach of mobile users’ confidentiality. Methods of data leakage include URL

caching, keyboard press caching, copy/paste buffer caching, application back grounding,

logging, HTML5 data storage, browser cookie objects, and analytic data sent to 3rd parties

(OWASP, 2013).

• URL Caching - The responses and requests used by an application to access a network
can be stored to increase processing speed.

• Keyboard Press Caching - A user keyboard presses can be stored in memory for future
use.

• Copy/Paste Buffer Caching- When data is copied, it is stored into a buffer that can be
stored in the buffer can be used later to paste the data.

6

• Application Backgrounding- Components of an Android application can execute code
that runs in the background with an interface. For example data can be exchanged
between applications by using IPC to send intents. The intents can be manipulated to
breach the privacy of data.

• Logging- Data can be stored by writing information to a log file. The log file can be read
by other applications with the proper permission prior to Android version 4.0. The log
file can also be read if the device is connected to a computer.

• HTML5 Data Storage- Web pages can store data locally within an application for future
use. HTML5 web storages are similar to cookies but designed with better security and
performance and can store more data.

• Browser Cookie Objects- Cookies are small data that are stored in text files for servers to
remember information about the user.

• Analytic data- Data can also be leaked by applications that collect information about the
user to sell or give the information to third parties.

2.3 Access Control Mechanism in Android

 Unlike traditional systems where applications inherit permissions from the account used to

run the application, each application in the android operating system runs as its own user

account. This feature of the Android operating system allows applications to isolate their data

from other applications but they can still access other applications data if their requested

permission is granted. Android also uses an install-time permission model, where the user must

review a list of permissions an application is requesting. The permissions an application requests

during installation must be granted by the user in order to continue installation. This feature

allows the user to be notified of what an application could do if granted particular permissions

allowing users to make informed decisions. Another benefit that the permission model provides

is to limit what a legitimate application could access if it was compromised.

Permissions are defined in the extensible markup language (xml) file of the application.

Permissions has the following attributes (Six, 2012):

7

• Label - The label provides a very short summary of the permission while the description
attribute provides more detail.

• Icon – Is the icon used to represent the permission.

• Name – The name attribute is used to refer to the permission for example
“com.example.project.General_Action”.

• Description – The description attribute provides and in depth description of the
permission that will be prompted to the user.

• Protection Level – The protection level attribute allows the permission to be defined as
normal, dangerous, signature or “signatureorSystem”. The normal permission informs the
user that the permission does not pose as a threat to the user. The dangerous permission
informs the user that the permission can pose as a threat to the user’s sensitive data. A
requesting application with the same digital certificate as the application that declared the
permission can be granted permissions if the declared permission is a signature
permission. The “signatureorSystem” permission is similar to the signature permission
except it grants permission to the Android system image.

• Permission Group - Allows the Android package installer to prompt the user of requested
permissions when they are presented to the user upon install

2.4 The CERT Oracle Secure Coding Rules for Android

Researchers from Carnegie Melon University published some rules that can be applied to

android specific applications to promote secure coding (Seacord, 2014). Twenty three topics are

covered but not all of them are complete. This section will cover the topics that are complete and

can be used to implement the algorithms for SACH.

• (DRD01-J) Limit the accessibility of an app's sensitive content provider. Application can
share data with other applications using content providers. To prevent unauthorized
access to sensitive data, the export attribute in the AndroidManifest.xml should be set to
“false”, making the content provider private. Before API level 16, the content provider is
set to public by default unless the export value specified “false”.

• (DRD02-J) Do not allow WebView to access sensitive local resource through file
scheme. Malware can also manipulate web view to open malicious code (ex. maliciously
crafted HTML) that is stored on the device. This can be done through
setJavaScriptEnabled setPluginState and setAllowFileAccess methods within web views.

https://www.securecoding.cert.org/confluence/display/java/DRD01-J.+Limit+the+accessibility+of+an+app%27s+sensitive+content+provider
https://www.securecoding.cert.org/confluence/display/java/DRD02-J.+Do+not+allow+WebView+to+access+sensitive+local+resource+through+file+scheme
https://www.securecoding.cert.org/confluence/display/java/DRD02-J.+Do+not+allow+WebView+to+access+sensitive+local+resource+through+file+scheme

8

• (DRD03-J) Do not broadcast sensitive information using an implicit intent Another high
security risk is when developers send sensitive data implicitly throughout the system.
When data is sent implicitly, any application including malware can read the data.

• (DRD04-J) Do not log sensitive information Applications that log sensitive information
leave the data vulnerable to be read. Other applications may have access to the logs
(before Android 4.0) or the logs can be read if plugged into a pc. It is better not to write
sensitive information to logs or to implement a custom log class so output is not
automatically displayed.

• (DRD09-J) Restrict access to sensitive activities - Restriction to the application needs to
be considered when developing applications. Other applications can activate an activity
for unintended use if the developer’s application is accessible due to the exports value
being set to true.

• (DRD10-J) Do not release apps that are debuggable - Android applications can also be
vulnerable to be debugged, even without the source code. The debuggable attribute need
to be set to false to avoid the application being understood by users.

2.5 Static Analysis

 Some research has been conducted on applying static analysis methods on mobile application

source code. Using static analysis, different methods of taint analysis has been researched to

trace identified variables within the Android OS to function calls. This section will provide a

review of related literature.

 The developers of Brox (Siyuan, 2013) analyzed android application using taint analysis to

detect if an application requested location, device or contact information from the device to be

sent via network or SMS. Location information is managed by the LocationManager in the

android architecture for an application to acquire the device GPS location. The device

information is referring to the unique identifier such as Inetnational Mobile Station Equipment

Identity (IMEI) and International Mobile Subscriber Identity (IMSI) which are managed by the

TelephonyManager and can be used to uniquely identify a device. The TelephonyManager also

https://www.securecoding.cert.org/confluence/display/java/DRD03-J.+Do+not+broadcast+sensitive+information+using+an+implicit+intent
https://www.securecoding.cert.org/confluence/display/java/DRD04-J.+Do+not+log+sensitive+information
https://www.securecoding.cert.org/confluence/display/java/DRD09-J.+Restrict+access+to+sensitive+activities
https://www.securecoding.cert.org/confluence/display/java/DRD10-J.+Do+not+release+apps+that+are+debuggable

9

controls contact information such as addresses and phone numbers. Information can leave the

device by using the smsManager or the internet by using the socket class.

 Similar to Brox, developers of LeakMiner (ZheMin, 2012) analyzed applications using static

taint analysis to determine same flows (a flow is the call path from a data stored in the device to

sink where that data is sent) as Brox but looked for information from the calendar or sms. The

developers identified any flows between the sensitive information they declared to the log files.

After android version 4.1, applications cannot read log files even with the READ_LOG

permission. Log files can still be read if the device is connected to a computer (Seacord, 2014).

LeakMiner analyzed 1750 applications and found 145 true leakages. Based on their results,

device ID was the sensitive information leaked the most.

 EC Spride developed a static analysis tool named FlowDroid (Artz, 2014). FlowDroid

constructs the Android’s lifecycle to be able to handle callbacks invoked within the Android

framework. To minimize false positives that many static analysis tools produce the author

introduced context, flow, field and object sensitivity into FlowDroid. There is also a suite of

mobile applications named DroidBench. DroidBench is designed to test the accuracy and

effectiveness of other static analysis tools built to analyze Android applications. FlowDroid

statically outperformed commercial tools such as Fortify and IBM Security AppScan Source

statistically. FlowDroid scored a 93% recall and an 83% precision score.

 In related research, researchers developed dynamic taint analysis tools. TaintDroid is an

extension of the Android framework that monitors data flows produced by third party

applications (Enck, 2014). TaintDroid assumes that third party applications are not trusted.

Based on this assumption, TaintDroid attempts to detect when sensitive data is leaving the

10

system with the assistance of third party applications. TaintDroid provides real time feedback so

that the user can decipher whether or not an application is doing something malicious. The

authors evaluated the accuracy of TaintDroid by randomly selecting 30 popular applications that

use the phone’s location, camera and microphone data. TaintDroid identified 105 instances

where tainted data (sources) left the system; 37 were determined to be legitimate instances of

leaked data.

11

3 CHAPTER 3

SACH - A Tool for Assisting Secure Android Application Development

 This chapter provides will discuss the overview implementation of SACH and algorithms

designed for SACH.

3.1 An Overview of SACH

 SACH uses two approaches to detect vulnerabilities in Android applications. One component

of SACH parses Android source code according to CERT (Seacord, 2014). The second

component of SACH uses FlowDroid (Artz, 2014) to analyze data leakage by using static taint

analysis. The results of both components are combined into one report. FlowDroid provides the

functionality to analyze the developers’ code statically and detect if data are vulnerable to data

leakage. Unlike the first component of SACH, FlowDroid added the ability to map

vulnerabilities even if the vulnerability is in a different class where the data is being leaked.

Figure 1. This figure is an overview of SACH.

3.2 Algorithm Design for SACH

 Six algorithms were designed for SACH. The algorithms parse java and the android manifest

file to find vulnerabilities. The algorithms are based on the vulnerabilities mentioned by CERT

12

(Seacord, 2014). The following algorithms of SACH, FlowDroid describes the results are also

utilized in the implementation of these rules.

 3.2.1 Limit the accessibility of an application’s sensitive content provider

 This algorithm is based on the rule DRD01-J in CERT rules. A content provider is a

component of an application that can manage and share data with other applications on the

device. To prevent unauthorized access to content providers, a developer can restrict access by

specifying the export attribute to false. Before Android API 8, the content provider is accessible

even if the export attribute be set false. Also before API 16, the export value must be set to false

so that the content provider is not accessible by other applications. The following algorithm

(Figure 2) searches whether the program export value is set to true and it is before API 16. If this

vulnerability is detected, a warning message will be generated and logged.

input:

project.properties

Androidmanifest.xml

algorithm:

variable api

variable automatic_private_api=17

variable regardless_available_api=8;

parse project.properties for api version

13

store api version in variable api

variable exported_value

array content_provider_info

variable content_provider_name

variable public_contentprovider= ““android:exported="true"”

variable private_contentprovider= “android:exported="false" ”

parse file for “<provider” to “/>”

store text into array content_provider_info

parse each array in content_provider_info for “android:exported="false"” and “android:name =x

if export_value == public_contentprovider

 write to text file, “WARNING: Found content provider: ”+content_provider_name+ “set as

public. If a content provider is to be made public, the data stored in a provider may be accessed

from other applications. Therefore, it should be designed to handle only non-sensitive

information.”

else if export_value == private_contentprovider && api > regardless_available_api

 do nothing

else if export_value==null && api >= variable automatic_private_api

14

 do nothing

else

 write to text file, “WARNING: Content provider”+ content_provider_name+ “ is not set as

private. If a content provider is to be made public, the data stored in a provider may be accessed

from other applications. Therefore, it should be designed to handle only non-sensitive

information.”

Figure 2. This is an algorithm for limiting the accessibility of content provider.

 3.2.2 Do not broadcast sensitive data

 This algorithm is based on rule DRD03-J in CERT rules. Applications can share data

implicitly that is sent throughout the whole system. Implicit intents are used when actions are not

specified to a specific android component. Since any application with the proper receiver is able

to access the data, it is important to search the application for implicit intents. This algorithm

uses FlowDroid to detect if the DeviceId or GPS data is being sent using a broadcast intent. A

warning will be generated if the implicit intent is not bounded to only the application itself.

Input:

FlowDroid output file

Algorithm:

Variable add_to_queue

store line in a string

15

create a queue linked list

read in each line

Evaluate if the line is a detection of a flow and if it is a send broadcast sink

if the line is a detection of a flow not pertaining to send broadcast, set the variable to

add_to_queue to false

determine if the line is a detection of a send broadcast flow

if the line is a send broadcast flow, set the variable to add to the queue to true

Evaluate if the line contains DeviceID as a source and if the add to queue variable is set to true

extractthe class name and method from the line and store them in variables

add warning message "The deviceID is being sent via implicit broadcast in the java class "?"

within the method "?"

Evaluate if the line contains getLatitude as a source and if the add to queue variable is set to true

Extract the class name and method from the line and store them in variable

add warning message "The GPS latitude is being sent via implicit broadcast in the java class "?"

within the method "?"

Evaluate if the line contains getLongitude as a source and if the add to queue variable is set to

true

extractthe class name and method from the line and store them in variable

16

add warning message "The GPS longitude is being sent via implicit broadcast in the java class

"?" within the method "?"

The final line contains "Analysis" at the beginning. If the line contains "Analysis" at the

beginning, the you have reached the last line

If the queue is empty, then print out that nothing was found

write to text file

set add to queue variable to false

else

if the queue is not empty

write each node in the queue to the report text file

set add to queue variable to false

output “Using sendBroadcast() ,any application on the system can receive the broadcast,

including malicious applications.

Solutions:

Receivers of the broadcast should be restricted. Starting with Android version Icecream

Sandwich you can restrict the broadcast to a single application using Intent.setPackage. It is

possible to also restrict a broadcast to only broadcast within the application using

LocalBroadcastManager.”

Figure 3. This is an algorithm to detect if there is data leakage via broadcast intent.

17

 3.2.3 Do not allow webview to access sensitive local resource through file scheme

 This algorithm is based on rule DRD02-J in CERT rules. The webview class allows web

pages to be displayed within an activity. The webview is vulnerable to be manipulated to access

local resources on the file system by a third party requesting the webview to handle an action.

This algorithm looks at three state attributes which are the plugin, allow file access and Java

script state. A warning message will be generated if the plugin, allow file access or Java script

state is set to true.

input:

project.properties

variable api

parse project.properties for api version

store api version in variable api

variable line_number = 0

array line_numbers

variable Java_Script_State

variable Plugin_State

https://www.securecoding.cert.org/confluence/display/java/DRD02-J.+Do+not+allow+WebView+to+access+sensitive+local+resource+through+file+scheme

18

variable Allow_File_Access_State

parse each line for setJavaScriptEnabled(x)

 increment line_number +1

 if x exist

 store x in Java_Script_State

 if Java_Script_State == “true”

 store line_number into line_numbers[x]

 else if Java_Script_State == “false”

 do nothing

 else

 store line_number into line_numbers[x]

if line_numbers is empty

 do nothing

else

 Print “Warning: Java Script is not set to false on line(s) ”

19

 Print line_numbers

 Print “When the target activity (webView object) sets JavaScript enabled, it can be abused to

 access the target application’s resources”

parse each line for Plugin_State(x)

 increment line_number +1

 if * exist

 store * in Plugin_State

 if Plugin_State == “ON”

 store line_number into line_numbers[x]

 else if Plugin_State == “OFF”

 do nothing

 else if Plugin_State == “ON_DEMAND”

 store line_number into line_numbers[x]

 else

 store line_number into line_numbers[x]

if line_numbers is empty

20

 do nothing

else

 Print “WARNING: Pugin state is not set to OFF on line(s) ”

 Print line_numbers

 Print “The setPluginState() method tells the WebView to enable or disable the plugin”

parse each line for Allow_File_Access_State(x)

 increment line_number +1

 if * exist

 store * in Allow_File_Access_State

 if Allow_File Access_State == “TRUE”

 store line_number into line_numbers[x]

 else if Allow_File_Access_State == “FALSE”

 do nothing

 else

 store line_number into line_numbers[x]

21

if line_numbers is empty

 do nothing

else

 Print “WARNING: Allow File Access State is not set to FALSE on line(s) ”

 Print line_numbers

 Print “The setAllowFileAccess() method enables or disables file access within WebView.”

Figure 4. This is an algorithm looking at the state attributes for plugin, allow file access and Java

script.

 3.2.4 Do not log sensitive information

 This algorithm is based on rule DRD04-J in CERT rules. The log file can be read by other

applications with the proper permission before Android version 4.0. Log files can still be read if

the device is connected to a computer. To protect against this vulnerability, the algorithm will

look for data written to log files. When SACH detects that data is being logged, SACH will

generate a warning that the user is writing to a log file and display the line number. The analyst

will need to determine if the information logged is sensitive.

Input:

java file

Algorithm:

variable line_number

22

array lines

parse each line for “Log.d(” x “) or Log.v(” x “) or Log.e(” x “) or Log.i(” x “) or Log.w(” x“) ”

increment line_number

if found store line_number in array lines

if lines is empty

 output “Did not find any logs ”

if line_number exist

output “WARNING: potential security vulnerability in line(s):”

foreach lines

 output line_number

Output :

Prior to Android 4.0, any application with READ_LOGS permission could obtain all the other

applications' log output. After Android 4.1, the specification of READ_LOGS permission has

23

been changed. Even applications with READ_LOGS permission cannot obtain log output from

other applications.

However, by connecting an Android device to a PC, log output from other applications can be

obtained.

Therefore, it is important that applications do not send sensitive information to log output in

plain text.

Figure 5. This is an algorithm to detect the use of a log file.

 SACH also searches if particular sensitive information such as the DeviceId and GPS

information is being logged using the output of FlowDroid (Figure 6).

Input:

Read in FlowDroid output

Algorithm:

Variable add to queue

store line number in a string

create a queue linked list

read in each line

Evaluate if the line is a detections of a flow and if it is a log sink

if the line is detection of a flow not pertaining to log, set the variable to add to the queue to false

24

if the line is a flow pertaining to send logs, set the variable to add to the queue to true

Evaluate if the line contains getDeviceID as a source and if the add to queue variable is set to

true

extract the class name and method from the line and store them in variable and store warning

message into queue

Evaluate if the line contains getLatitude as a source and if the add to queue variable is set to true

extract the class name and method from the line and store them in variable

add warning message "The GPS latitude is being sent via implicit broadcast in the java class "?"

within the method "?"

Evaluate if the line contains getLongitude as a source and if the add to queue variable is set to

true

extract the class name and method from the line and store them in variable and store warning

message into queue

add warning message "The GPS longitude is being sent via implicit broadcast in the java class

"?" within the method "?"

The final line contains "Analysis" at the beginning. If the line contains "Analysis" at the

beginning, the you have reached the last line

If the queue is empty, then print out that nothing was found

25

else, if the queue is not empty

write each node in the queue to the report text file

set add to queue variable to false

Output:

Prior to Android 4.0, any application with READ_LOGS permission could obtain all the other

applications' log output. After Android 4.1, the specification of READ_LOGS permission has

been changed. Even applications with READ_LOGS permission cannot obtain log output from

other applications.

However, by connecting an Android device to a PC, log output from other applications can be

obtained.

Therefore, it is important that applications do not send sensitive information to log output in

plain text.

 Figure 6. This is an algorithm to parse FlowDroid output for data leakage to the log file.

 3.2.5 Restrict access to activities

 This algorithm is based on rule DRD09-J in CERT rules. To prevent unauthorized access to

an activity, a developer can restrict access by specifying the export attribute be set to false. This

algorithm detects if the export attribute is not set to false, and will generate a warning message.

input:

project.properties

Androidmanifest.xml

26

algorithm:

variable api

variable automatic_private_api=17

variable regardless_available_api=8;

parse project.properties for api version

store api version in variable api

variable exported_value

array activity_info

variable activity_name

variable public_activity= ““android:exported="true"”

variable private_activity= “android:exported="false" ”

parse file for “<provider” to “/>”

store text into array content_provider_info

27

parse each array in content_provider_info for “android:exported="false"” and

“android:name=”+*+” “”

if export_value == public_activity

 write to text file, “WARNING: Found activity: ”+activity_name+ “set as public. If the activity is

intended solely for the internal use of the app and an intent filter is declared then any other apps,

including malware, can activate the activity for unintended use.”

else if export_value == private_activity && api > regardless_available_api

 do nothing

else if export_value==null && api >= variable automatic_private_api

 do nothing

else

 write to text file, “WARNING: Found activity: ”+activity_name+ “set as public. If the activity

is intended solely for the internal use of the app and an intent filter is declared then any other

apps, including malware, can activate the activity for unintended use.”

Figure 7. This is an algorithm to detect if an Android activity is public.

28

 3.2.6 Do not release apps as debuggable

 This algorithm is based on the rule DRD10-J in CERT rules. If the application is released as

debuggable; this means, an user does not need the source code to debug the application. This

algorithm checks to ensure the debuggable attribute is set to false. If the debuggable attribute is

not set to false, then a warning message will be generated.

input:

Project.properties

Androidmanifest.xml

algorithm:

variable debuggable_value

variable debuggable_activity= “android:debuggable="true"”

variable non_debuggable_activity= “android:debuggable="false"”

parse file for android:debuggable= x

store text into variable debuggable

parse each array in content_provider_info for “android:exported="false"” and android:name=x

29

if debuggable_value == non_debuggable_activity

 write to text file, “The debug able attribute is set to false”

else

 write to text file, “WARNING: Found activity: ”+activity_name+ “set as public. If the activity

is intended solely for the internal use of the app and an intent filter is declared than any other

apps, including malware, can activate the activity for unintended use.”

Figure 8. This algorithm is designed to detect if the Android application is debuggable.

30

4 CHAPTER 4

Prototype implementation of SACH

This chapter will present the implementation of SACH, the methodology of testing and the

results of SACH.

4.1 Implementation

 SACH is a Java application developed using Netbeans IDE 8.0. SACH is made up of a main

class and a class named algorithms where all of the vulnerability checks are implemented. First

the apk is loaded into FlowDroid to produce a result text file. The path of the Android manifest

file, root directory of source java code and the text output from FlowDroid are input into SACH.

4 algorithms have been implemented.. Each vulnerability method is initiated as an object from

the algorithm class allowing the developer to skip any particular vulnerability search.

4.2 Testing and Results

 The system used for testing is an i7 processor using Windows7 with 16 gb of RAM. 73

applications have been analyzed from Droidbench developed by EC Spride. The 73 programs

were also manually analyzed to validate the result73 application SACH scored a 100 percent

score detecting instances where logs was used. SACH was also scored an 80 percent when

identifying if the longitude or latitude is written to a log and scored a 50 percent when detecting

if the DeviceId was written to a log. None of the 73 applications has the vulnerability of writing

the DeviceId or GPS locations to a broadcast intent. Also none of the 73 applications was

released as debuggable. Figure 8 shows an example output of FlowDroid and Figure 9 shows the

results of SACH.

WARNING: Found sensitive information is being logged

31

 The deviceID is being logged in the java class

com.javacodegeeks.android.broadcastreceiverstest.MainActivity within the method void

broadcastCustomIntent(android.view.View)

WARNING: potential security vulnerability in A:\Documents\Droidbench\DroidBench-

master\eclipse-

project\BroadcastReceiversTest\src\com\javacodegeeks\android\broadcastreceiverstest\MainActi

vity.java on line(s):

57

Prior to Android 4.0, any application with READ_LOGS permission could obtain all the other

applications' log output. After Android 4.1, the specification of READ_LOGS permission has

been changed. Even applications with READ_LOGS permission cannot obtain log output from

other applications.

However, by connecting an Android device to a PC, log output from other applications can be

obtained.

Therefore, it is important that applications do not send sensitive information to log output

**

**

32

Did not find dubuggable vulnerability

WARNING: Found sensitive information being sent via Broadcast intent

 The deviceID is being sent via implicit broadcast in the java class

com.javacodegeeks.android.broadcastreceiverstest.MainActivity within the method void

broadcastCustomIntent(android.view.View)

**

Figure 9. Example output of SACH

Figure 10. SACH testing results

33

5 CHAPTER 5

Conclusion and Future Work

 As the new generation of mobile devices continue to grow and connect users to existing

online services, it is imperative for mobile application developers to implement secure code to

handle user’s sensitive data. With Android dominating the market by 81%, this means that many

users are using this operating system and the applications built for it. The issue this research

attempt to answer is how to help Android developer implement secure code before it is released

on the open market for download. Static analysis is a technique to analyze source code without

running the application on a device. Designing a statically analysis tool may be able to assist

novice mobile application developers or developers who do not have an in depth knowledge of

programming secure Android programs.

 This research proposes SACH, a tool to identify security vulnerabilities based on CERT

Oracle Secure Coding Rules for Android. It utilizes FlowDroid to detect data leakage. A

prototype has been implemented which detects whether the application leaks information

through implicit broadcast intent and through log files, use of logs by looking at the java source

code and if the application is defined as debuggable in the Android manifest file. Seventy three

applications have been tested from DroidBench (Artz, 2014) .SACH scored 100 percent in

detecting instances where logs was used and scored 80 percent in identifying if the longitude or

latitude is written to a log. SACH scored 50 percent in detecting if the DeviceId was written to a

log. None of the 73 applications presented the vulnerability of writing the DeviceId or GPS

locations to a broadcast intent. Also none of the 73 applications were released as debuggable.

 SACH provides a proof of concept of being able to analyze the source code to identify data

leakage and access control vulnerabilities.

34

 Future work will seek to implement more algorithms based on CERT Oracle of Secure

Coding Rules for Android and identify other data leakages that can result in sensitive data being

obtain by a 3rd party. The performance of SACH will be further tested with larger number of

Android applications. Also due to the limitation of static analysis in producing false positives

and false negative, finding methods to improve the static analysis accuracy will also be our

future work.

35

References

Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., ... & McDaniel, P. (2014,

June). Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint

analysis for android apps. In Proceedings of the 35th ACM SIGPLAN Conference on

Programming Language Design and Implementation (p. 29). ACM.

Bajracharya, S., Sahlu, Z., & Andronic, A. (2013, April 25). Summary of Top 10 existing

Android mobile attacks and Vulnerabilities(2010 -2013) and A demonstration Android

security threats and Defense. Retrieved May 31, 2014, from

https://drive.google.com/viewerng/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbW

Fpbnxtb2JpbGVzZWN1cml0eWxhYndhcmV8Z3g6NzZiYzcwOGU3NTA0ZmFhZA

Bartel, A., Klein, J., Le Traon, Y., & Monperrus, M. (2012, September). Automatically securing

permission-based software by reducing the attack surface: an application to android. In

Proceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering (pp. 274-277). ACM.

Clark, C., Dwivedi, H., & Thiel, C. (2010). Mobile Application Security (pp. 1-432). N.p.:

McGraw-Hill Osborne Media.

Enck, W., Ongtang, M., & McDaniel, P. D. (2009). Understanding Android Security. IEEE

security & privacy, 7(1), 50-57.

36

Enck, W., Gilbert, P., Chun, B. G., Cox, L. P., Jung, J., McDaniel, P., & Sheth, A. N. (2014).

TaintDroid: an information flow tracking system for real-time privacy monitoring on

smartphones. Communications of the ACM, 57(3), 99-106.

Google. (2014) Toasts (n.d.). In Google . Retrieved May 31, 2014, from

http://developer.android.com/guide/topics/ui/notifiers/toasts.html

Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., & Kruegel, C. (2010, April). A solution for the

automated detection of clickjacking attacks. In Proceedings of the 5th ACM Symposium

on Information, Computer and Communications Security (pp. 135-144). ACM.

 IDC. (2013). Android Pushes Past 80% Market Share While Windows Phone Shipments Leap

156.0% Year Over Year in the Third Quarter, According to IDC (2013, November 12).

Retrieved May 31, 2014, from http://m.idc.com//pressRelease/prUS24442013

IDG. (2013) PC Shipments Post the Steepest Decline Ever in a Single Quarter, According to

IDC. Retrieved May 14, 2014, from http://www.idg.com/www/pr.nsf/ByID/MBEN-

96VKBA?opendocument&utm_source=pr_rss&utm_medium=rss&utm_campaign=pr_rs

s

 Kai, Q., Prabir, B., Minzhe, G. & et al. (2014). SMART: Real World Relevant Security Labware

for Mobile Threat Analysis and Protection Experience . In Mobile Security Labware.

Retrieved May 14, 2014, from https://sites.google.com/site/mobilesecuritylabware/

37

Niemietz, M., & Schwenk, J. UI Redressing Attacks on Android Devices. Retrieved May 31,

2014 from https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-

androidmarcus_niemietz-WP.pdf

McGraw, G. (2006). Software Security: Building Security in (pp. 1-448). N.p.: Addison-Wesley

Professional.

OWASP. (2014). Projects/OWASP Mobile Security Project - Top Ten Mobile Risks. In

OWASP. Retrieved July 6, 2014, from

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-

_Top_Ten_Mobile_Risks

iSECPartners. (2014). Intent Fuzzer . Retrieved May 31, 2014, from

https://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx

Seacord, R. (2013). Android (DRD). Retrieved July 6, 2014, from

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=11150953

5

Six, J. (2011). Application Security for the Android Platform (pp. 1-114). N.p.: O'Reilly Media.

Ma, S., Tang, Z., Xiao, Q., Liu, J., Duong, T. T., Lin, X., & Zhu, H. Detecting GPS Information

Leakage in Android Applications.

https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf

38

Yang, Z., & Yang, M. (2012, November). Leakminer: Detect information leakage on android

with static taint analysis. In Software Engineering (WCSE), 2012 Third World Congress

on (pp. 101-104). IEEE.

39

Appendix A

Table A-1

The results of scanning 73 programs using SACH

 Use

of

logs

Longit

ude to

log

Latit

ude

to

Log

Devic

eId to

Log

If app

is

debugg

able

Latitude to

sendBroadc

ast

Latitude

to

sendBroad

cast

DeviceId

to

sendBroa

dcast

AndroidSpecific_Dir

ectLeak1

0 0 0 0 0 0 0 0

AndroidSpecific_Ina

ctiveActivity

1 0 0 0 0 0 0 0

AndroidSpecific_Lib

rary2

0 0 0 0 0 0 0 0

AndroidSpecific_Lo

gNoLeak

1 0 0 0 0 0 0 0

AndroidSpecific_Ob

fuscation1

0 0 0 0 0 0 0 0

AndroidSpecific_Pri

vateDataLeak1

2 0 0 0 0 0 0 0

AndroidSpecific_Pri

vateDataLeak2

1 0 0 0 0 0 0 0

AndroidSpecific_Pri

vateDataLeak3

0 0 0 0 0 0 0 0

ArraysAndLists_Arr 0 0 0 0 0 0 0 0

40

ayAccess1

ArraysAndLists_Arr

ayAccess2

0 0 0 0 0 0 0 0

ArraysAndLists_Has

hMapAccess1

0 0 0 0 0 0 0 0

ArraysAndLists_List

Access1

0 0 0 0 0 0 0 0

Callbacks_Anonymo

usClass1

1 1 1 0 0 0 0 0

Callbacks_Button1 0 0 0 0 0 0 0 0

Callbacks_Button2 3 0 0 3 0 0 0 0

Callbacks_Button3 2 0 0 0 0 0 0 0

Callbacks_Button4 0 0 0 0 0 0 0 0

Callbacks_Location

Leak1

2 1 1 0 0 0 0 0

Callbacks_Location

Leak2

2 1 1 0 0 0 0 0

Callbacks_Location

Leak3

1 1 1 0 0 0 0 0

Callbacks_MethodO

verride1

1 0 0 1 0 0 0 0

Callbacks_MultiHan

dlers1

2 0 0 0 0 0 0 0

Callbacks_Ordering1 2 0 0 0 0 0 0 0

Callbacks_RegisterG 9 0 0 0 0 0 0 0

41

lobal1

Callbacks_RegisterG

lobal2

0 0 0 0 0 0 0 0

Callbacks_Unregiste

r1

0 0 0 1 0 0 0 0

FieldAndObjectSens

itivity_FieldSensitivi

ty2

0 0 0 0 0 0 0 0

FieldAndObjectSens

itivity_FieldSensitivi

ty3

0 0 0 0 0 0 0 0

FieldAndObjectSens

itivity_FieldSensitivi

ty4

0 0 0 0 0 0 0 0

FieldAndObjectSens

itivity_InheritedObje

cts1

0 0 0 0 0 0 0 0

FieldAndObjectSens

itivity_ObjectSensiti

vity1

0 0 0 0 0 0 0 0

FieldAndObjectSens

itivity_ObjectSensiti

vity2

0 0 0 0 0 0 0 0

GeneralJava_Excepti

ons1

0 0 0 0 0 0 0 0

42

GeneralJava_Excepti

ons2

0 0 0 0 0 0 0 0

GeneralJava_Excepti

ons3

0 0 0 0 0 0 0 0

GeneralJava_Excepti

ons4

0 0 0 0 0 0 0 0

GeneralJava_Loop1 0 0 0 0 0 0 0 0

GeneralJava_Loop2 0 0 0 0 0 0 0 0

GeneralJava_Source

CodeSpecific1

0 0 0 0 0 0 0 0

GeneralJava_StaticIn

itialization1

0 0 0 0 0 0 0 0

GeneralJava_StaticIn

itialization2

0 0 0 0 0 0 0 0

GeneralJava_Unreac

hableCode

1 0 0 0 0 0 0 0

GeneralJava_Virtual

Dispatch1

2 0 0 0 0 0 0 0

ImplicitFlows_Impli

citFlow1

1 0 0 0 0 0 0 0

ImplicitFlows_Impli

citFlow2

2 0 0 0 0 0 0 0

ImplicitFlows_Impli

citFlow3

7 0 0 0 0 0 0 0

ImplicitFlows_Impli 5 0 0 0 0 0 0 0

43

citFlow4

GeneralJava_Source

CodeSpecific1

0 0 0 0 0 0 0 0

GeneralJava_StaticIn

itialization1

0 0 0 0 0 0 0 0

GeneralJava_StaticIn

itialization2

0 0 0 0 0 0 0 0

GeneralJava_Unreac

hableCode

1 0 0 0 0 0 0 0

GeneralJava_Virtual

Dispatch1

2 0 0 0 0 0 0 0

ImplicitFlows_Impli

citFlow1

1 0 0 0 0 0 0 0

ImplicitFlows_Impli

citFlow2

2 0 0 0 0 0 0 0

ImplicitFlows_Impli

citFlow3

7 0 0 0 0 0 0 0

ImplicitFlows_Impli

citFlow4

5 0 0 0 0 0 0 0

InterAppCommunica

tion_ActivityCommu

nication1

0 0 0 0 0 0 0 0

InterAppCommunica

tion_IntentSink1

0 0 0 0 0 0 0 0

InterAppCommunica 0 0 0 0 0 0 0 0

44

tion_IntentSink2

Lifecycle_ActivityLi

fecycle1

0 0 0 0 0 0 0 0

Lifecycle_ActivityLi

fecycle2

0 0 0 0 0 0 0 0

Lifecycle_ActivityLi

fecycle3

0 0 0 0 0 0 0 0

Lifecycle_ActivityLi

fecycle4

0 0 0 0 0 0 0 0

Lifecycle_Applicatio

nLifecycle1

0 0 0 0 0 0 0 0

Lifecycle_Applicatio

nLifecycle2

0 0 0 0 0 0 0 0

Lifecycle_Applicatio

nLifecycle3

0 0 0 0 0 0 0 0

Lifecycle_Broadcast

ReceiverLifecycle1

0 0 0 0 0 0 0 0

Lifecycle_Fragment

Lifecycle1

0 0 0 0 0 0 0 0

Lifecycle_ServiceLif

ecycle1

0 0 0 0 0 0 0 0

Reflection_Reflectio

n1

0 0 0 0 0 0 0 0

Reflection_Reflectio

n2

0 0 0 0 0 0 0 0

45

Reflection_Reflectio

n3

0 0 0 0 0 0 0 0

Reflection_Reflectio

n4

0 0 0 0 0 0 0 0

Found 66 4 4 5 0 0 0 0

Total vulnerabilities 66 5 5 10 0 0 0 0

46

Appendix B

Source Code for SACH B-1

Main Class of SACH

public class SACH {

 /**

 * @param args the command line arguments

 */

 public static void TranverseDirectory(String filePath) {//This method transverses the root

directory of the java source

 Algorithms algorithm = new Algorithms();

 File folder = new File(filePath);

 File[] listOfFiles = folder.listFiles();

 for (File listOfFile : listOfFiles) {

 if (listOfFile.isFile()) {

47

 //detects if it is a file

 algorithm.DetectLogs(listOfFile.getAbsolutePath());

 } else if (listOfFile.isDirectory()) {

 // detects a directory

 TranverseDirectory(listOfFile.getAbsolutePath());

 }

 }

 }

 public static void main(String[] args) throws IOException {

 //To run FlowDroid

 //java -cp soot-trunk.jar;soot-infoflow.jar;soot-infoflow-android.jar;slf4j-api-1.7.5.jar;slf4j-

simple-1.7.5.jar;axml-2.0.jar soot.jimple.infoflow.android.TestApps.Test

"C:\Users\Omega\Desktop\FlowDroid\AndroidSpecific_PrivateDataLeak3.apk" C:\adt-bundle-

windows-x86_64-20140702\sdk\platforms

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt");

48

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 out.close();

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 Scanner user_input = new Scanner(System.in);

 System.out.println("Enter the name of the application");

 String nameOfApp = user_input.next();

 String FlowDroidResultPath = "C:\\Users\\Omega\\Desktop\\FlowDroid\\results1.txt";

 String xmlPath = "A:\\Documents\\Droidbench\\DroidBench-master\\eclipse-project\\" +

nameOfApp + "\\AndroidManifest.xml";

 String rootOfSourceCode = "A:\\Documents\\Droidbench\\DroidBench-master\\eclipse-

project\\" + nameOfApp + "\\src\\";

 Algorithms algorithm = new Algorithms();

 algorithm.FindFlowsToLogs(FlowDroidResultPath);

 TranverseDirectory(rootOfSourceCode);//Detects logs in source code

 algorithm.DetectIfAppIsDebuggable(xmlPath);

 algorithm.FindFlowsToSendBroadcast(FlowDroidResultPath);

49

 }

}

50

Source Code for SACH B-2

Algorithm Class

public class Algorithms {

 Boolean addToQueue = false;//boolean variable to determine if information needs to be added

to queue, intialize it to false so nothing can be added to the queue

 void DetectLogs(String filePath) {

 int counter = 0;

 Queue queue = new LinkedList();// create a queue linked list

 try {

 LineNumberReader lineReader = new LineNumberReader(new

FileReader(filePath));//read in text file

 String lineText = null;//store line in a string

 while ((lineText = lineReader.readLine()) != null) {// read in each line

 counter++;

51

 if

(lineText.matches(".*Log.d(.*).*|.*Log.i(.*).*|.*Log.v(.*).*|.*Log.e(.*).*|.*Log.i(.*).*|.*Log.w(.

).")) {// Evaluate if the line is a detections of a flow and if it is a send broadcast sink

 queue.add(counter);

 }

 }

 if (queue.isEmpty()) {

 } else {

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt", true);

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 out.println("WARNING: potential security vulnerability in " + filePath + " on

line(s):");

 out.close();

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

52

 while (queue.size() != 0) {

 //pop the queue

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt", true);

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 out.println(queue.remove());

 out.close();

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 }

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt", true);

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 out.println("Prior to Android 4.0, any application with READ_LOGS permission

could obtain all the other applications' log output. After Android 4.1, the specification of

53

READ_LOGS permission has been changed. Even applications with READ_LOGS permission

cannot obtain log output from other applications.\n"

 + "However, by connecting an Android device to a PC, log output from other

applications can be obtained.\n"

 + "Therefore, it is important that applications do not send sensitive information

to log

output\n\n***

\n**********************************

***\n");

 out.close();

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 }

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

54

 }

 void DetectIfAppIsDebuggable(String filePath) {

 boolean openBraceForApplication = false;

 boolean closeBraceForApplication = false;

 boolean isDebuggable = false;

 try {

 LineNumberReader lineReader = new LineNumberReader(new

FileReader(filePath));//read in text file

 String lineText = null;//store line in a string

 while ((lineText = lineReader.readLine()) != null) {// read in each line

 if (lineText.matches(".*<application.*")) {// Evaluate if the line is a detections of a

flow and if it is a send broadcast sink

 openBraceForApplication = true;

 }

55

 if (lineText.matches(".*android:debuggable.*=.*\".*true.*\".*")) {// Evaluate if the line

is a detections of a flow and if it is a send broadcast sink

 isDebuggable = true;

 }

 if (lineText.matches(".*</application>.*")) {// Evaluate if the line is a detections of a

flow and if it is a send broadcast sink

 closeBraceForApplication = true;

 if (openBraceForApplication == true && isDebuggable == true &&

closeBraceForApplication == true) {

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt", true);

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 out.println("WARNING: The application is debugabble attribute in the

AndroidManifest.xml is not set to true. The application could be debugged without the need of

the source code resulting in leakage of

data\n\n***

**************************************\n**************************************

***\n");

56

 out.close();

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 } else {

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt", true);

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 out.println("Did not find dubuggable vulnerability");

 out.close();

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 }

 }

57

 }

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 }

 void FindFlowsToSendBroadcast(String filePath) {// method to find flows via send broadcast

 try {

 LineNumberReader lineReader = new LineNumberReader(new

FileReader(filePath));//read in text file

 String lineText = null;//store line in a string

 Queue queue = new LinkedList();// create a queue linked list

 while ((lineText = lineReader.readLine()) != null) {// read in each line

 if (lineText.matches("Found a flow.*") != lineText.matches("Found a

flow.*sendBroadcast.*")) {// Evaluate if the line is a detections of a flow and if it is a send

broadcast sink

58

 addToQueue = false;// if thee line is detection of a flow not pertaining to send

broadcast, set the variable to add to the queue to false

 }

 if (lineText.matches("Found a flow.*sendBroadcast.*")) {// determine if the line is a

detection of a send broadcast flow

 addToQueue = true;// if the line is a send broadcast flow, set the variable to add to

the queue to true

 queue.add("WARNING: Found sensitive information being sent via Broadcast

intent");// add warning message "WARNING: Found sensitive information being sent via

Broadcast intent" to queue

 }

 if (addToQueue == true && lineText.matches(".*- virtualinvoke .*getDeviceId().*"))

{// Evaluate if the line contains DeviceID as a source and if the add to queue variable is set to

true

 Pattern pat = Pattern.compile(".*- virtualinvoke .*getDeviceId.*in

<(.*):(.*)>.*");//extractthe class name and method from the line and store them in variables

 Matcher matcher = pat.matcher(lineText);

 if (matcher.matches()) {

59

 queue.add(" The deviceID is being sent via implicit broadcast in the java class "

+ matcher.group(1) + " within the method " + matcher.group(2)); //add warning message "The

deviceID is being sent via implicit broadcast in the java class "?" within the method "?"

 }

 }

 if (addToQueue == true && lineText.matches(".*- virtualinvoke .*getLatitude.*")) {//

Evaluate if the line contains getLatitude as a source and if the add to queue variable is set to true

 Pattern pat = Pattern.compile(".*- virtualinvoke .*getLatitude.*in <(.*):(.*)>.*");

//extractthe class name and method from the line and store them in variable

 Matcher matcher = pat.matcher(lineText);

 if (matcher.matches()) {

 queue.add(" The GPS Latitude is being sent via implicit broadcast in the java

class " + matcher.group(1) + " within the method " + matcher.group(2));//add warning message

"The GPS latitude is being sent via implicit broadcast in the java class "?" within the method "?"

 }

 }

 if (addToQueue == true && lineText.matches(".*- virtualinvoke .*getLongitude.*"))

{// Evaluate if the line contains getLongitude as a source and if the add to queue variable is set to

true

60

 Pattern pat = Pattern.compile(".*- virtualinvoke .*getLongitude.*in

<(.*):(.*)>.*");//extractthe class name and method from the line and store them in variable

 Matcher matcher = pat.matcher(lineText);

 if (matcher.matches()) {

 queue.add(" The GPS Longitude is being sent via implicit broadcast in the java

class " + matcher.group(1) + " within the method " + matcher.group(2));//add warning message

"The GPS longitude is being sent via implicit broadcast in the java class "?" within the method

"?"

 }

 }

 if (lineText.matches("Analysis.*")) {//The final line contains "Analysis" at the

beginning. If the line contains "Analysis" at the beginning, the you have reached the last line

 if (queue.isEmpty()) {// If the queue is empty, then print out that nothing was found

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt", true);

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 out.println("Did not find flows to sendBroadcast sink");

 out.close();

61

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 addToQueue = false;// set add to queue variable to false

 } else {

 try {

 FileWriter outFile = new FileWriter("SACH_Results.txt", true);

 PrintWriter out = new PrintWriter(outFile);// writing to text file

 while (queue.size() != 0) {// else, if the queue is not empty

 out.println(queue.remove());//write each node in the queue to the report text

file

 }

out.println("\n");

out.println("Using sendBroadcast() ,any application on the system can receive the broadcast,

including malicious applications.\n"

+ "Solutions:\n"

+ "Receivers of the broadcast should be restricted. Starting with Android version Icecream

Sandwich you can restrict the broadcast to a single application using Intent.setPackage. It is

62

possible to also restrict a broadcast to only broadcast within the application using

LocalBroadcastManager.”");

out.println("\n\n***

\n******************************

***\

n");

 out.close();

 } catch (IOException ex) {

 System.out.println("ERROR");

 }//catch IOException error

 addToQueue = false;// set add to queue variable to false

 }

 }

 }

 } catch (IOException ex) {// the exception if error

 System.err.println(ex);

 }

63

 }

 void FindFlowsToLogs(String filePath) {// method to find flows via logs

 try {

 LineNumberReader lineReader = new LineNumberReader(new

FileReader(filePath));//read in FlowDroid output

 String lineText = null;//store line in a string

 Queue queue = new LinkedList();// create a queue linked list

 while ((lineText = lineReader.readLine()) != null) {// read in each line

 if (lineText.matches("Found a flow.*") != lineText.matches("Found a flow to sink

staticinvoke <android.util.Log.*")) {// Evaluate if the line is a detections of a flow and if it is a

log sink

 addToQueue = false;// if thee line is detection of a flow not pertaining to send

broadcast, set the variable to add to the queue to false

 }

 if (lineText.matches("Found a flow to sink staticinvoke <android.util.Log.*")) {

 addToQueue = true;// if thee line is detection of a flow pertains to send logs, set the

variable to add to the queue to true

64

 queue.add("WARNING: Found sensitive information is being logged");

 }

 if (addToQueue == true && lineText.matches(".*- virtualinvoke .*getDeviceId().*"))

{// Evaluate if the line contains getDeviceID as a source and if the add to queue variable is set to

true

 Pattern pat = Pattern.compile(".*- virtualinvoke .*getDeviceId.*in

<(.*):(.*)>.*");//extractthe class name and method from the line and store them in variable

 Matcher matcher = pat.matcher(lineText);

 if (matcher.matches()) {

 queue.add(" The deviceID is being logged in the java class " +

matcher.group(1) + " within the method " + matcher.group(2));

 }

 }

 if (addToQueue == true && lineText.matches(".*- virtualinvoke .*getLatitude.*")) {//

Evaluate if the line contains getLatitude as a source and if the add to queue variable is set to true

 Pattern pat = Pattern.compile(".*- virtualinvoke .*getLatitude.*in

<(.*):(.*)>.*");//extractthe class name and method from the line and store them in variable

 Matcher matcher = pat.matcher(lineText);

65

 if (matcher.matches()) {

 queue.add(" The GPS Latitude is being logged in the java class " +

matcher.group(1) + " within the method " + matcher.group(2));

 }

 }

 if (addToQueue == true && lineText.matches(".*- virtualinvoke .*getLongitude.*"))

{// Evaluate if the line contains getLongitude as a source and if the add to queue variable is set to

true

 Pattern pat = Pattern.compile(".*- virtualinvoke .*getLongitude.*in

<(.*):(.*)>.*");//extractthe class name and method from the line and store them in variable

 Matcher matcher = pat.matcher(lineText);

 if (matcher.matches()) {

 queue.add(" The GPS Longitude is being logged in the java class " +

matcher.group(1) + " within the method " + matcher.group(2));//add warning message "The GPS

longitude is being sent via implicit broadcast in the java class "?" within the method "?"

 }

 }

 if (lineText.matches(".*Analysis.*")) {//The final line contains "Analysis" at the

beginning. If the line contains "Analysis" at the beginning, the you have reached the last line

66

if (queue.isEmpty()) {// If the queue is empty, then print out that nothing was found

try {

FileWriter outFile = new FileWriter("SACH_Results.txt", true);

PrintWriter out = new PrintWriter(outFile);// writing to text file

out.println("Did not find flows to log sink");

out.close();

} catch (IOException ex) {

System.out.println("ERROR");

}//catch IOException error

addToQueue = false;// set add to queue variable to false

} else {

try {

FileWriter outFile = new FileWriter("SACH_Results.txt", true);

PrintWriter out = new PrintWriter(outFile);// writing to text file

while (queue.size() != 0) {// else, if the queue is not empty

out.println(queue.remove());//write each node in the queue to the report text

file

}

67

out.close();

} catch (IOException ex) {

System.out.println("ERROR");

}//catch IOException error

addToQueue = false;// set add to queue variable to false

}

}

 }

 } catch (IOException ex) {// the exception if error

 System.err.println(ex);

 }

 }

68

}

	Secure Android Code Helper (Sach): A Tool For Assisting Secure Android Application Development
	Recommended Citation

	List of Figures ix
	Abstract 1
	CHAPTER 1 Introduction 2
	CHAPTER 2 Literature Review 4
	CHAPTER 3 SACH - A Tool for Assisting Secure Android Application Development 11
	CHAPTER 4 Prototype implementation of SACH 30
	CHAPTER 5 Conclusion and Future Work 33
	References 35
	Appendix A 39
	Appendix B 46
	List of Figures
	Abstract
	1 CHAPTER 1 Introduction
	2 CHAPTER 2 Literature Review
	2.1 Top Ten Vulnerabilities
	2.2 Causes of Data Leakage
	2.3 Access Control Mechanism in Android
	2.4 The CERT Oracle Secure Coding Rules for Android
	2.5 Static Analysis

	3 CHAPTER 3 SACH - A Tool for Assisting Secure Android Application Development
	3.1 An Overview of SACH
	3.2.1 Limit the accessibility of an application’s sensitive content provider
	3.2.2 Do not broadcast sensitive data
	3.2.3 Do not allow webview to access sensitive local resource through file scheme
	3.2.4 Do not log sensitive information
	3.2.5 Restrict access to activities
	3.2.6 Do not release apps as debuggable

	4 CHAPTER 4 Prototype implementation of SACH
	4.1 Implementation
	4.2 Testing and Results

	5 CHAPTER 5 Conclusion and Future Work
	References
	Appendix B

