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Abstract 

A three dimensional subsurface contaminant transport model with advection, dispersion and 

reaction has been developed to predict transport of a reactive continuous source pollutant. 

Numerical Forward-Time-Central-Space (FTCS) scheme has been used to solve the advection-

dispersion-reaction transport model and Kalman Filter (KF), Ensemble Kalman Filter (EnKF) 

and Ensemble Square Root Kalman Filter (EnSRKF) schemes have been used for data 

assimilation purpose. EnKF and EnSRKF both use Monte Carlo simulation in Bayesian 

implementation to propagate state estimation. The key difference between EnKF and EnSRKF is 

that EnSRKF does not require perturbation of observation during analysis stage. In this study, 

contaminant concentration is the state that has been propagated by this model. Reference true 

solution derived from analytical solution with added noise has been used to compare model 

results. Root Mean Square Error (RSME) profile shows that the EnSRKF concentration estimate 

can improve prediction accuracy better compared to numerical, KF and EnKF approaches. For a 

10x12x4 space domain (480 nodes) with 10,000mg/L initial concentration, numerical scheme 

shows an average error of 127.01 mg/L, whereas EnSRKF shows an average error of 5.47 mg/L, 

indicating an improvement of 95.69%. KF and EnKF schemes show average error of 26.16 and 

5.74 mg/L. Therefore, EnSRKF approach reduces mean RMSE by 79% and 4.70% compared to 

KF and EnKF approach respectively. Although EnSRKF shows marginal improvement 

compared to EnKF, EnSRKF is computationally cheaper compared to EnKF for larger problems 

with more nodes. For a 50x60x4 space domain (12,000 nodes) EnSRKF produces similar 

accuracy of EnKF with much less execution time. For 12,000-nodes domain, it can reduce 

computational time by 68% compared to EnKF. EnSRKF also shows better performance than 

EnKF with small ensemble sizes.  
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CHAPTER 1 

Introduction 

Groundwater is the primary source of drinking water for more than half of US population 

(Nolan et al., 1998) and in most rural areas it is the only source of drinking water supply.  

According to a USGS water usage report, in 2005 98% of self-supplied withdrawals were from 

fresh groundwater (Kenny et al., 2009). According to the same report, groundwater supplied 

38% of total water usage in 2005 excluding the water usage in thermoelectric power generation 

(Kenny et al., 2009). Groundwater is also a very vital source of freshwater. Despite this immense 

importance of groundwater, however, it is always under the threat of contamination. With rapid 

industrialization, urbanization and increase of usage, the threat of contamination is increasing. 

Additionally, according to a USGS report, groundwater in the USA has been depleting at an 

increasing rate. USGS estimated that from 1900 to 2008 a total of 1000 km
3
 of groundwater has 

been depleted in USA. In the recent years of 2000-2008, the depletion rate is highest (Konikow, 

2013).   Therefore, with increasing rate of groundwater depletion, it is becoming more and more 

important to preserve the current groundwater reserve in usable condition. With rapid 

industrialization, urbanization, and an increase in usage, it is practically impossible to keep 

groundwater completely free from any sort of contamination. 

The most common reason for groundwater contamination is human activity. Densely 

populated areas are more vulnerable towards groundwater contamination. Groundwater can be 

contaminated from many sources such as, septic systems, improper disposal of hazardous waste, 

releases and spills from stored chemicals and petroleum products, landfills, surface 

impoundments, sewers and other pipelines, use of pesticides and fertilizers, drainage wells, etc 

(USEPA, 1993) . 
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Contaminants that are released in the environment can reach groundwater in several 

ways. The most common reason is percolation of the contaminant from land surface to 

unsaturated (vadose) zone. Different contaminants have different characteristics and can stay in 

groundwater for different durations of time and can pose different ranges of threats for human. 

Once groundwater is contaminated, it is very difficult to remove the contaminant and mitigate 

the problem. Therefore, preventive measures are usually taken whenever there could be 

possibility of contamination and also there are regulations to prevent contamination of 

groundwater. Despite all these measures and regulations, however, there are still plenty of 

serious cases of groundwater contamination in the USA. 

Several factors contribute to make contaminant removal a very challenging problem.  

Expensive monitoring systems, heterogeneity of subsurface environment, different dispersion 

behavior of contaminants could be attributed to make the problem very difficult. For a successful 

mitigation procedure, the first and foremost important step is to locate the source and to know 

the propagation behavior of the pollutant plume. As many of serious contamination cases are 

point source pollution, it is relatively easy to locate the source of the contaminant. To know the 

details of the plume behavior, analytical, numerical and more advanced numerical models such 

as stochastic filtering techniques can be used.  

Numerical models are quite popular in subsurface pollutant transport problems. However, 

numerical models are plagued with various limitations to predict transport of contaminant in 

subsurface environment. They cannot properly handle the uncertain heterogeneity of subsurface 

environment. Moreover, randomness of transport process, incorrect assumptions of parameters 

may contribute to lack of accuracy for numerical models. To solve advection-dispersion 

equations, numerical methods can be broadly classified as Eulerian, Lagrangian and mixed 
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Eulerian-Lagrangian methods (Neuman, 1984; Baptista, 1987). Eulerian methods are fixed grid 

and easy to implement. Several popular Eulerian approaches are finite difference and finite 

element schemes. But, they suffer from truncation error and they can produce considerable 

amount of numerical dispersion errors for advection dominated problems. To overcome the 

problem of numerical dispersion there are some stability check criteria to limit grid spacing and 

time step sizes. These constraints call for finer grid spacings and smaller time steps to solve 

transport problem in these methods. This can make the solution of the transport problem very 

expensive in terms of computational effort (Zheng & Bennett, 2002). These drawbacks can 

somewhat be overcome by analytical solution. Nonetheless, analytical solution also suffers 

problems like inaccurate assumptions of homogenous soil layers, assumption of isothermal 

condition and isotropic porous media, etc. These assumptions do not represent the true 

subsurface field behavior since true subsurface field contains prevalence of irregularities and 

heterogeneities. 

The system model of numerical methods is based on some certain parameters like 

porosity, velocity of pollutants, retardation, etc. All these parameters may not be accurate enough 

to predict transport of a certain contaminant in a certain subsurface environment. Therefore, to 

improve prediction accuracy, collection of field data is quite important. Observation data can 

guide the system model of numerical approaches and can help to find the true state of pollutants. 

Data assimilation methods thus play a very important role in predicting subsurface transport 

mechanism of contaminants. Therefore, filtering techniques based on data assimilation became 

more and more popular in recent years for subsurface pollutant transport problems. 

Kalman Filter (KF) and some descendents of Kalman filter, especially Ensemble Kalman 

Filter (EnKF) are extremely popular in hydrological and hydrogeological models. Kalman filter 
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is a recursive data processing algorithm developed by Rudolf E. Kalman in 1960. Kalman filter 

is a very efficient tool as it estimates state of a process in a way that minimizes mean of squared 

error. Kalman filter is very robust in a sense that it can be used to estimate past, present and 

future states of a system (Welch & Bishop, 2006). Kalman filter is best suited for linear problems 

with relatively smaller number of state variables. When a system is nonlinear and there are large 

number of state variables Kalman filter could become prohibitively expensive (Bannister, 2012). 

To overcome these problems Ensemble Kalman Filter (EnKF) provides some better alternatives 

to estimate state of a system. EnKF uses Monte Carlo simulation for Bayesian estimation. 

Ensemble Kalman filter can handle large and nonlinear problems with better accuracy. In this 

paper another data assimilation technique namely Ensemble Square Root Kalman Filter 

(EnSRKF) is used to compare its performance with EnKF in subsurface contaminant transport 

modeling problem. EnSRKF can be defined as a variant of EnKF. The key difference between 

EnKF and EnSRKF is that EnSRKF scheme does not require observations to be perturbed during 

analysis stage (Whitaker & Hamill, 2002). Square root scheme was first introduced as an 

alternative implementation of EnKF to improve filtering performance. 

In this paper, a synthetic case of subsurface contamination with a generic reactive 

(nonconservative) pollutant has been presented.  The transport problem is an advection, 

dispersion and reaction problem with a known decay rate. Analytical solution with added noise 

has been used to determine the reference true solution and deterministic numerical solution with 

added noise has been used to determine the system state. In this model, contaminant 

concentration is the state that has been propagated through the various schemes. Simulated true 

values are obtained to guide state estimate. The numerical model has been coupled with filtering 

techniques for state estimation and data assimilation purpose. Two different cases are considered 
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to determine the accuracy and efficiency of numerical method, Kalman filter, Ensemble Kalman 

filter and Ensemble Square Root Kalman filter schemes. In case 1, a domain with a total of 480 

nodes and in case 2, another domain with 12,000 nodes has been used. To check performances of 

filtering techniques and due to presence of very large problems in real environmental modeling it 

is very important to check model accuracy and required computational effort when domain size 

increases. For example, despite being a very robust data assimilation technique for smaller 

domain problems, Kalman filter can be prohibitively expensive for larger domain problems due 

to its computational effort. Therefore, performances of Ensemble Kalman filter and Ensemble 

Square Root Kalman filter have been compared for two different scenarios. Although a 12,000 

node domain is still small compared to real scenarios, it will help to demonstrate which 

technique works best when domain size increases. Root Mean Square Error (RMSE) is 

calculated for each scheme with respect to reference true solution. Reference true solution is 

obtained by adding random nose with analytical solution. 

One objective of this study is to determine accuracy and effectiveness of Ensemble 

Square Root Kalman filter, Ensemble Kalman filter, Kalman filter and numerical model in a 

three dimensional subsurface contamination transport model. Another objective is to compare 

computational efficiency of Ensemble Square-Root Kalman filter and Ensemble Kalman filter in 

predicting contaminant transport in subsurface when domain size increases.   
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CHAPTER 2 

Literature Review 

 Modeling of groundwater contaminant transport has been a challenging problem for civil 

engineers, hydrologists and hydrogeologists for decades. Obtaining accurate data from 

groundwater is an immense task as groundwater exhibits significant heterogeneity and very small 

spatial measuring error can produce completely different scenario than the real case. Analytical 

models are best suited for highly homogenous environment which is completely impractical for 

uncertain heterogeneity prevalent in subsurface. Traditional numerical models are plagued with 

various limitations to predict transport of contaminant in subsurface environment. They cannot 

properly handle the uncertain heterogeneity of subsurface environment. Numerical solution of 

advection-dominated subsurface transport equation has remained as an “embarrassingly” 

difficult problem for engineers (Mitchell, 1984). The primary reason for this difficulty is the 

presence of spatial first derivative term, advection and spatial second derivative term, dispersion 

in the single governing partial differential equation. If the transport equation contains reaction 

and if dispersion is considered in all three dimensions, then the problem becomes more 

complicated. Due to all of these difficulties involved in numerical solution there has been a 

burgeoning popularity of stochastic techniques to handle these types of prediction problems. 

2.1 Studies on Data Assimilation Techniques 

Kalman Filter (KF) was first proposed by Rudolf E. Kalman in 1960. It has wide range of 

applications in any optimal state estimation problem with dynamic nature. Welch and Bishop 

(2006) has a good discussion and derivation on KF. Despite being a very robust algorithm it 

cannot handle nonlinear dynamics which lead to some other descendant filtering techniques 

which can approach to handle nonlinear dynamics. Extended Kalman Filter (EKF) is one of the 
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earlier developments in handling nonlinear dynamics. EKF can handle nonlinear dynamics using 

tangent linear function of nonlinear state transition matrix. Essentially EKF is a nonlinear 

approximation of the linear KF (Welch & Bishop, 2006). EKF needs to calculate and store prior 

and posterior state error covariance calculations which increase computational cost. On the other 

hand, Ensemble-based filtering techniques use statistical sampling techniques for forecast and 

analysis errors and thus these techniques can reduce computational cost significantly. Thus, KF, 

EKF and all other filtering techniques that do not use ensemble-based technique have a major 

common drawback. These techniques should only be applied for smaller systems requiring a 

small number of state variables to describe the whole system. 

  To overcome the inefficacy of KF and limitations of EKF to handle nonlinear dynamics 

and large problems Ensemble Kalman Filter (EnKF) is proposed. EnKF can handle purely 

nonlinear dynamics. The term ‘ensemble’ actually describes statistical samples. In EnKF a single 

state estimate is replicated by an ensemble of state estimates and the error covariance is 

calculated from the ensemble members instead of a separate covariance matrix for state. With 

any statistically representative ensemble size EnKF shows significant work reduction compared 

to KF and EKF. Tangent linear operator is not used in EnKF which leads to an easier 

implementation and it may have better handling capacity for nonlinearity (Burgers et al., 1998). 

 EnKF was originally introduced by Evensen (1994) for use on oceanic models, where 

state dimensions are usually very large. Subsequent development of EnKF shows that use of an 

ensemble of pseudo-random measurement perturbations is important to extract the right statistics 

from analysis ensemble. Houtekamer and Mitchell (1998) independently studied EnKF and 

showed that EnKF performs better with increase in ensemble size. In fact, for linear dynamics if 

ensemble size is infinity then EnKF approximation would yield the same result as of Kalman 
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Filter (KF). However, in practice only a statistically significant number of ensemble members 

(samples) can produce very good results. More studies and implementations of EnKF in different 

model can be found in Evensen and Leeuwen (1996), Evensen (1997), Houtekamer and Mitchell 

(2001). 

 EnKF has different implementation techniques. The most common one is the perturbed 

observation implementation. Many works on EnKF was based on perturbed observation 

technique. Houtekamer and Mitchell (1998) , Burgers et al. (1998) have implemented EnKF with 

perturbed observation. The reason of observation perturbation was to avoid divergence of the 

filter. However, several early works of EnKF did not use perturbed observation technique  such 

as Evensen (1994);  Evensen and Leeuwen (1996). Several papers have good discussion on 

Ensemble Kalman filter without perturbed observation. Lermusiaux and Robinson (1999); 

Anderson (2001); Bishop et al. (2001) and   have discussed different approaches of EnKF 

without perturbed observation.  

There are several approaches those do not require perturbations of observations during 

analysis stage. One approach that does not need perturbed observation is Ensemble Square-Root 

Filter (EnSRF) or Ensemble Square-Root Kalman Filter (EnSRKF). Whitaker and Hamill (2002) 

and Tippett et al. (2003) have demonstrated frameworks for Ensemble Square-Root filtering 

schemes. The ‘square-root’ term arises from these particular implementations as these 

implementations consider forecast or analysis errors as the ‘square-root’ of forecast or analysis 

covariance matrices (Bannister, 2012). 

 2.2 Implementation of Data Assimilation Techniques in Hydrology and Water Resources 

 Kalman filter has numerous implementations in fields of hydrology and water resources. 
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Ngan and Russel (1986); Stednick and Roig (1989); Yu et al. (1989) have applied KF in various 

areas of water resources.  

 Due to computational advantage and accuracy in performance EnKF is now widely used 

in areas where large dynamical models are present.  Areas of Numerical Weather Prediction 

(NWP) and oceanic modeling have extensive applications of EnKF. However, in recent days 

EnKF is widely used in hydrology, water resources and environmental engineering also. Reichle 

et al. (2002) applied EnKF in soil moisture estimation. Authors concluded that EnKF can 

produce satisfactory results even with moderate ensemble sizes. Huang et al. (2008) used EnKF 

data assimilation technique to calibrate hydraulic conductivity field and to improve solute 

transport prediction with unknown initial contaminant source condition. Authors found that 

EnKF significantly improves the estimation of hydraulic conductivity and solute transport 

prediction.   

 Clark et al. (2008) used EnKF and EnSRKF in hydrological data assimilation in which 

streamflow observations were used to update states in a distributed hydrological model. Authors 

found that, EnSRKF performs better compared to EnKF to simulate the model. Chen et al. 

(2013) used EnSRKF to assimilate streamflow data in a flood forecasting model. As discussed 

earlier, Ensemble Square Root Kalman filter is a particular flavor of Ensemble Kalman filter. 

Some papers that used square root schemes in hydrology, water resource and environmental 

engineering may not used the term ‘square-root’, but used the generic term of Ensemble Kalman 

filter. 

 Zou and Parr (1995) used Kalman filter in their state-space model to obtain optimal 

estimation of contaminant plume in their two-dimensional advection-dispersion subsurface 

transport model. This paper used two independent estimation of plume concentration. One is 
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process modeling and another one is measurement or observation modeling. To apply data 

assimilation technique successfully use of two separate models is very important. They used 

analytical model as a reference solution, a finite difference method (FDM) to generate process or 

system data and Method of Characteristics (MOC) model (Konikow and Bredehoeft, 1984) to 

generate measurement data. State-space optimal estimation was performed by KF which 

considers FDM solution as process model and MOC solution as measurement model. KF 

estimation reduced mean standard deviation by 30% compared to MOC solution and 20% 

compared to FDM solution. This approach shows that, despite the ability of numerical solution to 

predict the transport behavior by itself, the coupling of numerical solution with data assimilation 

technique produces much better results than using numerical solution alone.   

Chang and Jin (2005) applied KF with regional noise in subsurface contaminant transport 

model. The authors used a small 220-node two-dimensional synthetic problem with advection-

dispersion transport equation to analyze performance of KF. KF reduced contaminant transport 

prediction error up to 60% compared to finite difference based deterministic model. They used 

only 4 observation nodes in this whole domain of 220 nodes (1.82% of total nodes are 

observation nodes) and found that KF can successfully handle this sparse observation with 

reasonably less error. 

Chang and Latif (2009) used KF and Particle filter approach in a one dimensional 

leachate transport model. The authors found that both schemes can improve prediction accuracy 

of contaminant transport by around 80% compared to numerical model. Chang and Assumaning 

(2011) applied KF and Particle filter schemes to model transport of radioactive pollutants in 

subsurface.  Chang and Sayemuzzaman (2014) used Unscented Kalman filter in a two 

dimensional subsurface contaminant transport model.  
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Chang and Latif (2010) implemented Extended Kalman Filter (EKF) in 2D subsurface 

contaminant transport model with advection-dispersion. A finite difference method namely 

FTCS (Forward-Time and Central-Space) is used to generate process or system variables for 

EKF.  Authors used two cases to determine effectiveness of EKF. In case 1 the number of 

observation nodes is same as that of state nodes and in case 2 a small number of observation 

nodes are used to prepare the measurement model. In both cases EKF significantly improves 

prediction accuracy over numerical scheme. EKF can reduce prediction error by 72% to 82% 

compared to numerical model. 

 Assumaning and Chang (2012) applied three different data assimilation (DA) techniques 

in a three dimensional advection-dispersion-reaction contaminant transport model with 

instantaneous pollutant source. These DA techniques were Kalman filter, Extended Kalman filter 

and Particle filter. Authors used a 12x12x3 domain with 432 nodes to describe the state model 

and 18 nodes to describe the measurement model. The authors concluded that filtering 

techniques could reduce the error of numerical scheme by about 70%. 
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CHAPTER 3 

Methodology 

In this subsurface contaminant transport problem analytical solution and numerical 

solution are used to prepare the necessary framework for data assimilation techniques. Analytical 

solution is used to determine the reference true solution and observation. Numerical solution is 

used to prepare the state model. In this study, traditional advection-dispersion-reaction equation 

has been used for non-conservative pollutant. This is a three dimensional model with advection 

in x direction and dispersion in all three directions. This synthetic model has been used to 

determine the accuracy and efficiency of numerical, KF, EnKF and EnSRKF approaches 

compared to true solution derived from analytical solution. The subsurface environment is 

considered as porous and saturated soil. For reaction term a first-order decay rate constant has 

been used. The three-dimensional form of the advection-dispersion-reaction equation for non-

conservative pollutant in a saturated, homogeneous porous media with isotropic materials under 

uniform flow is given by the following partial differential equation: 
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Where, C = Contaminant concentration, mg/L 

t = Time, day 

Dx, Dy and Dz = Dispersion coefficients in x, y and z direction respectively, m
2
/day 

R = Retardation factor, dimensionless;  

vx = Velocity in x-direction, m/day 

 

2 2 2

2 2 2

yx z
DD DC C C C V C

kC
t R x R y R z R x

    
    

    

2 2 2

2 2 2

yx z
DD DC C C C V C

kC
t R x R y R z R x

    
    

    

2 2 2

2 2 2

yx z
DD DC C C C V C

kC
t R x R y R z R x

    
    

    



14 

 

 

 

k = First-order decay rate constant, day
-1

 

x, y, z = Cartesian coordinates, m 

The boundary conditions for the three dimensional solute transport model with a continuous 

contaminant source is expressed as  

 

                              
  

  
 

  

  
 

  

  
                 

Here            is the contaminant injection point and    is the concentration of continuous 

source contaminant, mg/L.  

3.1 Analytical Solution and Reference True Solution 

The analytical solution for the governing partial differential equation is given by the 

following equation derived by Domenico (1987): 

 

           
  

 
 

   
   

      
    

  
  

 
 
 

    

 

 
 
 
 

  
  

      
    

  
  

 
 

        

 

 
 
 
 

 

 

 
 
 

 
 

   

 
 
 
 
 

  
 
 

  
   
  

 

 
 

 
 
 
 
 

    

 
 
 
 
 

  
 
 

  
   
  

 

 
 

 
 
 
 
 

 
 
 

 
 

 

 

 
 
 

 
 

   

 
 
 
 
 

  
 
 

  
   
  

 

 
 

 
 
 
 
 

    

 
 
 
 
 

  
 
 

  
   
  

 

 
 

 
 
 
 
 

 
 
 

 
 

 

 

 

 

 

(2) 

 

Where, C (x, y, z, t) = Contaminant concentration, mg/L 
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t = time, day 

C0 = Initial concentration of continuous source contaminant  

Dx, Dy and Dz = Dispersion coefficients in x, y and z direction respectively, m
2
/day 

vx = Velocity in x-direction, m/day 

  = First-order decay rate constant, day
-1

 

Rf  = Retardation factor, dimensionless  

erf = Error function 

erfc = Complementary error function 

Y = Width of the contaminant source in saturated zone, m 

Z = Depth of the contaminant source in saturated zone, m 

x, y, z = Cartesian coordinates, m 

Solution of this equation provides approximate solution of the governing partial 

differential equation. Analytical solution is used by Cheng (2000) for a three dimensional 

contaminant transport problem for continuous source pollutant. Chang et al. (2012) used 

analytical solution as reference true solution for their two dimensional contaminant transport 

model. Chang and Assumaning (2011) also used analytical solution as true solution for their two 

dimensional contaminant transport model with instantaneous input. In this paper, a random 

Gaussian error has been added with analytical solution to simulate reference true solution. The 

error is considered to be 5% of the analytical solution. Therefore, the true solution in this study is 

analytical solution added with 5% error. This true solution has been used to evaluate 

performance of numerical method and filtering techniques for a three dimensional model with 

continuous source pollutant. 
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3.2 Numerical Solution Approach 

Forward-Time Central-Space (FTCS) finite difference method has been used to solve the 

three dimensional partial differential transport equation numerically. FTCS is an explicit method 

and therefore it is very efficient in terms of computational effort. Owen (1984) evaluated several 

mathematical models used in coastal and estuarine regions. One of the results he found was that 

FTCS scheme can always be used for advective transport with salinity. Chang and Li (2009) 

used FTCS scheme in their two dimensional transport model.  Chang and Latif (2010), Chang et 

al. (2012) also used FTCS scheme to solve their transport models numerically. After state-space 

discretization by the FTCS method the following partial derivatives are obtained: 
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(7) 

Where i = spatial coordinate of nodes along x direction; j = spatial coordinate of nodes along y 

direction; k = spatial coordinate of nodes along z direction; t = coordinate of time step 

And the equation for kC: 

 
    

                       

 
 

(8) 
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Substitution of equations (3) to (8) into the three dimensional partial differential subsurface 

transport equation (1) yields, 
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Where 
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For state-space discretization the stability and convergence criteria for FTCS finite difference 

scheme can be defined in following way; 
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And 

 
   

 

 
     

    
 
 

(16) 

Now, based on equations (10) to (14) equation (9) can be rewritten in following matrix form; 
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               (17) 

Where 

 (t+1) is the state variable defined as vector of contaminant concentration at all nodes of the 

domain at time, t+1; 

 (t) is the state variable defined as vector of contaminant concentration at all nodes of the domain 

at time, t 

M is the State Transition Matrix (STM) containing all of the parameters for the model. It is a 

matrix composed of coefficients    to    of equations (10) to (14) in its main, upper and lower 

diagonal entries. With a known present time step concentration STM can determine 

concentration of next time step. Essentially STM propagates through every time step to provide 

the result of numerical solution approach. 

3.3 System Equation Based on Numerical Solution Approach 

System or process equation of the contaminant transport model is based on equation (17). 

To incorporate heterogeneity and stochastic behavior of subsurface environment a random 

Gaussian error has been introduced in the model derived from numerical solution. This error 

vector can be termed as process noise.  Therefore, stochastic representation of the system 

equation can be expressed as; 

              (18) 

Where 

 t+1 is the state variable defined as vector of contaminant concentration at all nodes of the 

domain at time, t+1 

 t is the state variable defined as vector of contaminant concentration at all nodes of the domain 

at time, t 
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M is the State Transition Matrix (STM) involving all the model parameters 

   is the process noise i.e. the random Gaussian error introduced in the system equation. 

In this study, process noise is introduced as a percentage of the numerical solution for 

each time step and process noise is considered to be 10% of numerical solution. Therefore, the 

process equation used in all data assimilation techniques is numerical solution added with 10% 

random error.    has zero mean and covariance   . This stochastic representation of process or 

system equation is important for later consideration in filtering techniques. To analyze and infer 

a dynamic system at least two models are necessary. One is based on aforementioned process 

equation and this model describes the state evolution with time. Another one is to assimilate the 

noisy measurement to the state (the measurement or observation model). 

3.4 Measurement (Observation) Model Based on Analytical Solution 

Due to unavailability of field data a set of measurement data is simulated using reference 

true solution. Gaussian error has been added with true solution to obtain observation data 

required for measurement model. Measurement data are obtained by the following equation; 

        
     (19) 

Where 

   is the vector of observed values for all nodes at time step t 

  
  is the true solution of the state vector for all nodes at time step t 

   is the observation error vector 

  is the observation data pattern matrix. 

The observation data pattern matrix has some other popular names such as measurement 

sensitivity matrix or design matrix. The propagation of the state vector    is dependent on 

observation data pattern matrix H and observation error vector   . H is an identity matrix to 
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describe the pattern of observed data in the field. Similar to the process noise error,    is 

considered as the measurement noise. Measurement noise is considered to be 2.5% of the 

analytical solution. Therefore, 2.5% error is added with analytical solution in each observation 

node to make the observation matrix. It is an error vector of observation with zero mean and 

covariance matrix Rt. With the same percentage error approach described in the system model, 

observation noise is considered to be a percentage of the true solution. 

3.5 Data Assimilation with Kalman Filter 

Kalman Filter (KF) is a recursive data processing algorithm that can be used for any 

dynamic state estimation problem. It has two versions: one is discrete time and another one is 

continuous time. In this paper, the discrete time Kalman filter has been used. Kalman filter can 

assimilate noisy data in its analysis to recursively improve its estimation of state. It has wide 

range of application in any navigational state estimate problem such as, guiding rockets and 

missiles and in case of numerical weather prediction. The stochastic nature of Kalman filter 

exploits the theorem of Gauss-Markov model. At each discrete time step increment, a linear 

operator is applied to the current state to generate the new state, adding some noise. Also there is 

option to add control information on the system if they are known. 

As discussed previously, filtering algorithms need at least two sets of models. One is 

system or process model and another one is measurement or observation model. In Kalman filter 

the stochastic state estimation equation can be written in following form: 

                                     (20) 

Where,        is the estimated value of state after the KF adjustment, and         is the 

estimated value of state before the KF adjustment, i.e. the predicted value from the model. 
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Essentially, in the following equations (+) will indicate value after Kalman filter adjustment and 

(-) will indicate value before Kalman filter adjustment.  The matrix Kt+1 is defined by 

                                
   (21) 

 

Here Pt+1 is the optimal estimate of system error covariance matrix and can be estimated by 

                                                   (22) 

Or rewriting by 

                          (23) 

And  

                       (24) 

Here Kt+1 introduced in equation (21) is called the Kalman optimal gain or Kalman filter. It 

determines how much the estimated value using this filtering algorithm can gain from the 

available observations.  

Equations (18) to (22) and equation (24) are the primary six equations of Kalman filter. 

For prediction of optimal state by using Kalman filter, xt+1 of equation (18) is used and xt is 

substituted by xt+1 in equation (19) to get observation vector zt+1. Then using equation (24), (22), 

(21), and (20) sequentially, optimal estimation of state, xt+1(+) is estimated. Then this value of 

xt+1 is used to predict next time step state of x i.e. xt+2 by using all these aforementioned 

equations. This recursive algorithm will continue to operate up to the expected time step. Figure 

1 describes the general recursive operation of Kalman filter. 
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Figure 1. Sequential operation of Kalman filter (Welch & Bishop, 2006) 

3.6 Data Assimilation with Ensemble Kalman Filter 

Despite being a very robust algorithm Kalman filter is not applicable for estimation 

problems with nonlinear dynamics. Moreover, in environmental engineering, hydrology and 

hydrogeology research state variables could be very large and system may require a large 

number of information to describe the state. In this case, application of Kalman filter can become 

prohibitively expensive as because Kalman filter analysis step will have an inverse operation in 

each time step involving a very large matrix of error covariance.  Ensemble Kalman Filter 

(EnKF) is an efficient data assimilation technique to deal nonlinear dynamics with lower 

computational effort compared to classical Kalman filter. In Ensemble Kalman filter the error 

covariance matrix is represented by stochastic ensemble of model realizations. EnKF uses 

sequential Monte Carlo simulation to generate required ensemble realizations. 

EnKF has many implementations. Here EnKF implementation of Evensen (2003) applied by 

Chang and Latif (2011) is followed in this paper. Using Monte Carlo sampling the state matrix 

can be built as an arrangement of the ensemble members , ( 1,..., )n

i i N x  

                  

                    

Prediction: 

State Projection 

Error covariance extrapolation 
                       

  
 

                          

                    

Correction: 

Kalman gain computation 

Update estimate with measurement    

Update error covariance 

Initial       and        
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     (25) 

where n is the size of model state vector and N is the number of ensemble members. The 

ensemble mean can be calculated by the following operation. 

    
            

   (26) 

where    
      is the ensemble mean matrix and N NB is the matrix where each element is 

equal to 1/ N  The ensemble residual matrix can be defined as, 

         
      

      (27) 

The prior ensemble covariance matrix , | 1

n n

e t t



 P can be defined as  

 
         

   

   
     

(28) 

A vector of measurements ,mz  with m being the number of observation nodes, can 

be considered as the mean vector of observation. In this stochastic model, the observation is 

explicitly treated as random variable and, therefore, can be replicated according to the Monte 

Carlo simulation with number of the ensemble members N. The perturbed observations are, 

                 (29) 

and can be stored in the columns of a matrix 

                   
     (30) 

while the ensemble of observation errors can be stored in the observation residual matrix, 

                  
   , (31) 

The ensemble measurement error covariance matrix can be represented by the following 

equation, 
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(32) 

 

The ensemble Kalman gain can be calculated by 

       
      (33) 

Where   is the observation operator;   is the ensemble innovation covariance matrix and 

expressed by 

       
     (34) 

The residual matrix is defined as 

         
              (35) 

The posterior estimate of the state matrix is calculated as 

            
            

  

               
     

   
          

  

               
     

   
          

  

               
     

      
     

          
  

 

(36) 

The inverse computation entails a potential singularity. (Evensen, 2003) prescribed a 

pseudo-inverse operation to take care of this potential singularity. Pseudo-inverse uses singular 

value decomposition approach to handle this inversion of potential singular matrix calculation.  

There is also another approach of eigenvalue decomposition to handle this inversion of potential 

singular matrix.  

After obtaining the value of         
   , the mean analysis or posterior estimation of state is 

calculated by the following equation: 
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              (37) 

any column of       gives the analysis or posterior estimate,     
 . 

The posterior ensemble covariance matrix becomes 

 
       

 

 
                        

  
(38) 

The posterior state ensemble matrix at time step t,      will be used to predict the prior at time 

step t+1, with a linear state transition operator   , 

                (39) 

3.7 Data Assimilation with Ensemble Square-Root Kalman Filter 

Ensemble Kalman filter has many different formulations with all of these differences 

contributed by the different approach in solving the analysis stage. The standard EnKF has an 

approach of perturbed observation in analysis step. Square root schemes don’t need to perturb 

observation during assimilation procedure. Ensemble Square Root Kalman Filter (EnSRKF) can 

be termed as an efficient variant of Ensemble Kalman Filter (Evensen, 2003). With Comparison 

to EnKF, EnSRKF improves efficiency of analysis by avoiding perturbations of observation 

during assimilation period (Whitaker & Hamill, 2002).  EnSRKF also does not have large 

inversion computation during analysis step which makes it a very efficient tool for data 

assimilation. 

The implementation of EnSRKF is initiated following the implementation of EnKF.  

Similar to EnKF, EnSRKF also uses Monte Carlo sampling to perform the generation of the 

ensemble members. Implementation of EnSRKF starts with the equations (25) to (27) and 

equation (30) described in formulation of EnKF. Bannister (2012) showed a three step analysis 
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procedure for EnSRKF. Author’s procedure is mostly followed in following implementation. 

The first step is to find a mean analysis state matrix,    
 : 

    
     

                           (40) 

Where    
       and   are ensemble mean matrix and ensemble residual matrix defined in 

equations (26) and (27) respectively.   is the observation data pattern matrix,   is the 

observation data or measurement matrix (equation 30) and S and C matrices are defined below: 

               

And 

                    
   ,  

 where    is the     observation error covariance matrix defined in equation (32). Then a 

matrix G is defined as:       . Then eigenvectors V and eigenvalues D of the matrix   is 

calculated. 

The second step is to calculate analysis perturbations, A: 

               . (41) 

Inversion of          involves potential singularity. Therefore, pseudo-inverse approach 

discussed in EnKF formulation has been used to avoid this potential singularity.  

The final step is to assemble the full ensemble using analysis perturbation and eventually this 

model propagates this ensemble to next time step. 

   
     

     (42) 

       
       

    (43) 

Where posterior state matrix at time t,   
  is used to update prior state matrix,       

   at time t+1 

with a linear state transition operator matrix   . 
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3.8 The 3D Space Grid and Model Inputs 

Three dimensional volumetric domain grids are used to illustrate the performance of 

contaminant transport models in this study. To evaluate performance of different data 

assimilation algorithms two domains are used. First domain is a smaller domain with less 

number of nodes and another domain has more number of nodes. First domain has been created 

with 10 nodes in X axis, 12 nodes in Y axis and 4 nodes i.e. layers in Z axis. In total it has 480 

nodes. Grid spacing ∆x, ∆y and ∆z in between each node is 5, 5 and 3 meters respectively. 30 

time steps have been used to simulate the transport of concentration and duration of each time 

step, ∆t is 0.75 days. A continuous pollutant source with an injection rate of 10,000mg/L is 

inserted in grid point (1, 6, 1). 9 observation nodes has been used in each layer, that means in 

four layers a total of 36 observation nodes has been used in a domain of 480 nodes. The other 

parameters are chosen according to suggestion by Zou and Parr (1995). These parameters are: 

velocity 0.5 m/d, retardation factor 1.5, Dispersion coefficients, Dx = 3.0 m
2
/d, Dy = 0.6 m

2
/d and 

Dz = 0.7 m
2
/d and first order decay rate is 0.3/d. Second domain has been created with 50 nodes 

in X axis, 60 nodes in Y axis and 4 nodes i.e. layers in Z axis. In total, it has 12,000 nodes. As 

the second domain is very large compared to the first one, values of some parameters have been 

changed to get a larger shape of the contaminant plume. Otherwise, if same parameter values of 

small domain are used in case of the larger domain, the plume would look too small in a large 

domain and performance of the different data assimilation techniques will not be easy to 

distinguish visually. Table 1 is a summary of all these model parameters. 
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Table 1 

Value of parameters for two different sized models 

Parameters Parameter values for Case 1 Parameter values for Case 2 

Grids in X direction 10 50 

Grids in Y direction 12 60 

Grids in Z direction 4 4 

Total nodes (n) 480 12,000 

Node Spacing        5m 5m 

Node Spacing     3m 3m 

Total volume 50m X 60m X 12m 250m X 300m X 12m 

Time step size,    0.75d 0.75d 

Total time steps 30 40 

Total simulation time 22.5 days 30 days 

Initial concentration 10,000 mg/L 20,000 mg/L 

Concentration input node (1,6,1) (1,30,1) 

Decay rate 0.3/d 0.1/d 

Velocity 0.5 m/d 1.2 m/d 

Retardation coefficient 1.5 1.0 

 Dispersion coefficient at X 

direction,    

3.0 m
2
/day 4.0 m

2
/day 
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Table 1 

Cont. 

Dispersion coefficient at Y 

direction,    

0.6 m
2
/day 2.0 m

2
/day 

Dispersion coefficient at Z 

direction,    

0.7 m
2
/day 1.3 m

2
/day 

Ensemble size, N 100 100 

Process noise 10.0% 10.0% 

Measurement noise 2.5% 2.5% 

 

Other than these parameters, 9 observation data points are considered to be located in 

each layer of these 3D six layer models. Therefore, in total there are 36 observation nodes in 

these example domains. For all of the simulations in this thesis, a system with 64-bit operating 

system with 2.5 GHz processor and 6.00 GB ram has been used. 

The plan view of the small domain is shown in Figure 4. The initial point source of 

continuous source contaminant is located at node (1,6,1) for the small domain problem and 

shown by a large dot in the figure. The direction of the flow is shown by an arrow. 
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Figure 2. Top layer of the 3D experimental domain grid 

3.9 Prediction Effectiveness and Accuracy Test 

The effectiveness and accuracy of numerical, KF, EnKF and EnSRKF schemes are 

measured by comparing the respective model predicted results with the true value. The root 

mean square error (RMSE) is used as an effectiveness estimator. RMSE of each approaches are 

calculated using the following equation, 
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(44) 

Here          is the error (mg/L) at time step t.   is number of nodes.             is the model 

predicted value of concentration in 3D coordinate system at time, t.             is the true 

solution of concentration in 3D coordinate system at time, t. To calculate an average of RMSE in 

all of the instances where RMSE profile is plotted an average of RMSE is calculated by 

summing up root mean square error of all time steps and dividing that sum by number of time 

steps. 
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CHAPTER 4 

Results and Discussion 

4.1 Case 1 with a Domain of 480 Nodes  

A computer code is developed to run the mathematical models of FTCS numerical 

solution, KF, EnKF and EnSRKF data assimilation techniques. A three dimensional model with 

10x12x4 grids (480 nodes) has been constructed to simulate contaminant transport prediction of 

each techniques.  The simulations are run for 30 time steps. To evaluate spreading behavior of 

plumes, a contaminant concentration profile is drawn for each layer. In Figure 3, the 

concentration distribution of each approach is presented after time step 5 for layer 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Contaminant concentration contour profile after time step 5 at layer 1 for True, 

Numerical, KF, EnKF and EnSRKF solution. 
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From Figure 3 it is clear that, after time step 5 numerical solution is moving faster 

compared to true solution. At this early stage it is difficult to distinguish KF, EnKF and EnSRKF 

plumes; however, these have better shape compared to the numerical solution. MATLAB 

generated colorbar adjacent to each plot indicates the range of contour line concentrations. As 

contaminant is injected through layer 1, concentration of contaminant would be highest in layer 1 

and it is reflected in the colorbars as all of the colorbars have a highest value of 1000 mg/L. 

Next, in figure 4 and 5, layer 2 and layer 3 contour profiles are plotted after time step 5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Contaminant concentration contour profile after time step 5 at layer 2 for True, 

Numerical, KF, EnKF and EnSRKF solution. 
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Figure 5. Contaminant concentration contour profile after time step 5 at layer 3 for True, 

Numerical, KF, EnKF and EnSRKF solution. 

From Figure 4 and 5 it is clearly visible that, concentrations of contaminant plumes are 

becoming reduced with layer level. To clearly identify the change the MATLAB colorbars with 

auto-generated scaling associated with contour profiles can be noticed. For example, in Figure 3 

the range of colorbar for contours was from 1 to 1000 mg/L for all approaches, however, for 

Figure 5 the colorbar shows a significant change in concentration range. True, EnKF, EnSRKF 

solutions have ranges with smaller values in the colorbars. This is quite reasonable and expected 

because layer 1 should have highest level of contour concentration profile as contaminant is 

injected at layer 1. As contaminant is injected in a point at the top layer (node (1,6,1) in 3D 

coordinate system) the contaminant concentrations farther from this point will remain lower 

compared to the contaminant concentrations closer to this point. Next, in Figure 6 concentration 
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profiles of contaminants are shown for time step 10 at layer 1. Figure 6 shows that at time step 

10 at layer 1, the contaminant is more spread out compared to the time step 5 depictions shown 

in Figure 3. Here it can be noticed again that, numerical solution is moving faster compared to 

True solution, KF and ensemble techniques.  

 

Figure 6. Contaminant concentration contour profile after time step 10 at layer 1 for True, 

Numerical, KF, EnKF and EnSRKF solution 

To evaluate performances of different approaches at time step 10, another plot of 

concentration profiles is presented at Figure 7 to compare performance of the different 

approaches. Figure 7 provides concentration profiles after time step 10 at layer 3. Here, ranges of 

colorbars of true, KF, EnKF, EnSRKF solutions are very similar and the plume distribution of 

true solution is more similar to that of EnKF and EnSRKF solution.  
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Figure 7. Contaminant concentration contour profile after time step 10 at layer 3 for True, 

Numerical, KF, EnKF and EnSRKF solution 

 Range of colorbar for true solution is 1 to 12 which is equal to the range of colorbar of 

EnSRKF. EnKF has a range of 1 to 8 and KF has a range of 1 to 20. However, range of colorbar 

of numerical solution is quite different from that of true solution. For example, numerical 

solution has a range of 1 to 100. This indicates that filtering techniques work better compared to 

the numerical method in predicting the contaminant transport. The concentration profile after 

time step 20 at layer 1 is shown in Figure 8. In figure 8, concentration profile for each scheme is 

more spread out as 20 time steps out of total 30 time steps of simulation have already passed. 
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Figure 8. Contaminant concentration contour profile after time step 20 at layer 1 for True, 

Numerical, KF, EnKF and EnSRKF solution 

Figure 8 displays that, when none of the other schemes have reached the halfway of the 

domain, numerical solution has already beyond the halfway. Numerical solution adds up errors 

of each time step and therefore, it is always showing more errors in predicting the concentration 

plume. Numerical solution, without having any data assimilation technique, therefore, does not 

perform well to predict contaminant transport in subsurface. Concentration plumes of true, EnKF 

and EnSRKF solutions are nearly similar to each other. However, from layer 1 it is not possible 

to distinguish each other as layer 1 has a continuous source of 10,000 mg/L. 

 Figure 9 provides contour profile of concentration after time step 20 at layer 3.   
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Figure 9. Contaminant concentration contour profile after time step 20 at layer 3 for True, 

Numerical, KF, EnKF and EnSRKF solution 

 Figure 9 shows that, shapes of concentration plume generated by true solution is better 

predicted by EnSRKF and EnKF schemes. Kalman filter has more errors compared to ensemble-

based techniques but better prediction ability compared to numerical scheme. According to the 

colorbar, range of contours for true solution is from 1 to 20 mg/L. EnKF has the same range of 1 

to 20 mg/L, EnSRKF has a range of 1 to 12 mg/L and numerical scheme has a range of 1 to 100 

mg/L. Although, EnSRKF has a small range of concentration, a closer inspection indicates a 

larger area of EnSRKF has the peak concentration of its color range. EnSRKF has highest 

contour value of 12 mg/L shown in red in colorbar and in the center of the plume it has 

reasonably larger area with red color. On the other hand, despite EnKF has a peak contour value 

of 20 mg/L indicated by red color in its colorbar, the center of the plume shows a green area 
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which indicates much of it highest concentration is between 10 to 15 mg/L. Therefore, despite 

having two marginally different contour ranges, EnKF and EnSRKF actually have reasonably 

similar range of contour plumes. Figure 10 shows contour profile of concentration after the last 

time step of 30 at layer 1.   

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Contaminant concentration contour profile after time step 30 at layer 1 for True, 

Numerical, KF, EnKF and EnSRKF solution 

At layer 1 of the domain all of the contours are well spread and numerical scheme is 

overpredicting the concentration plume as seen in earlier plots. Filtering techniques are working 

better to assimilate the plume generated by the true solution. To evaluate the performance of the 

data assimilation techniques another profile is plotted after time step 30 at layer 3. 
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Figure 11. Contaminant concentration contour profile after time step 30 at layer 3 for True, 

Numerical, KF, EnKF and EnSRKF solution 

Figure 11 shows that, shape of contour for true solution, EnKF and EnSRKF are 

reasonably similar. The colorbar shows that, the true, KF, EnKF and EnSRKF solution has a 

same scale of 1 to 20 mg/L. Numerical solution has a scale of 1 to 100 mg/L. In Figure 12, 13, 

14 and 15 a side-by-side comparison between true solution and numerical, KF, EnKF and 

EnSRKF has been shown after time step 30 for all layers. Contour plumes of only time step 30 is 

chosen as after 30 time steps simulation ends and the plume is well developed at this stage. 
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Figure 12. Comparison of true and numerical solutions after time step 30 at all layers 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Comparison of true and KF solutions after time step 30 at all layers 
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Figure 14. Comparison of true and EnKF solutions after time step 30 at all layers 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Comparison of true and EnSRKF solutions after time step 30 at all layers 
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Figures 12, 13 14 and 15 provide a depiction how numerical. KF, EnKF and EnSRKF 

schemes performs compared with true solution. From shapes of contours and from scales of 

colorbars it is quite evident that. For each layer EnSRKF, EnKF and KF have better prediction 

accuracy compared to numerical and KF solutions. 

To get a clear idea how all these approaches are working a RMSE profile is drawn to 

estimate root mean square error of each scheme compared to the true solution. Sometimes 

plotting only the contour plumes may not give a definitive indication of performance of each 

scheme as contour profiles may show very similar plume distributions visually. Therefore, a 

RMSE profile is plotted in Figure 16 to present the performances of each scheme in a single plot. 

 

 

 

 

 

 

 

 

 

Figure 16. Root Mean Square Error (RMSE) profiles of Numerical, KF, EnKF and EnSRKF 

solutions 

Figure 16 plots RMSE profile of each scheme for 30 time steps. Error of Numerical 

solution continues to increase until around time step 15, after that it stabilizes. Kalman filter 

RMSE shows that it converges quickly and remains relatively flat throughout the entire 
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simulation period. EnKF and EnSRKF have least errors compared to numerical and KF schemes. 

However, it is difficult to distinguish which scheme has less error between EnKF and EnSRKF 

solution. In fact, EnKF and EnSRKF both are types of ensemble Kalman filters and as EnSRKF 

can be termed as a special flavor of EnKF, it may be expected that both schemes may have 

similar accuracy.  To determine average error of each scheme, the errors of each scheme for each 

time steps can be summed up and divided by 30 to get an average of RMSE. Before calculating 

the average RMSE for each approaches the entire code was run five times to check if all of the 

schemes are converging properly. A decision based on a single run can have a scope of more 

errors compared to a decision based on multiple runs and taking their average. In Figure 17, 

results of RMSE profile are shown for five different runs in a single plot. 

 

 

 

 

 

 

 

 

 

Figure 17. Root Mean Square Error (RMSE) profiles of Numerical, KF, EnKF and EnSRKF 

solutions for five different runs. 
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Figure 17 shows that each of the schemes maintaining their trend more or less in each run 

and therefore, it can be concluded that all the schemes are converging properly. RMSE of 5 

different runs and their average is shown in Table 2.  

Table 2 

Results of five different RMSE profile runs and the average RMSE of each scheme 

Scheme Run 1 Run 2 Run 3 Run 4 Run 5 Average 

Numerical RMSE(mg/L) 126.6 127.44 127.04 127.40 126.57 127.01 

KF RMSE(mg/L) 26.19 25.86 26.39 25.77 26.60 26.16 

EnKF RMSE(mg/L) 5.70 5.58 5.68 6.00 5.76 5.74 

EnSRKF RMSE(mg/L) 5.29 5.42 5.16 5.80 5.70 5.47 

 

Taking average of RMSE for five different runs yield that Numerical solution has the 

highest value in RMSE as it was seen in the Figure 17. Numerical solution has an average RMSE 

of 127.01 mg/L, Kalman filter solution has an average RMSE of 26.16 mg/L, Ensemble Kalman 

filter solution has an average RMSE of 5.74 mg/L and Ensemble Square Root Kalman filter 

solution has an average RMSE of 5.47 mg/L. EnSRKF solution can improve prediction accuracy 

by 95.6%, 79% and 4.7% compared to numerical, KF and EnKF solutions. Therefore, it can be 

concluded that, EnSRKF solution provides much better results compared to numerical and KF 

solutions and marginally better results compared to EnKF solution.  

Results from case 1 shows that, EnKF and EnSRKF schemes perform very well to predict 

contaminant transport. In terms of RMSE calculation these two schemes have very similar 

results; although EnSRKF has slightly better RMSE compared to EnKF.  
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4.2 Case 2 with a Domain of 12,000 Nodes  

To explore the computational efficiency of filtering techniques a larger domain problem 

is used. In case of large domain problems application of Kalman filter is infeasible as it 

calculates and stores large system and measurement covariance matrices explicitly. To 

demonstrate this infeasibility of Kalman filter, execution times of major functions have been 

recorded for different domain sizes. MATLAB profiler can estimate required time for each 

subroutine of a code. Using MATLAB profiler execution times are recorded. For a domain with 

total 8640 nodes with 36 nodes in x direction, 40 nodes in y direction and 6 nodes (layers) in z 

direction the execution time indicates that the entire simulation time is 2 hour and 21 minutes. 

Kalman filter itself occupied 2 hour and 8 minutes out of this 2 hour 21 minutes. Following 

Table 3 provides a brief summary of major functions which take significant time to execute. The 

table provides execution time of 4 different domain-size problems.  

Table 3 

Major operations that take much time to execute in four different domains 

Time in seconds Domain 1 

10x12x4 Grids 

(480 nodes) 

Domain 2 

10x12x6 Grids 

(720 nodes) 

Domain 3 

20x24x6 Grids 

(2880 nodes)  

Domain 4 

36x40x6 Grids 

(8640 nodes) 

Total execution time 6.95 11.86 208.21 8440.70 

State Transition Matrix 1.3 3 46.24 415.07 

Kalman filter 0.82 2.65 142.46 7932.44 

EnKF 0.86 1.43 8.7 56.77 

EnSRKF 1.02 1.59 6.6 23.20 
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Table 3 shows that, for smaller domain problems Kalman filter can run relatively quickly, 

however, as number of nodes increases computation time for Kalman filter increases 

enormously. Therefore, to concentrate properly on performances of EnSRKF and EnKF the 

Kalman filter algorithm is dropped for the case 2 problem. The case 2 has a new domain with 50 

nodes in x axis, 60 nodes in y axis and 4 nodes (layers) in z axis (total 12,000 nodes). Parameter 

sets described for 2
nd

 case of Table 1 is used to run this larger domain problem. The reason of 

separate parameters is that, as case 2 domain is 25 times larger than that of case 1 domain, 

keeping unchanged parameters for this larger domain produces contours with too small plumes. 

Therefore, few parameter values are modified. This model has been run for 40 time steps with 

duration of each time step being equal to 0.75 day. Therefore, total simulation time for this run is 

30 days. In the previous model, total 30 time steps were used with same duration of each time 

step.  The motivation behind increasing simulation time is to provide ample time to 

concentration plumes to develop properly. As this domain is relatively large, plume would look 

very small in earlier time steps as it would not be properly developed at earlier time steps. 

Therefore, contour profiles of time steps below 10 is not shown here. Figure 18 describes 

concentration profile of true, numerical, EnKF and EnSRKF after time step 10 at layer 1. Figure 

19 provides concentration profile of true, numerical, EnKF and EnSRKF after time step 10 at 

layer 3. From Figure 18 and 19 it is not clearly visible which schemes have better prediction 

ability. Therefore, in Figure 20, 21, 22 and 23 concentration profiles are plotted after time step 

30 at layer 1, time step 30 at layer 3, time step 40 at layer 1 and time step 40 at layer 3. 
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Figure 18. Contaminant concentration contour profile after time step 10 at layer 1 for True, 

Numerical, EnKF and EnSRKF solution 

 

 

 

 

 

 

 

 

 

Figure 19. Contaminant concentration contour profile after time step 10 at layer 3 for True, 

Numerical, EnKF and EnSRKF solution  
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Figure 20. Contaminant concentration contour profile after time step 30 at layer 1 for True, 

Numerical, EnKF and EnSRKF solution 

 

 

 

 

 

 

 

 

 

Figure 21. Contaminant concentration contour profile after time step 30 at layer 3 for True, 

Numerical, EnKF and EnSRKF solution  
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Figure 22. Contaminant concentration contour profile after time step 40 at layer 1 for True, 

Numerical, EnKF and EnSRKF solution 

 

 

 

 

 

 

 

 

 

Figure 23. Contaminant concentration contour profile after time step 40 at layer 2 for True, 

Numerical, EnKF and EnSRKF solution 
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From Figure 20 and 21 shows that contaminant plume of true solution is better replicated 

by EnKF and EnSRKF compared to numerical solution. Solutions after time step 30 at layer 3 

presented in Figure 21 shows that range of colorbar scales of true solution, EnKF and EnSRKF 

are same. Each of these has a range of 1 to 100 mg/L whereas numerical solution has a range of 

1 to 600 mg/L. Figure 20 and Figure 22 shows contour profiles of layer 1 after time step 30 and 

40 respectively. As seen in case 1, layer 1 shows highest range of concentration plume 

distribution due to the presence of a continuous source pollutant at layer 1. Figure 23 presents 

that, after the last time step of 40, at layer 3 plume of true solution has better similarity with that 

to EnKF and EnSRKF plumes. Also ranges of scales shown in colorbars substantiate that EnKF 

and EnSRKF can better predict concentration plume compared to deterministic numerical 

solution. To compare prediction accuracy of numerical, EnKF and EnSRKF solutions Figures 

24, 25 and 26 are plotted for all layers after the end of the simulation period i.e. 40 time steps. 

Figure 24 shows comparison between true solution and numerical solution. Layer 2 and 3 shows 

significant difference in scales of colorbars between true and numerical solution. Figure 25 

presents that, shape and scale range of true solution and those of EnKF solutions are more 

similar than these found in Figure 24 between true solution and numerical solution. Figure 26 

presents contour profiles of true solution and EnSRKF solution after time step 40 at all layers. 

From Figure 25 and 26 it is clear that, EnKF and EnSRKF have completely same range of 

colorbar scales which indicates these two have similar prediction accuracy. These results are 

congruent with the results of case 1. 
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Figure 24. Comparison of true and numerical solutions after time step 40 at all layers  

  

 

 

 

 

 

 

 

 

 

Figure 25. Comparison of true and EnKF solutions after time step 40 at all layers  
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Figure 26. Comparison of true and EnSRKF solutions after time step 40 at all layers 

 Contour profiles provide a visual depiction of each scheme’s effectiveness to predict 

distribution of contaminant plume. To check the accuracy of each scheme numerically the RMSE 

profile is plotted for numerical, EnKF and EnSRKF solutions. RMSE is calculated using true 

solution as a reference solution. Figure 27 provides RMSE profile of each scheme for entire 

simulation period of 40 days.  RMSE profile Numerical solution continues to increase until 

around time step 15 and after which it stabilizes. EnKF and EnSRKF RMSE profile show early 

convergence and they provide a nearly similar profile as seen in smaller domain problem. 

Calculated average RMSE for numerical scheme is 109.05 mg/L, for EnKF scheme is 7.73 mg/L 

and that for EnSRKF is 7.69 mg/L. Therefore, both EnKF and EnSRKF shows significant 

improvement over numerical solution in prediction of contaminant plume in subsurface 

contaminant transport model.  
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Figure 27. Root Mean Square Error (RMSE) profile of Numerical, EnKF and EnSRKF solutions. 

To evaluate computational expense of EnKF and EnSRKF execution time is recorded for 

both schemes. On an average, for a 50x60x4 grid domain with 12,000 nodes EnKF operation 

took 167.43 seconds and EnSRKF operation took only 53.17 seconds to run. With similar 

prediction accuracy EnSRKF shows much greater computational efficiency compared to EnKF 

algorithm. For this larger domain problem EnSRKF takes 68% less computational time 

compared to EnKF scheme. Table 4 provides a summary of computational time in five different 

runs. 

Table 4 

Computational time of EnKF and EnSRKF schemes for 12,000 nodes problem 

Scheme Run 1 Run 2 Run 3 Run 4 Run 5 Average 

EnKF run time (Seconds) 164.5 171.72 163.44 167.99 169.5 167.43 

EnSRKF run time (Seconds) 52.97 53.76 53.01 50.29 55.8 53.17 
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4.3 Sensitivity Analysis with Change in Ensemble Sizes  

To compare performances of EnKF and EnSRKF a sensitivity analysis is performed 

changing ensemble sizes. EnKF and EnSRKF both are Monte Carlo simulation techniques and 

use statistical ensembles or samples to calculate mean and covariances. Therefore, it is important 

to know how many ensembles are necessary to produce acceptable results. To compare 

prediction accuracy of EnKF and EnSRKF six different ensemble sizes of 10, 30, 50, 100, 200 

and 400 have been used. In Figure 28, RMSE profiles of EnKF and EnSRKF schemes are plotted 

for these 6 different ensemble sizes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Change in RMSE profile with change in ensemble size. Vertical scale is customized 

to 0 to 80 mg/L to have a closer view of the RMSE profiles. 
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Figure 28 shows that for ensemble sizes of 10 and 30 EnKF has abrupt RMSE profile. As 

ensemble size increases EnKF profiles becomes smoother. On the other hand, for EnSRKF they 

exhibit much better profile even when ensemble size is 10 and 30. However, it also shows better 

trend as ensemble sizes increase. Table 5 shows comparison of EnKF and EnSRKF mean RMSE 

and execution time for different ensemble sizes. 

Table 5 

Mean RMSE and execution time of EnKF and EnSRKF for different ensemble sizes 

Ensemble size, N 10 30 50 100 200 400 

Mean EnKF RMSE (mg/L) 37.11 11.89 6.95 5.24 5.17 4.83 

Mean EnSRKF RMSE (mg/L) 6.68 7.23 5.44 5.26 5.23 5.11 

EnKF execution time (s) 0.21 0.33 0.46 0.82 1.55 3.26 

EnSRKF execution time (s) 0.16 0.37 0.53 1.05 2.3 6.72 

 

Table 5 shows that, for small ensemble sizes of 10 and 30, EnKF has relatively large 

mean RMSE values of 37.11 and 11.89 respectively. As ensemble size increases mean RMSE 

value for EnKF becomes lower gradually. On the other hand, for smaller ensemble sizes of 10 

and 30 EnSRKF shows much better results compared to EnKF with mean RMSE values of 6.68 

and 7.23 mg/L respectively. Table 5 also shows that as ensemble sizes increase both scheme 

shows gradual decrease in mean RMSE. This sensitivity analysis is performed for case 1 with 

10x12x4 grids (480 nodes). Execution time for this problem shows that although for larger 

domains EnSRKF is computationally cheaper compared to EnKF, in case of increase of 
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ensemble size for a given node size EnSRKF shows larger increase in execution time compared 

to EnKF. For example, when ensemble size is 400 EnSRKF schemes requires 6.72 seconds to 

execute whereas EnKF scheme takes 3.26 seconds to execute. However, as in most hydrological 

modeling cases very reasonable results are found using only statistically significant amount of 

ensemble sizes, the use of large ensemble sizes like 200 or 400 is not required in most real cases. 
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CHAPTER 5 

Conclusion 

 In this study a three dimensional subsurface advection-dispersion-reaction contaminant 

transport model is developed to examine performances of data assimilation techniques. FTCS 

numerical solution with added noise provided the required system or process model and 

analytical solution with added noise provided the required measurement or observation model for 

the filtering approaches. Numerical solution cannot predict transport of contaminant properly due 

to some factors. Few of these are limited parameters to describe a complex process of 

contaminant transport in subsurface, heterogeneity of subsurface environment, truncation error to 

avoid higher order terms during Taylor’s series expansion, etc. Data assimilation techniques do 

not have these limitations and with two different models (system and measurement) they can 

predict transport quite effectively. However, in this paper two separate cases are analyzed and 

demonstrated that for larger domains KF operation becomes too much expensive in terms of 

computational cost. EnKF and EnSRKF approaches use Monte Carlo simulation based ensemble 

data assimilation techniques and performs quite well to predict transport of contaminant in 

subsurface. With similar accuracy of EnKF, EnSRKF takes much less time compared to EnKF 

and it is found to be more suitable for subsurface contaminant transport prediction problem.  

For the case 1problem a 10x12x4 grid (480 nodes) was used and found that mean error of 

EnSRKF scheme is 5.47 mg/L, that of EnKF scheme is 5.74 mg/L, that of KF scheme is 26.16 

mg/L and that of numerical scheme is 127 mg/L. Therefore, on an average EnSRKF can improve 

prediction accuracy compared to numerical scheme by 95%, compared to KF scheme by 79% 

and compared to EnKF scheme by 4.70%. For case 1, execution time of EnKF and EnSRKF both 

are very small. EnKF took 0.86 seconds and EnSRKF took 1.02 seconds to execute. However, in 
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real fields, state dimensions are very high and it is very important to analyze performance and 

efficiency of the model for problems with more nodes.  

To compare computational performance of EnSRKF and EnKF case 2 was examined 

with 50x60x4 grid size with 12,000 nodes. Case 2 has 25 times more nodes than the case 1. KF 

approach was not included for case 2 as it takes astronomically high time to execute due to 

explicit calculation and storage of large covariance matrices. For example, for a domain with 

36x40x6 grid size with 8640 nodes total execution time for the entire model is 8441 seconds and 

KF itself takes 7932 seconds i.e. around 94% of total execution time. For case 2 with 12,000 

nodes EnKF and EnSRKF approaches exhibit similar accuracy. Mean RMSE for EnKF scheme 

is 7.73 mg/L and that for EnSRKF is 7.69 mg/L. However, EnSRKF shows significant 

improvement in average execution time i.e. for EnSRKF approach average execution time is 

53.17 seconds and for EnKF average execution time is 167.43 seconds. Therefore, execution 

time of EnSRKF scheme is 68.2% less compared to EnKF scheme.  

It can be concluded that, for both case 1 and case 2, EnSRKF shows marginal 

improvement in prediction accuracy compared to EnKF. However, as node numbers increase 

EnSRKF becomes more and more computationally efficient compared to EnKF. 

 To examine performances of EnKF and EnSRKF more closely, a sensitivity analysis is 

performed to examine change in RMSE with respect to change in ensemble size. In case of 

ensemble-based data assimilation techniques it is important to know performances of techniques 

with smaller ensemble size. It was found that for smaller ensemble sizes EnSRKF shows less 

error compared to EnKF. As ensemble size increases differences of errors between two schemes 

diminishes gradually.  
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