
 
 

 

Simulation of Sound Propagating over Soft Surface Using the Equivalent Source Method 

Daniel Teye Ocansey  

North Carolina A&T State University 

 

 

 

A thesis submitted to the graduate faculty 

in partial fulfillment of the requirements for the degree of 

MASTER OF SCIENCE 

Department: Computational Science and Engineering 

Major: Computational Science and Engineering 

Major Professor: Dr. Marwan Bikdash 

Greensboro, North Carolina  

2014 

 

 

 

 

 

 

 

 

 

 

 

 



ii 
 

The Graduate School 

North Carolina Agricultural and Technical State University 

This is to certify that the Master’s Thesis of 

 

Daniel Teye Ocansey 

 

has met the thesis requirements of 

North Carolina Agricultural and Technical State University 

 

Greensboro, North Carolina 

2014 

 

Approved by: 

 

  
 

Dr. Marwan Bikdash 

Major Professor & Department 

Chair 

 

Dr. Kenneth M Flurchick 

Committee Member 

 

Dr. Dukka KC 

Committee Member 

  

Dr. Sanjiv Sarin 

Dean, The Graduate School 



iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Daniel Teye Ocansey 

 2014 



iv 
 

Biographical Sketch 

 Daniel Teye Ocansey was born in January 1, 1987 in Tema, Ghana. He received his 

Bachelor of Science degree in Mathematics from the Kwame Nkrumah University of Science 

and Technology in Ghana in the year 2011. He is a candidate for Master’s in the Department of 

Computational Science and Engineering at the North Carolina Agricultural and Technical State 

University. 



v 
 

Dedication 

This work is dedicated to my mother and senior sister. 

 



vi 
 

Acknowledgments 

I would thank my mum, Mary Ocansey, for her prayers and for providing me with the 

motivation to pursue the MSc. degree. I would like to sincerely thank Dr. Marwan Bikdash for 

his excellent guidance and support without which this thesis would not have been possible. I 

would like to express my thanks to all of the committee members: Dr. Kenneth M Flurchick and 

Dr. Dukka KC for the guidance they have provided during my research. 

I wish to thank Aiman Albarakati, Hamzeh Qabaja, Mariama Oumarou and all of the 

members of the Advanced Robotics Laboratory for their advice and encouragement.



vii 
 

                                                                Table of Contents 

List of Figures ................................................................................................................................ ix 

List of Tables ................................................................................................................................. xi 

Notations ....................................................................................................................................... xii 

Abstract ........................................................................................................................................... 1 

CHAPTER 1 INTRODUCTION .................................................................................................... 3 

1.1 Motivation .......................................................................................................................... 3 

1.2 Abatement Method of the Low-Frequency Noise ............................................................. 6 

1.3 Modeling Methods ............................................................................................................. 7 

1.4 Synopsis ............................................................................................................................. 9 

CHAPTER 2 THEORETICAL BACKGROUND........................................................................ 11 

2.1 The Wave Equation in Unbounded Space ....................................................................... 11 

2.2 The Wave Equation over a Surface ................................................................................. 12 

2.3 Green’s Functions for Unbounded Space ........................................................................ 13 

2.4 Response to a Harmonic in Unbounded Space ................................................................ 17 

2.5 Response to a Gaussian Pulse in Unbounded Space ....................................................... 18 

CHAPTER 3 HARMONIC WAVE PROPAGATION ................................................................ 21 

3.1 Helmholtz Equation and Boundary Value Problems ....................................................... 21 

3.2 Harmonic Solution over a Surface ................................................................................... 23 

3.3 The Ground Impedance ................................................................................................... 23 

CHAPTER 4 HARMONIC MODELING OVER A HARD SURFACE USING EQUIVALENT 

SOURCES..................................................................................................................................... 26 

4.1 Description of the Surface Geometry .............................................................................. 26 

4.2 Single Source Response Derivative ................................................................................. 29 



viii 
 

4.3 Boundary Condition for a Single Source ......................................................................... 30 

4.4 Main and Image Source Derivation ................................................................................. 31 

4.5 Multiple Source Derivatives ............................................................................................ 34 

4.6 Ground Boundary Condition for an Unbounded Hard Surface ....................................... 36 

4.7 Least Square Estimation of the Equivalent Source Amplitude ....................................... 36 

4.8 Implementation of the Equivalent Source Method .......................................................... 37 

4.9 Simulations ...................................................................................................................... 39 

CHAPTER 5 HARMONIC MODELING OVER A SOFT SURFACE USING COMPLEX 

EQUIVALENT SOURCES .......................................................................................................... 45 

5.1 Derivatives for the Soft-Contributing Green’s Function ................................................. 46 

5.2 Multiple Sources over an Undulating Soft Surface ......................................................... 47 

5.3 Ground Boundary Condition for an Unbounded Soft Surface ........................................ 48 

5.4 Least Square Estimate of the Equivalent Source Amplitude ........................................... 49 

5.5 Simulations ...................................................................................................................... 50 

CHAPTER 6 CONCLUSIONS .................................................................................................... 57 

References ..................................................................................................................................... 59 

  



ix 
 

List of Figures 

 

Figure 1. The response due to a source        ................................................................................. 17 

Figure 2. Unit Gaussian pulse ....................................................................................................... 19 

Figure 3. Conditions on a hard undulating ground surface ........................................................... 24 

Figure 4. Conditions on a soft undulating ground surface. ........................................................... 24 

Figure 5. Cross-section of the sinusoidal surface defined using Matlab ...................................... 28 

Figure 6. Defined interest points along the surface using Matlab ................................................. 28 

Figure 7. The unit normal vector at each interest point ................................................................ 29 

Figure 8. Modeling on a flat hard surface by placing two sources at the position    and     .... 32 

Figure 9. Every      there is an equivalent source       below the surface ............................ 35 

Figure 10. Computation of the pressure field using the ESM....................................................... 38 

Figure 11. The magnitudes and the phase angles of the equivalent sources ................................. 39 

Figure 12. Pressure magnitude at points        to      . The boundary condition is 

enforced on these test points. ...................................................................................... 40 

Figure 13. Pressure magnitude at points        to       and     .above the surface  41 

Figure 14. Pressure magnitude at points        to       and        above the surface

..................................................................................................................................... 41 

Figure 15. Pressure magnitude at points        to       and        ......................... 42 

Figure 16. Pressure magnitude at points        to        and      above the surface

..................................................................................................................................... 42 

Figure 17. Pressure magnitude at points        to       with         . The boundary 

condition is enforced on these test points. .................................................................. 43 



x 
 

Figure 18. Pressure magnitude at points   = 50  to       and  =1.5  above the surface with 

      -  .................................................................................................................. 43 

Figure 19. Pressure magnitude at points        to       any                 .... 44 

Figure 20. Pressure magnitude at points         to        and                ..... 44 

Figure 21. Magnitudes and phase angles of the of the equivalent source amplitudes below a soft 

surface. ...................................................................................................................... 51 

Figure 22. Pressure magnitude at points        to       over soft surface. The boundary 

condition is enforced on these test points. .................................................................. 52 

Figure 23. Pressure magnitude at points        to       and      above the soft 

surface. ........................................................................................................................ 52 

Figure 24. Pressure magnitude at points        to       and        above the soft 

surface. ........................................................................................................................ 53 

Figure 25. Pressure magnitude at points        to       and        .......................... 53 

Figure 26. Pressure magnitude at points        to        and      above the soft 

surface ......................................................................................................................... 54 

Figure 27. Pressure magnitude at points        to       over soft surface. with   

      . The boundary condition is enforced on these test points. ............................ 54 

Figure 28. Pressure magnitude at points        to       at        over soft surface 

with         . The field is computed at these test points ..................................... 55 

Figure 29. Pressure magnitude at points        to       and        with          

over a soft surface ....................................................................................................... 55 

Figure 30. Pressure magnitude at points        to        and        with   

       over soft surface ............................................................................................ 56 



xi 
 

 List of Tables 

Table 1 Ranges of effective flow resistivity for various types of ground surface ........................ 25 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

 

Notations 

Variable/ Function  Meaning 

                 The flow resistivity 

     Density of the air  

     The wavenumber 

     Speed of sound in air 

     Dummy integration variable for the complex location 

      Ground impedance 

     The instant time of the Gaussian pulse 

     The spread of the Gaussian pulse 

      Number of sources 

      Number of interest points 

          Main and Image source heights from the surface respectively 

 ̅    The Amplitude of the geometric surface 

 ̅    The phase angel of the geometric surface 

 ̅    The wavelength of the geometric surface 

         The surface geometry 

 ⃗         Normal vector at the     interest point 

      Position vector of the     test point 

      Position vector of the      source 

      Position vector of the main source 

       Position vector of the image source 



xiii 
 

      Complex amplitude of the     equivalent source 

     ||     ||  Distance from main source   to the interest point    

      ||      ||  Distance from image source    to the interest point    

    ||     ||   Distance from interest points    to the     equivalent 

sources    

 ̂    Complex distance between paraxial source at    and     test point 

          The solution at point   and time   

               Free space response at  ,   due to a pulse at    and time    

 ̅      Form of free-space Green's function in terms of the distance   to 

the source point 

                Form of free-space harmonic Green's function in terms of the 

distance   due to sources in set   

         The complex amplitude solution at location   due a source with 

wavenumber   

           The complex amplitude solution due to paraxial sources 

       ⃗                The boundary condition 

            ⃗                One harmonic boundary condition 

        The step function 

          Gaussian pulse centered at     

           Response at   and   to a unit Gaussian pulse        

 

 



1

Abstract

Noise generated by large explosions at military bases causes discomfort to residents living

in the vicinity, for up to 20km away. This noise explosion has strong low-frequency content and

can travel over long distances. Most of the theoretical and experimental work that has been done to

study and reduce this type of noise involved the use of barriers and sound proofing the residential

houses. In this thesis, we consider the application of reducing the acoustic noise by shaping the

landscape. The solution of this problem is difficult due to the semi-infinite domain, especially

in the case of soft ground. To overcome the difficulty of calculating a faraway acoustic field for

an undulating soft surface, we use the Equivalent Source Method (ESM) as a generalization of

the image source method which is applicable to flat surfaces only. Additional sources are used

to account for the undulation, and their amplitudes and phases and locations are determined by

solving a least-square problem derived from the boundary conditions. The method then estimates

the pressure field using superposition of the effect of the equivalent sources. In short, the acoustic

field caused by a source above an impedance plane is computed by using a superposition of

equivalent point sources located below the surface. A special notation is derived to simplify this

formulation.

To account for finite impedance, we incorporate an integral introduced by Ochmann [31]

which represents additional sources located at complex locations paraxial to the image source.

This integral is known to be convergent for acceptable impedance. The boundary conditions are

then updated as to reflect the influence of the Ochamann term, and the matrices involved in the

least-squares solution now have six additional terms.

The proposed method is then applied to a sinusoidally varying surface. To simplify the

calculation, the positions of the equivalent sources are postulated to be a small distance below the
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surface to avoid unnecessary complications due to singularity within the domain. Subsequently

the complex amplitudes are derived by enforcing the boundary conditions at a number of test

points chosen along the flat and the undulating parts of the surface. The resulting equivalent

sources presented inversely decaying amplitudes as expected and their phases presented an

expected pattern. Subsequently, we computed the pressure at the far field and both the undulation

and the impedance were shown to contribute to the suppression of the acoustic field faraway.
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CHAPTER 1

INTRODUCTION

The increase in airplanes, trains and military produces a lot of noise in the environment.

These noises are mostly generated by gunfire, explosions, artillery fires, and military vehicles

such as airplanes, tanks, and personnel carrier vehicles. Noise generated by large explosions can

be heard up to several kilometers away as they move with strong low-frequency content that is not

dissipated rapidly in the atmosphere. The rampant nature of low-frequency noise also presents

many acoustic problems to architects, designers and planners.

This research focuses on low-frequency outdoor noise and addresses some of the problems

associated with modeling it in particular, we look at the difficult problem of simulating acoustic

propagation over a hard or soft undulating surface for long distance. We use the equivalent source

method (least squares method) algorithm to estimate the acoustic loss over a given ground surface,

whether hard or soft.

1.1 Motivation

The noise generated at the military base (e.g. explosions and gunfire, etc.) can be

considered as unwanted. This low-frequency noise causes a lot discomfort to resident located

miles away. Structures with low resonant frequencies such as windows rattle as a result of their

interaction with low-frequency sound (especially when the noise is below the audible range

20Hz). Structures, with a low resonant frequency, such as windows, tables, plates etc. vibrate or

rattle as a result of their interaction with low-frequency noise.

In order to gain a better understanding of this phenomenon, we summarize below the

characteristics of relevant sources of the noise, propagation characteristics attenuation in the

atmosphere, and the interaction between the low-frequency noise and structures.
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Reed [36] observed the atmospheric attenuation rate of an explosion wave. He discussed

various attenuation factors and the relationships of frequency to the total wave pressure signature

of an explosion wave. He concluded that the attenuation is approximately proportional to the

five-fourths power of frequency rather than the square of the frequency. The faster attenuation is

probably caused by the combination of molecular relaxation with small-scale in homogeneities

and turbulence which are usually present in real atmosphere. Lyon [25] reviewed the noise

reduction of rectangular enclosure with one flexible wall. He computed the noise reduction for

very low frequencies where wall and enclosed volume are stiffness-controlled and for frequencies

where the wall is resonant.

West [43] used the ray tube method to predict atmospheric acoustic propagation. A ray

tube consists of four rays surrounding a central ray launched from an initial surface close to the

source. This method is made of two components. One is the ray path calculation and the other

is a prediction of pressure levels along elementary ray tubes from a set of neighboring rays.

An invariant property of the ray tube is used to calculate the peak pressure attenuation between

a sphere of radius 100m centered to a source and a given ground point. Comparison shows

a reasonable agreement between the predictions and measurements obtained in enhancement

regions.

Morse [29] considered the transmission of sound through a circular membrane in a plane

wall. The setup involves a plane and a rigid wall with circular window across. This stretches the

tension between the membrane when it comes in contact with an acoustic medium on both sides.

One side of the wall was excited by a plane wave and the solution for transmission through a

membrane of finite sizes is obtain. He showed how the resonances and anti-resonances for a finite

membrane can modify the transparency effect.
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Schomer [38] used the paired-comparison testing method with panels of subjects to

determine the acoustical benefits of improved blast noise reduction by retrofitting windows. Two

houses were used for this study: One received a retrofit window while the other remained with the

older window. C-4 plastic explosives were set off approximately 1.2km away from the houses.

Loud speakers were also placed inside each house to produce white noise. They concluded

that retrofit windows are highly effective in providing enhanced sound isolation for blast noise.

Schomer’s data clearly shows that retrofit window provide about 14 dB improvement in terms of

annoyance.

Kim and Kim [18] found the sound frequency characteristics to be totally dependent on the

properties of the plate. Mostly for a low frequency region where the cavity mode does not occur.

They used near field acoustic holography to estimate the sound field variables. They observed

pressure to have two types of coupling mechanisms depending on the frequency and wavelength.

One mechanism is when the plate and the cavity are strongly coupled. With the plate acting as a

source. The second mechanism is when the coupling interaction behavior decreases the radiation

efficiency.

Schomer and Averbuch [39] studied the indoor human response to blast sound that

generate rattle or vibration. Their objective is to systematically test the subjective response to

the presence or absence of rattles in similar blast sound environments and to see if there are

structural changes that could reduce annoyance within the indoor blast environment. They did

the experiment using a specifically constructed test house and a highly repeatable shake table to

simulate the blast sounds. The shake table was used as a giant loudspeaker to generate a blast type

waveform and to achieve a peak flat-weighted sound pressure level at the face of the building up

to 123dB. To reduce annoyance, the main wall of the house was stiffened. They found that the
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stiffening of the main wall does not reduce the resulting blast noise annoyance.

Fawcett [13] used the complex-image method to efficiently approximate the half-space

Green’s function for acousto-elastic propagation. Fawcett’s approximation approach is valid

for both the near and far fields. Jeans and Mathews [16] investigated the robustness of the

superposition method by using a hybrid of monopole and dipole sources to overcome the problem

of non-uniqueness at certain frequencies.

1.2 Abatement Method of the Low-Frequency Noise

Noise impact can vary greatly from a nuisance to adverse effect on a person’s health [19].

It is important that we find an effective method to suppress outdoor noise. Over the past several

years many have investigated different methods to combat outdoor noise including the use of

barriers, screens and replacing residential house windows with noise resistant windows [11, 21,

26, 32, 37].

One popular approach to reduce outdoor low-frequency noise is the use of a barrier. This

barrier or wall contains some type of sound-absorbing material. The method of soundproofing

the windows and insulating the residential walls become the next option. Bradley and Birta

[7] measured the sound transmission loss of exterior wood stud walls and determined that

the performance is poor for low frequency sounds. In the past decade, most researchers have

theoretically and experimentally worked to reduce the impact of the outdoor low-frequency noise,

[6, 7, 22, 32, 41].

The interaction between the low-frequency noise and surface structures is also a major

concern. Baker [2] analyzed the pressure profiles of an explosive air blast and discussed methods

of computation and the blast experimentation. He provided tables and graphs of compiled blast

parameters.
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Many have proposed contouring of the landscape or undulating as an anti-propagation

method to suppress the low-frequncey wave [41]. The effects of undulating surfaces on

propagating acoustic waves have also been studied. Kundu et al. [22] showed that undulating

surface can attenuate certain frequencies. To target specific frequencies for elimination, one would

have to consider the wavelength and amplitude of the undulating.

Lord Raleigh [35] was the first to theoretically analyze acoustic propagation over

undulating surfaces. Other investigations involving rough surfaces were conducted by Potel

[34] and Fawcett [12]. Saunders [14] measured the pressure waveform at 1000m from small

unconfined charges (e.g. 125-g and 1-kg) of plastic explosive in free air. He concluded that the

propagation over concrete and water have similar waveforms while propagation over grass have

high frequency content resulting in a different waveform. This paper is very useful for studying

underwater explosions.

1.3 Modeling Methods

Highly significant progress in acoustic field modeling have been made using the finite

element and the boundary element methods. Bangash [3] provides details with a comprehensive

study of the structural dynamic impact of explosion by providing a survey of types of aircraft,

missiles, bombs and detonators. In addition, he included empirical models for different materials,

water surfaces, soil and rock medium. This book is very useful for studying the interaction

between blast sounds and structures.

In the 1990s, Koopmann [20, 40] used these method to model the acoustic field over an

unbounded surface. The difficulty of approximating the Helmholtz integral in the numerical

form and the singularity of Green’s function increases the computational complexity. Koopmann

investigated the principle of wave superposition to compute acoustic field. This method offers
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several advantages over the boundary-element method including a decrease in computational

complexity and it improves the accuracy for a similar density calculations.

Due to its computational cost especially in a semi-finite domain, our purpose is to propose

an alternative method to model the effects of surfaces on outdoor acoustic waves using equivalent

sources (hard surfaces) or complex equivalent sources (soft surfaces).

Bikdash and Meng [42] modeled a hard and undulating surface shape (e.g. flat surface,

hill, valley etc.) using the equivalent source method. They placed the equivalent sources at various

distances below the surface. Johnson [17] used the equivalent source method to compute the

internal pressure field for an enclosure with arbitrary boundary condition and internal objects

scattering the sound wave. A rectangular box with rigid wall is used as the enclosure. The

approximation of the behavior of the boundary is determined by the strength of the equivalent

sources. The source strengths must be calculated before the pressure field can be approximated.

This method have been further studied by Nelson and Yoon [27, 28].

Pinho and Arruda [33] compared the equivalent source method with NAH and concluded

that good acoustic source reconstruction can be obtained using the ESM. Bouchet [5] used an

equivalent sphere of the equivalent sources where each point on the structure corresponds to a

point on the sphere. This method is further studied on sound propagation through a street canyon

by Forssen [15].

Attenborough [1] measured and modeled the ground effect arising from the interaction

between sound traveling directly from source to receiver and sound the reflected from the ground

are emphasized. He focused on the ground porosity, the layering style, the small-scale surface

roughness and with tall vegetation. Brick and Ochmann [4] computed the corresponding Green’s

function which describes the sound propagation above an impedance plane and implemented it
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using the Boundary Element Method (BEM). This is based on the superposition of sound sources

with complex source locations. The evaluation of Green’s function includes the sound radiation

from burning flames above ground and tire-road noise. Wu and Seybert [23] used the boundary

element method (BEM) to model acoustic radiation and scattering from bodies of arbitrary shape

in close proximity of an infinite plane. They also attempted to derive the Green’s function for

negative reactance boundary conditions, but many difficulty proved insurmountable.

Ochmann [30] developed a simulation technique to replace the radiating body by a system

of simple sources located within the envelope of the radiator. This simulated field reproduces

the original field depending on the amplitude and the boundary conditions. Li and White [24]

introduced an efficient method for computing the sound field near the region above an impedance

ground or an extended reaction ground. Their procedure is based on complex image theory. The

result can be exactly tested using the Sommerfeld identity.

Ochmann [31] calculated the sound pressure field caused by a monopole source above

an impedance plane using the superposition of the equivalent sources located along a line in the

mirror space. The main idea is to use the superposition of equivalent sources but to allow these

sources to have complex location. This approach is called the complex equivalent source method

(CESM). This method is suitable for both masslike and springlike surface impedances and can be

use in place of the boundary element method. These methods have been investigated by many

researchers [6].

1.4 Synopsis

In Chapter 2, we discuss the acoustic waves and its boundary conditions. In Chapter 3, we

discuss the response due to a single harmonic and its boundary conditions. Chapter 4 introduces

the equivalent source method (ESM) and describes the utilization of ESM to model the acoustic
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loss over a rigid undulating ground surface, and calculates the least-square solution. In Chapter 5,

we introduce the complex equivalent source method (CESM) to model the acoustic loss over a soft

surface. The least squares method is used to estimate the complex amplitude (strength) of these

equivalent sources. The simulations for this thesis were done using Matlab and Mathematica.
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CHAPTER 2

THEORETICAL BACKGROUND

This chapter reviews the theory of sound waves. The propagation of waves can be

described as a hyperbolic partial differential equation knwon as the wave equation. Section 2.1

discusses the wave equation. The various boundary conditions are discussed in Section 2.2.

The wave equation in an unbounded homogenous and time invariant medium leads to Green’s

function. This is discussed in Section 2.3. The response to a harmonic and a Gaussian pulse is

discussed in Sections 2.4 and 2.5 respectively.

2.1 The Wave Equation in Unbounded Space

The wave equation is derived using the equation of state, continuity equation and Newton’s

equation of motion. The equation is given as

c2∇2p (r, t)− ∂2

∂t2
p (r, t) = f (r, t) (2. 1)

where the Laplacian operator ∇ expresses the spherical coordinates, p (r, t) is the pressure field

(velocity potential) at point r ∈ R3, time t, c is the speed of sound and f (r, t) is distributed source

excitation at point r and time t.

If f (r, t) is bounded and is nonzero only in a bounded domain Γ ⊂ R3 then the pressure

p (r, t) is expected to decay to zero away from Γ according to the Sommerfield conditions:

lim
r→∞

p = O
(

r−1
)

(2. 2)

lim
r→∞

(

∂

∂r
− 1

c

∂

∂t

)

p = o
(

r−1
)

(2. 3)
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In general, the right hand side of Equation (2.2) or (2.3) is expressed as

lim
r→∞

p = O
(

r(n−1)/2
)

(2. 4)

lim
r→∞

(

∂

∂r
− 1

c

∂

∂t

)

p = o
(

r(n−1)/2
)

, (2. 5)

where n represents the dimensions in space. For n = 2 (two dimensional space) the pressure is

O
(

r1/2
)

. (2. 6)

2.2 The Wave Equation over a Surface

When acoustic waves propagate over an outdoor surface Γ, the sound pressure p (r, t) must

satisfy the additional boundary condition in Equation (2.8):

c2∇2p (r, t)− ∂2

∂t2
p (r, t) = f (r, t) (2. 7)

∂p (r, t)

∂−→n +
1

Z0c

∂p (r, t)

∂t
= 0 (2. 8)

lim
r→∞

p = O
(

r−1
)

(2. 9)

lim
r→∞

(

∂

∂r
− 1

c

∂

∂t

)

p = o
(

r−1
)

(2. 10)

where Z0 is the ground impedance and −→n being the unit vector that is orthogonal to the boundary

surface. If the ground surface is assumed to be a hard surface then the ground impedance Z0 is

infinite and hence Equation (2.8) is expressed

−→n · ∇p (r, t) = 0 (2. 11)

For a soft ground surface, Equation (2.8) can be written as

−→n · ∇p (r, t) = − 1

Z0c

∂p (r, t)

∂t
,
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where ∇ is the gradient vector in Cartesian coordinates.

2.3 Green’s Functions for Unbounded Space

The unbounded-space Green’s function is the solution of Equation (2.1)-(2.3) and it

represents the response pressure p (r, t) due to a unit pulse applied at r′ and t′:

f (r, t) = δ (r − r′) δ (t− t′) , f : R3×R→ R (2. 12)

The unbounded-space Green’s function denoted by g (r, t; r′, t′) must satisfy

g (r, t; r′, t′) = 0, t ≤ t′, (2. 13)

∂

∂t
g (r, t; r′, t′) = 0, t ≤ t′, (2. 14)

and must also satisfy the causality condition. In particular, Equation (2.1) becomes

(

∂2

∂t2
− c2∇2

)

g (r, t; r′, t′) = δ (r − r′) δ (t− t′) (2. 15)

Theorem: Green’s function g (r, t; r′, t′) which is the pressure at the time t and position

r due to an impulse at the point r′ at time t′ in unbounded homogenous time-invariant space is

given by

g (r, t; r′, t′) =
δ (t− t′ − ||r − r′||/c)

4πc2||r − r′|| , g : R3×R× R3×R→ R. (2. 16)

If the space is homogenous and time invariant then g (r, t, r′; t′) is equal in value to

ḡ (r − r′, t− t′) =
δ (t− t′ − ||r − r′||/c)

4πc2||r − r′|| , g : R3×R→ R (2. 17)

and R = ||r − r′||, then one can write Equation (2.16) as

ḡ1 (R, t− t′) =
δ (t− t′ −R/c)

4πc2R
, ḡ1 : R

2×R→ R (2. 18)

Proof: The unbounded homogenous and time invariant Green’s function g (r, t; r′, t′)
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satisfies
(

∂2

∂t2
− c2∇2

)

g (r, t; r′, t′) = δ (r − r′) δ (t− t′) , (2. 19)

If the Laplace transform is

f̂ (s̄) = Lt→s̄ {f (t)} =

∫

∞

0

e−s̄tf (t) dt, (2. 20)

then

ĝ (r, s̄; r′, t′) = Lt→s̄ {g (r, t; r′, t′)} =

∫

∞

0

e−s̄tg (r, t; r′, t′) dt. (2. 21)

Taking the Laplace transform of the left hand side (LHS) of Equation (2.19) yields

Lt→s̄

{

∂2g

∂t2
− c2∇2

rg

}

= s̄2Lt→s̄ {g} − g|
t=0

− ∂g

∂t
|t=0 − c2Lt→s̄

{

∇2g
}

(2. 22)

= s̄2Lt→s̄ {g} − c2∇2Lt→s̄ {g}

= s̄2ĝ − c2∇2ĝ,

where the boundary conditions in Equations (2.13) and (2.14) were used to drop the two terms

above. The Laplace of the RHS of Equation (2.19) gives

Lt→s̄ {δ (r − r′) δ (t− t′)} =

∫

∞

0

e−s̄tδ (t− t′) δ (r − r′) dt (2. 23)

= e−s̄t′δ (r − r′)

Equating both sides of Equation (2.22) and (2.23) yields

(

s̄2ĝ − c2∇2ĝ
)

= e−s̄t′δ (r − r′) . (2. 24)

In spherical coordinates, the operator ∇2ĝ can be written as

∇2ĝ =
1

R2

∂

∂R

(

R2 ∂ĝ

∂R

)

+
1

R2 sin θ

∂

∂θ

(

sin θ
∂ĝ

∂θ

)

+
1

R2 sin2 θ

∂

∂θ

∂ĝ

∂θ̄
, (2. 25)
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where θ̄ and θ represent the Azimuthal angle and Zenith angle or co-latitude. However one can

assume that the derivatives of ĝ (r, s̄; r′, t′) with respect to θ and θ̄ will vanish. Therefore,

∇2ĝ =
1

R2

∂

∂R

(

R2 ∂ĝ

∂R

)

=
1

R2

(

2R
∂ĝ

∂R
+R2 ∂

2ĝ

∂R2

)

(2. 26)

=
2

R

∂ĝ

∂R
+

∂2ĝ

∂R2

which is valid if the medium is unbounded homogenous and time invariant and r − r′ is the

radial vector measured from the source location r′ as the origin. Substituting Equation (2.26) into

Equation (2.24) yields

s̄2ĝ − c2
(

2

R

∂ĝ

∂R
+

∂2ĝ

∂R2

)

= e−s̄t′δ (R) . (2. 27)

The homogeneous solution of Equation (2.27)

s̄2ĝ − 2c2

R

∂ĝ

∂R
− c2

∂2ĝ

∂R2
= 0, (2. 28)

is given as

ĝ (r, s̄; r′, t′) = Â
e−

Rs̄
c

R
, (2. 29)

which can be verified by directly substituting ĝ (r, s̄; r′, t′) into Equation (2.27). To find the

constant Â, we integrate Equation (2.27) over a small volume Vm of a ball Bm centered at R = 0

(i.e. at r′) and of radius m:

I1 =

∫

Bm

(

s̄2ĝ − c2∇2ĝ
)

dV =

∫

V

e−s̄t′δ (R) dV (2. 30)

= e−s̄t′ (2. 31)

The limit as m → 0 of the LHS of Equation (2.30)

lim
m→0

∫

Bm

(

s̄2ĝ
)

dV − lim
m→0

∫

Bm

(

c2∇2ĝ
)

dV , (2. 32)
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can be simplified as limm→0

∫

Bm

(s̄2ĝ) dV = 0 because ĝ = O
(

1
R

)

and by noting that

dV = O (R3). The second term is computed using the using the divergence theorem

∫

V

∇2ĝdV =

∫

S

∇ĝ.−→n dS, (2. 33)

which makes the second term of Equation (2.32) to be expressed as

I1 = − lim
m→0

c2
∫

Bm

∇2ĝdV = − lim
m→0

c2
∫

S

∇ĝ.−→n dS (2. 34)

with ∇ĝ expressed as

∇ĝ =
∂

∂R

(

Â
e−

Rs̄
c

R

)

=
Âe−

Rs̄
c

(

−Rs̄
c
− 1

)

R2
(2. 35)

Substituting ∇ĝ into Equation (2.34) yields

I1 = lim
m→0

c2
∫

S

Âe−
Rs̄
c

(

Rs̄
c
+ 1

)

R2
dS (2. 36)

= lim
m→0

Â
{

e−
ms̄
c

(

ms̄
c
+ 1

)

}

m2
c24πm2 = Â4πc2.

But I1 = e−s̄t′ from Equation (2.30), hence

Â =
e−s̄t′

4πc2
. (2. 37)

Equation (2.29) becomes

ĝ (r, s̄; r′, t′) =
e−s̄t′

4πc2
e−

Rs̄
c

R
=

e−s̄(R
c
+t′)

4πc2R
,

Take the inverse Laplace transform of ĝ (r, s̄; r′, t′) to obtain:

g (r, t; r′, t′) = L−1
s̄→t {ĝ (r, s̄; r′, t′)} (2. 38)
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and therefore the free space Green’s function for the wave equation is given as:

g (r, t; r′, t′) =
δ (t− t′ −R/c)

4πc2R
= ḡ (R, t; t′) (2. 39)

�

2.4 Response to a Harmonic in Unbounded Space

The response p (r, t) due to a forcing f (r, t) is given as the superposition of the Green’s

function g(r, t; r′, t′) and the forcing f (r, t) over the domain Γ as shown in Figure (1) is expressed

as

Figure 1. The response due to a source f(r, t)

p (r, t) =

∫∫

Γ

g(r, t; r′, t′)f (r′, t′) dr′dt′, (2. 40)

because of the unbounded homogenous and time invariant, Equation (2.40) can also be written as

p (r, t) =

∫

∞

0

g (r − r′, t− t′) f (r′, t′) dt′. (2. 41)
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Theorem: The response p (r, t) due a harmonic forcing source

f (r, t) = δ (r − r′) ejωt (2. 42)

is given as

p (r, t) =
e−jkR

4πc2R
ejωt (2. 43)

ω = 2πf (2. 44)

where ω is the angular velocity and f is the frequency.

Proof: The convolution integral in Equation (2.40) is

p (r, t) =

∫

∞

0

∫

Γ

g (r, t; r′, t′) f (r′, t′) dr′dt′ (2. 45)

=

∫

∞

0

∫

Γ

δ (t− t′ − ||r − r′||/c)
4πc2||r − r′|| δ (r − r′) ejωt

′

dr′dt′. (2. 46)

The arguments of the δ functions are zero when

r = r′ and t′ = t− ||r − r′|| /c, (2. 47)

and therefore

p (r, t) =
exp

(

jωt− jω
c
||r − r′||

)

4πc2 ||r − r′|| (2. 48)

=
e−jkR

4πc2R
ejωt. (2. 49)

�

2.5 Response to a Gaussian Pulse in Unbounded Space

Definition: The unit Gaussian pulse η (t;µ) centered at µ and a spread of σ is given as

η (t;µ) = − (t− µ)
exp

(

− (t− µ)2 /4σ2
)

2σ2
. (2. 50)
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Theorem: The response p (r, t) due to the unit Gaussian pulse

f (r, t) = δ (r − r′) η (t;µ) v (t)

is given by

p (r, t) = −(t− µ−R/c)

8πc2σ2R
exp

(

− (t− µ−R/c)2 /4σ2
)

v (t−R/c) (2. 51)

where the function v (t−R/c) is define as a step function. Figure (2) shows a unit Gaussian pulse

η (t;µ) centered at µ = 0.5 second, σ = 0.1, over the duration 0 to 1 second.
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Figure 2. Unit Gaussian pulse η(t;µ) at position r′

Proof: The response p (r, t) due a pulse f (r, t) is expressed as

p (r, t) =

∫

∞

0

∫

Ω

g (r, t; r′, t′) f (r′, t′) dr′dt′ (2. 52)

=

∫

∞

0

∫

Ω

δ (t− t′ − ||r − r′||/c)
4πc2||r − r′|| δ (r − r′) η (t′;µ) v (t′) dr′dt′. (2. 53)
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The arguments of the δ functions are zero when

r = r′ and t′ = t− ||r − r′|| /c, (2. 54)

and therefore,

p (r, t) =
η (t− ||r − r′|| /c)

4πc2||r − r′|| v (t− ||r − r′|| /c) (2. 55)

= −(t− µ−R/c)

8πc2Rσ2
exp

(

− (t− µ−R/c)2 /4σ2
)

v (t−R/c) . (2. 56)

The function q (r, t;µ) will be used in place of p (r, t) throughout the thesis. To enforce causality,

we expressed q (r, t;µ) as follows

q (r, t;µ) =







0 for t ≤ 0
1

4πc2
η
(

t− R
c
;µ
)

0 for t ≥ R
c

.

�
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CHAPTER 3

HARMONIC WAVE PROPAGATION

The physics of wave propagation is explained using some special wave solutions. A

harmonize plane wave propagating in a homogeneous medium is examined by simplifying the

wave equation as a time independent equation by assuming time-harmonic dependence. This

leads to the Helmholtz equation.

3.1 Helmholtz Equation and Boundary Value Problems

The solution to the wave equation in Equations (2.1)-(2.3) for a harmonic source has the

form

p (r, t) = φ (r) ejωt (3. 1)

where φ : R3→ R is a spatial function defined on three-dimensional Euclidean space, ω is the

angular frequency and t is time. Substituting Equation (3.1) into Equation (2.1) yields

c2∇2φ (r) ejωt − ∂2

∂t2
φ (r) ejωt = f (r, t)

c2∇2φ (r) ejωt + ejωtφ (r)ω2 = f (r, t)

∇2φ (r) + φ (r)
ω2

c2
= c−2e−jωtf (r, t) , (3. 2)

If k = ω/c, then Equation (3.2) expresses the Helmholtz equation in the form

∇2φ (r) + k2φ (r) = c−2e−jωtf (r, t) (3. 3)

where k is the wavenumber. Let

F (r, k, t) = c−2e−jωtf (r, t) . (3. 4)

Theorem: The response G (r, r′, k) due to the harmonic source f (r, t) = c2ejωtδ (r − r′)
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at r′ is

G (r, r′, k) =
ejkR

4πR
(3. 5)

Proof: The pressure field generated by a point source can be described by the

inhomogeneous Helmholtz equation of the form

∇2G (r, r′, k) + k2G (r, r′, k) = δ (r − r′) . (3. 6)

If the solution for harmonic source f (r, t) in Equation (2.42) is given by

p (r, t) =
e−jkR

4πc2R
ejωt,

then solution for the harmonic source f (r, t) = c2ejωtδ (r − r′) in Equation (3.4) is the free field

Green’s function G (r, r′, k):

G (r, r′, k) =
ejkR

4πR
. (3. 7)

�

Green’s function G (r, r′, k) is used to compute the pressure field. A single acoustic source

in free space is the total complex amplitude of pressure emanates from the point source at r′ in

unbounded homogenous space

Ḡ (R, k) =
ejkR

4πR
. (3. 8)
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3.2 Harmonic Solution over a Surface

The harmonic pressure propagating above a geometric surface must satisfy.

∇2φ (r) + k2φ (r) = c−2e−jωtf (r, t) = F (r, k, t) , (3. 9)

∂φ (r)

∂−→n +
jk

Z0
φ (r) = 0, (3. 10)

lim
r→∞

φ = O
(

r(1−n)/2
)

, (3. 11)

lim
r→∞

(∂rφ− jkφ) = o
(

r(1−n)/2
)

, (3. 12)

where ∂/∂n is the derivative in the direction of the normal −→n and n is the dimension in space.

Equations (3.11) and (3.12) define the Sommerfield radiation conditions and Equation (3.10) is the

ground boundary condition on the surface. For a soft ground surface Equation (3.10) is expressed

as

−→n · ∇φ (r) = − jk
Z0

φ (r) . (3. 13)

If the surface of the ground is assumed to be hard then Equation (3.10) becomes

−→n · ∇φ (r) = 0. (3. 14)

Figure (3) and (4) shows the boundary conditions for the hard and soft geometric surface

3.3 The Ground Impedance

The normalized acoustical impedance Z0 was computed using the local reaction model.

This model is characterized by the complex parameter (e.g. many different kinds of ground

such as grassy, hard, sandy ground and other ) of the impedance Z0 . Delancy and Bazley [9]

empirically expressed the normal acoustical impedance Z0 as a function of frequency.

Z0

ρ0c0
= 1.0 + 9.08

(

2π̺

ω

)0.75

− 11.9j

(

2π̺

ω

)0.73

(3. 15)
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Figure 3. Conditions for hard ground surface

Figure 4. Conditions for soft ground surface
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where ̺ is the flow-resistivity measured in cgs units, ρ0 is the density, c0 is the velocity of sound,

and ρ0c0 defines the characteristic impedance of air. Embleton [10] measured the flow-resistivity

for different absorbing materials. Table (1) shows the flow-resistivity for different sets of

materials.

Table 1. Ranges of effective flow resistivity for various types of ground surface

Flow resistivity

cgs rayls

Description of surface (1 cgs rayls = 1000 Pa s/m2)

Dry snow, new fallen 0.1m over about

0.4m older snow. 10− 30
Sugar snow 25− 50
In forest, pine, or hemlock. 20− 80
Grass: rough pasture, airport,

public buildings, etc. 150− 300
Roadside dirt, ill-defined,

small rocks up to 0.1m mesh. 300− 800
Sandy silt, hard packed by

vehicles. 800− 2500
"Clean" limestone chips, thick

layer (0.01 to 0.025m mesh. 1500− 4000
Old dirt roadway, fine stone

(0.05m mesh) interstices filled. 2000− 4000
Earth, exposed and rain-packed. 4000− 8000
Quarry dust, fine, very hard-packed

by vehicles. 5000− 20000
Asphalt, sealed by dust and light use. ~30000
Upper limit set by thermal-conduction

and viscous boundary layer 2× 105 to 1× 106
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CHAPTER 4

HARMONIC MODELING OVER A HARD SURFACE USING EQUIVALENT SOURCES

Modeling the pressure field formed by a radiator of a certain shape using equivalent

sources comes with the challenges of determining the strengths of the equivalent sources. Another

challenge is determining the placement and the number of sources needed to minimize the field

error.

The amplitudes of the equivalent sources are estimated using the least squares method.

This method have been used by many researchers in order to minimize the sum of square errors

made in solving the exterior and interior acoustic pressure fields [44, 45]. The strengths of the

equivalent sources are computed using the same approach. The following sections will give us a

detail derivation.

4.1 Description of the Surface Geometry

The geometry y = Γ (x) is first specified. The vector normal at the interest point on the

surface is determined as follows. The direction of the tangent line (slope) is the only information

needed to determine the unit normal vector. If the geometric surface coordinates is given by

−→v ⇔ (x,Γ (x)) = [x, y]T , (4. 1)

then one can compute the unit normal vector −→n along the surface. The gradient on the y-axis is

dy = Γ′ (x) dx (4. 2)

dl =
√

dx2 + dy2 = dx

√

1 + Γ′ (x)2 (4. 3)

and the unit tangent relation vector
−→
t and the unit normal vector −→n along a surface is expressed
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as

−→
t ⇔ 1

dl
[dx, dy]T and −→n ⇔ 1

dl
[−dy, dx]T . (4. 4)

For a flat horizontal surface the unit tangent vector
−→
t and the unit normal vector −→n is

−→
t ⇔

[

1 0
]T

and −→n ⇔
[

0 1
]T

. (4. 5)

At a point of interest ri on the surface, the outward unit normal vector −→n is expressed as

−→n (ri) ⇔
1

dl
[−Γ′ (xi) dx, dx]

T
=

1
√

1 + Γ′ (xi)
2
[−Γ′ (xi) , 1]

T
, (4. 6)

with

−→n (ri) ⇔
[

cos νi

sin νi

]

=
1

√

1 + Γ′ (xi)
2
.

[

−Γ′ (x)
1

]

(4. 7)

and

cos νi = − Γ′ (xi)
√

1 + Γ′ (xi)
2

and sin νi =
1

√

1 + Γ′ (xi)
2

, (4. 8)

where ri is the ith interest point. An example geometry of the undulating surface is shown in

Figure (5) which defines the cross-section of the sinusoidal surface described as

y = Γ (x) = Ā sin

(

2πx

λ̄
+ θ̄

)

(4. 9)

where Ā is the amplitude, λ̄ is the wavelength and θ̄ is the phase angel.

The amplitude, length and phase of the undulating can be changed from one model to

another to see what effect these parameters have on the acoustic loss. Figure (6) shows the

position of the interest points along the surface, and Figure (7) displays the unit normal vectors at

the defined interest points.
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Figure 5. Cross-section of the sinusoidal surface defined using Matlab
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Figure 6. Defined interest points along the surface using Matlab
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4.2 Single Source Response Derivative

The response at the point of interest r = (x, y) due to a single source at r′ = (x′, y′) is

expressed as

G (r, r′, k) =
ejkR

4πR
(4. 10)

where R = ||r − r′|| =
√

(x− x′)2 + (y − y′)2 (4. 11)

The derivative of G (r, r′, k) with respect to x in Equation (4.10) is

∂G (r, r′, k)

∂x
=

∂G

∂R

∂R

∂x
. (4. 12)

where

∂R

∂x
=

(x− x′)

R
. (4. 13)
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Moreover

∂G

∂R
=

jkejkR4πR

(4πR)2
− 4πejkR

(4πR)2
=
jkejkR

4πR
− ejkR

4πR2

=
ejkR

4πR

(

− 1

R
+ jk

)

. (4. 14)

Substituting Equation (4.13) and Equation (4.14) into Equation (4.12) yields

∂G (r, r′, k)

∂x
=

ejkR (x− x′)

4πR

(

− 1

R2
+
jk

R

)

. (4. 15)

Similarly, the derivative of G (r, r′, k) with respect to y is expressed as

∂G (r, r′, k)

∂y
=

ejkR (y − y′)

4πR

(

− 1

R2
+
jk

R

)

. (4. 16)

Equations (4.15) and (4.16) express the potential velocity used in the boundary condition.

4.3 Boundary Condition for a Single Source

The boundary condition at the points of interest r due to a single source at r′ is expressed

as

ψ (r, r′, k) = −→n (r) · ∇G (r, r′, k) . (4. 17)

However, Equation (4.17) can be further written as

ψ (r, r′, k) =

[

∂G (r, r′, k)

∂x
,
∂G (r, r′, k)

∂y

] [

cos ν
sin ν

]

. (4. 18)

Substituting Equations (4.15) and (4.16) into Equation (4.18) yields

ψ (r, r′, k) =

[

ejkRi (x− x′)

4πR

(

− 1

R2
+
jk

R

)

,
ejkRji (yi − y′)

4πR

(

− 1

R2
+
jk

R

)]

(4. 19)

·
[

cos ν
sin ν

]

=
ejkR

4πR

(

− 1

R2
+
jk

R

)

[(x− x′) , (y − x′)] ·
[

cos ν
sin ν

]

, (4. 20)
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then Equation (4.20) is further simplified into

ψ (r, r′, k) =
ejkR

4πR

(

− 1

R
+ jk

)

((x− x′) cos ν + (y − y′) sin ν)

R
(4. 21)

Equation (4.21) expresses the boundary condition at the points of interest over the geometric

surface.

4.4 Main and Image Source Derivation

The pressure field at the point of interest r which is emanating from the two sources

located at sH = (xH , yH) and s−H = (x−H , y−H) is expressed as

φ2H (r, SH , k) =
ejkRH

4πRH
+

ejkR−H

4πR−H
(4. 22)

where RH and R−H are

RH =

∣

∣

∣

∣

∣

∣

∣

∣

[

x− xH

y − yH

]∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

[

x
y −H

]∣

∣

∣

∣

∣

∣

∣

∣

(4. 23)

R−H =

∣

∣

∣

∣

∣

∣

∣

∣

[

x− x−H

y − y−H

]∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

[

x
y +H

]∣

∣

∣

∣

∣

∣

∣

∣

(4. 24)

where H is the main source height from the flat surface and xH = x−H = 0. Figure (8) shows the

condition for a completely flat surface.

The derivative of φ2H (r, SH , k) with respect to x is expressed as

∂φ2H (r, SH , k)

∂x
=

ejkRH (x− xH)

4πRH

(

− 1

R2
H

+
jk

RH

)

(4. 25)

+
ejkR2 (x− x−H)

4πR−H

(

− 1

R2
−H

+
jk

R−H

)

.
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Figure 8. Modeling on a flat hard surface by placing two sources at the position sH and s−H .

Similarly the derivative of φ2H (r, SH , k) with respect to y is

∂φ2H (r, SH , k)

∂y
=

ejkRH (y − yH)

4πRH

(

− 1

R2
H

+
jk

RH

)

(4. 26)

+
ejkR−H (y − y−H)

4πR−H

(

− 1

R2
−H

+
jk

R−H

)

.

The boundary condition for the pressure field φ2H (r, SH , k) is expressed as

−→n (x) · ∇φ2H (r, SH , k) = −→n (x) · ∇G (r, sH , k) +−→n (x) · ∇G (r, s−H , k) (4. 27)

ψ2H = ψH + ψ
−H . (4. 28)

Thus ψH in Equation (4.28), which expresses the boundary condition at r due the main source sH ,
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is

ψH = −→n (x) · ∇G (r, sH , k) (4. 29)

=
ejkRH

4πRH

(

− 1

RH
+ jk

)

(x cos ν + (y −H) sin ν)

RH
(4. 30)

and ψ
−H which expresses the boundary condition at r due the main source s−H is

ψ
−H = −→n (x) · ∇G (r, s−H , k) (4. 31)

=
ejkR−H

4πR−H

(

− 1

R−H

+ jk

)

(x cos ν + (y +H) sin ν)

R−H

. (4. 32)

Therefore ψ2H = ψH + ψ
−H is expressed as

ψ2H =
ejkRH

4πRH

(

− 1

RH

+ jk

)

(x cos ν + (y −H) sin ν)

RH

(4. 33)

+
ejkR−H

4πR−H

(

− 1

R−H
+ jk

)

(x cos ν + (y +H) sin ν)

R−H
.

Special Case: For the case where the surface is hard, flat, and horizontal, the distance

between the main source position to the point of interest is equal to the distance from image

source position to the same point of interest. The point of interest, the main, and the image sources

position are defined as

r =
[

x 0
]T

, sH =
[

0 H
]T

and s−H =
[

0 −H
]T

(4. 34)

where the distances RH and R−H are expressed as

RH = ||r − sH || =
√
x2 +H2, (4. 35)

R−H = ||r − s−H || =
√
x2 +H2. (4. 36)
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Thus

RH = R−H = R, cos ν = 0, and sin ν = 1. (4. 37)

Substituting Equations (4.34) and (4.37) into Equation (4.25) yields

∂φ2H (r, SH , k)

∂x
=

2ejkRx

4πR

(

− 1

R2
+
jk

R

)

. (4. 38)

Similarly, after substituting Equations (4.34) and (4.37) into Equation (4.26), we have

∂φ2H (r, SH , k)

∂y
= 0. (4. 39)

The boundary condition at the interest point located on a flat horizontal surface is expressed as

ψFlat (r, S, k) = −→n (x) · ∇φFlat

2H (r, S, k)

=

[

∂φ2H (r, SH , k)

∂x
,
∂φ2H (r, SH , k)

∂y

] [

0
1

]

= 0 (4. 40)

4.5 Multiple Source Derivatives

The pressure field φ (ri, S, k) for a system containing more than two sources is expressed

as

φ (ri, S, k) = AHφ2H (ri, SH , k) +
Ns
∑

j

Aje
jkRji

4πRji
, (4. 41)

where φ2H (ri, SH , k) defines the pressure field due the two sources (main and image sources),

Ns is the number of equivalent sources, Aj is the unknown complex amplitude of the equivalent

sources and variable AH is amplitude of the known main source. Figure (9) shows the location of

the sources.

Rji = ||ri − sj|| =
√

(xi − xj)
2 + (yi − yj)

2
(4. 42)

where Rji is the distance between the interest points ri to the equivalent sources at sj. The
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Figure 9. Every 0.5m there is an equivalent source 0.35m below the surface

boundary condition for the pressure field φ (ri, S, k) in Equation (4.41) is expressed as

ψ (ri, S, k) =
−→n (xi) · ∇φ (ri, S, k) . (4. 43)

We substitute Equation (4.41) into Equation (4.43) to yield

ψ (ri, S, k) = AH
−→n (xi) · ∇φ2H (ri, SH , k) +

Ns
∑

j

Aj
−→n (xi) · ∇G (ri, sj, k) (4. 44)

where

G (ri, sj, k) =
ejkRji

4πRji
. (4. 45)

However, the boundary condition for G (ri, sj, k) is expressed by replacing r′ with sj and r with

ri in Equation (4.21). This leads to

ψji = ∇G (ri, sj, k) · −→n (xi) (4. 46)

=
ejkRji

4πRji

(

− 1

Rji

+ jk

)

((xi − xj) cos νi + (yi − yj) sin νi)

Rji

. (4. 47)
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In general, Equation (4.44) is expressed as

ψ (ri, S, k) = AH

(

ψHi + ψ
−Hi

)

+
Ns
∑

j

Ajψji (4. 48)

where the relation

ψHi + ψ
−Hi = −→n (xi) · ∇φ2H (ri, SH , k) (4. 49)

and ψji = −→n (xi) · ∇G (ri, sj, k) (4. 50)

are expressed in Equation (4.27) and (4.46) respectively.

4.6 Ground Boundary Condition for an Unbounded Hard Surface

If the surface geometry of the ground is assumed to be hard, then the boundary condition

ψ (ri, S, k) in Equation (4.48) is expressed as

0 = ψ (ri, S, k) (4. 51)

= AH

(

ψHi + ψ
−Hi

)

+
Ns
∑

j

Ajψji (4. 52)

with the complex amplitude Aj of the equivalent sources are unknown and variable AH (complex

amplitudes) is known. Equation (4.52) can be re-arranged as

Ns
∑

j

Ajψji = −AH

(

ψHi + ψ
−Hi

)

(4. 53)

4.7 Least Square Estimate of the Equivalent Source Amplitude

For a system with a single point of interest r1 and a multiple equivalent sources. The



37

complex amplitude Aj of the equivalent sources are compute as

[

ψ11 ψ21 ... ψNs1

]









A1

A2
...

ANs









= −AH

[

ψH1 + ψ
−H1

]

. (4. 54)

Similarly for a system with several point of interest, Equation (4.54) is evaluated at each of the

specified interest points over the undulating surface. Thus









ψ11 ψ21 ... ψNs1

ψ12 ψ22 ... ψNs2
...

... ...
...

ψ1Nt
ψ2Nt

... ψNsNt

















A1

A2
...

ANs









= −AH









ψH1 + ψ
−H1

ψH2 + ψ
−H2

...

ψHNt
+ ψ

−HNt









, (4. 55)

where Nt is the number of interest points on the surface. If the number of sources is less than the

number of interest points on the surface (Ns < Nt), then the total number of equations exceeds the

total number of unknowns (Overdetermined System). Equation (4.55) can be written in the form

Mā = b, where M represent the matrix at the left hand side of Equation (4.55), ā represent the

vector containing the unknown equivalent source complex amplitude and b represent the vector on

the right hand side of the Equation (4.55)

b = −AH









ψH1 + ψ
−H1

ψH2 + ψ
−H2

...

ψHNt
+ ψ

−HNt









. (4. 56)

Hence

Mā = b. (4. 57)

Using the least square method, ā is solved for as follows

ā =
(

MHM
)

−1
MHb. (4. 58)

4.8 Implementation of the Equivalent Source Method

The equivalent source method can be implemented in various computer languages. Figure
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(10) shows the flowchart algorithm for implementing the ESM. The equivalent sources are placed

beneath the surface. The number and locations of the equivalent sources determine the accuracy of

our result. A system with more strategically placed sources will give a better result. The complex

amplitudes of the equivalent sources are computed using the least square method.

Figure 10. Computation of the pressure field using the ESM
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4.9 Simulations

The complex amplitudes of the equivalent acoustic sources are estimated with the

amplitude of the arbitrary main source given as AH = −130.99 with excitation frequency defined

as f = 54.6Hz which corresponds to the wavenumber k = 1.1m−1. Simulation results are

produced by the equivalent source method. Figure (11) displays the complex amplitude of the

equivalent sources placed below the undulating surface.
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Figure 11. The magnitudes and the phase angles of the equivalent sources

Figure (12) shows the estimate of the acoustic loss, with the interest points located

directly on the surface. Figure (13) shows the case where the interest points are located 1m above

the undulating surface. Figure (14) shows the case where the interest points are located 1.5m

above the undulating surface. Figure (15) shows the acoustic loss for interest points located on

a horizontal line above the undulating surface. Figure (16) shows the pressure field where the
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interest points are located 1m over the corrugation length of 100m.
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Figure 12. Pressure magnitude at points x = 0.1m to x = 50m. The boundary condition is
enforced on these test points.

Simulation with excitation frequency defined by f = 78.6Hz for the corrugation length of

50m and 100m is also examined. Figures (17), (18), (19) and (20) show the acoustic loss over the

undulating surface. The results show that increasing the corrugation of the surfaces will result in a

significant loss of the low-frequency as it propagates over the undulating surface.
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Figure 13. Pressure magnitude at points x = 0.1m to 50m and y = 1m above the surface.
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Figure 14. Pressure magnitude at points x = 0.1m to 50m and y = 1.5m above the surface.
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Figure 15. Pressure magnitude at points x = 0.1m to x = 50m and y = 0.9m.
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Figure 16. Pressure magnitude at points x = 0.1m to x = 100m at y = 1m above the surface
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Figure 17. Pressure magnitude at points x = 0.1m to x = 50m with k = 1.5m−1. The boundary
condition is enforced on these test points.
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Figure 18. Pressure magnitude at points x = 0.1m to x = 50m and y = 1.5m above the surface
with k = 1.5m−1.
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Figure 19. Pressure magnitude at points x = 0.1m to x = 50m and y = 0.9m with k = 1.5m−1.
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Figure 20. Pressure magnitude at points x = 0.1m to x = 100m and y = 0.9m with k = 1.5m−1.
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CHAPTER 5

HARMONIC MODELING OVER A SOFT SURFACE USING COMPLEX EQUIVALENT

SOURCES

In 2004, Ochmann [31] used the idea of superposition of the equivalent point sources,

but to allow the sources to be located at complex positions to find the Green’s function over

impedance plane using the convergent integral. Deschamps [8] originally introduced this idea.

Deschamps used complex source locations to model the propagation of a Gaussian beam. The

corresponding field approximately behaves like a pulse at the paraxial region near the y axis.

Ochmann’s contribution of the impedance to the Green’s function is given by

B (r,H, k) = − k

2πZ0

∫

−H

−∞

ejkR̂

R̂
e

k
Z0

ς
dς (5. 1)

for −∞ < ς ≤ −H (ς real) (5. 2)

where

R̂ =

√

x2 + (y +H − jς)2 (5. 3)

Starting at the image source position (0,−H) and adding infinitesimal sources along

an imaginary position y axis at y = −H + jς , the function B (r,H, k) defines the response in

space due to the sources paraxial to −H . The pressure field φ2H (ri, S, k) for a completely flat

horizontal soft surface is given by

φ2H (r, SH , k) =
ejkRH

4πRH
+

ejkR−H

4πR−H
+ B (r,H, k) . (5. 4)

This approach has enormous advantages in that the line integral in Equation (5.1)

convergence for all surface impedances whose real part are positive. In this case, the kernel of the

integral decays exponentially.
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5.1 Derivatives of the Soft-Contributing Green’s Function

The derivative of B (r,H, k) in Equation (5.1) with respect to x is expressed as

∂B (r,H, k)

∂x
=

∂B (r,H, k)

∂R̂

∂R̂

∂x
(5. 5)

where the derivative of ejkR̂

R̂
with respect to R̂ is

∂

∂R̂

(

ejkR̂

R̂

)

=
jejkR̂

(

j+kR̂
)

R̂2
, (5. 6)

∂R̂

∂x
=

x

R̂
. (5. 7)

In short, Equation (5.5) is expressed as

∂B (r,H, k)

∂x
= − k

2πZ0

∫

−H

−∞

jejkR̂
(

j+kR̂
)

x

R̂3
e

k
Z0

ς
dς . (5. 8)

Similarly, the derivative of B (r,H, k) with respect to y

∂B (r,H, k)

∂y
=

∂B (r,H, k)

∂R̂

∂R̂

∂y
, (5. 9)

∂R̂

∂y
=

y +H − jς

R̂
(5. 10)

thus

∂B (r,H, k)

∂y
= − k

2πZ0

∫

−H

−∞

jejkR̂
(

j+kR̂
)

(y +H − jς)
R̂3

e
k
Z0

ς
dς (5. 11)

Equations (5.8) and (5.11) express the derivatives used in the boundary conditions. The boundary

condition of B (ri, H, k) for a system with multiple interest points ri is expressed as

βi =
−→n (xi) · ∇B (ri, H, k) . (5. 12)
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Thus Equation (5.12) is written as

βi =

[

∂B (ri, H, k)

∂x
,
∂B (ri, H, k)

∂y

] [

cos νi

sin νi

]

. (5. 13)

Substituting Equations (5.8) and (5.11) into Equations (5.13) yields

βi = − k

2πZ0

∫

−H

−∞





jejkR̂i

(

j+kR̂i

)

e
k
Z0

ς

R̂3
i

(xi cos νi + (yi +H − jς) sin νi)



 dς (5. 14)

Equations (5.14) expresses the contribution of the plane impedance to the boundary condition at

any point of interest on the geometric surface.

5.2 Multiple Sources over an Undulating Soft Surface

The pressure field φ (ri, S, k) for a system containing more than two sources is expressed

as

φ (ri, S, k) = AHφ2H (ri, SH , k) + AHB (ri, H, k) +
Ns
∑

j

Aje
jkRji

4πRji
. (5. 15)

The boundary condition for φ (ri, S, k) in Equation (5.15) is expressed as

ψ (ri, sj, k) =
−→n (xi) · ∇φ (ri, S, k) . (5. 16)

Substituting Equation (5.15) into Equation (5.16) yields

ψ (ri, S, k) = AH
−→n (xi) · ∇φ2H (ri, SH , k) + AH

−→n (xi) · ∇B (ri,H, k) (5. 17)

+
Ns
∑

j

Aj
−→n (xi) · ∇G (ri, sj, k) .

A collection of all the terms transforms Equation (5.17) into

ψ (ri, sj, k) = AH

(

ψHi + ψ
−Hi

)

+ AHβi +
Ns
∑

j

Ajψji, (5. 18)
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where

ψHi + ψ
−Hi = −→n (xi) · ∇φ2H (ri, SH , k) ,

ψji = −→n (xi) · ∇G (ri, sj, k) ,

βi = −→n (xi) · ∇B (ri,H, k) ,

are expressed in Equations (4.27) and (4.44) and (5.14) respectively.

5.3 Ground Boundary Condition for an Unbounded Soft Surface

The boundary condition ψ (ri, sj, k) in Equation (5.18) for a soft surface is expressed as

ψ (ri, S, k) = − jk
Z0

φ (ri, S, k) , (5. 19)

where the right hand side of Equation (5.19) is simplified as

jk

Z0
φ (ri, S, k) = AH

jk

Z0
[G (ri, sH , k) +G (ri, s−H , k) + B (ri,H, k)] (5. 20)

+
jk

Z0

Ns
∑

j

AjG (ri, sj, k) .

The terms in Equation (5.20) are expressed as

ḠHi =
jk

Z0

G (ri, sH , k) and Ḡ−Hi =
jk

Z0

G (ri, s−H , k) , (5. 21)

Ḡji =
jk

Z0
G (ri, sj, k) and B̄i =

jk

Z0
B (ri, H, k) . (5. 22)

Thus Equation (5.20) becomes

− jk
Z0

φ (ri, S, k) = −AH

(

ḠHi + Ḡ−Hi + B̄i

)

−
Ns
∑

j

AjḠji. (5. 23)
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Equation (5.19) becomes

0 = AH

(

ψHi + ψ
−Hi + ḠHi + Ḡ−Hi + βi + B̄i

)

+
Ns
∑

j

Aj

(

ψji + Ḡji

)

. (5. 24)

The complex amplitude Aj of the equivalent sources are unknown and variable, but AH (complex

amplitude of the main source) is known. Equation (5.24) is re-arranged as

Ns
∑

j

Aj

(

ψji + Ḡji

)

= −AH

(

ψHi + ψ
−Hi + ḠHi + Ḡ−Hi + βi + B̄i

)

(5. 25)

5.4 Least Square Estimate of the Equivalent Source Amplitude

For a system with single interest point and multiple equivalent sources, the complex

amplitudes Aj expressed in Equation (5.25) must satisfy

[

ψ11 + Ḡ11 ψ21 + Ḡ21 ... ψNs1 + ḠNs1

]









A1

A2
...

ANs









(5. 26)

= −AH

[

ψH1 + ψ
−H1 + ḠH1 + Ḡ−H1 + β1 + B̄1

]

.

In the case of several points of interest over an undulating surface, the right hand side of Equation

(5.26) is expressed as

b = −AH









ψH1 + ψ
−H1 + ḠH1 + Ḡ−H1 + β1 + B̄1

ψH2 + ψ
−H2 + ḠH2 + Ḡ−H2 + β2 + B̄2

...

ψHNt
+ ψ

−HNt
+ ḠHNt

+ Ḡ−HNt
+ βNt

+ B̄Nt









, (5. 27)

and the left hand side matrix is expressed as









ψ11 ψ21 ... ψNs1

ψ12 ψ22 ... ψNs2
...

... ...
...

ψ1Nt
ψ2Nt

... ψNsNt









= M1 and









Ḡ11 Ḡ21 ... ḠNs1

Ḡ12 Ḡ22 ... ḠNs2
...

... ...
...

Ḡ1Nt
Ḡ2Nt

... ḠNsNt









= M2, (5. 28)
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and â represent the vector containing the unknown complex amplitude









A1

A2
...

ANs









= â. (5. 29)

Equation (5.26) is assembled as

(M1 +M2) â = b. (5. 30)

Using the least square method, â is computed as follows

â =
(

(M1 +M2)
H (M1 +M2)

)

−1

(M1 +M2)
H b (5. 31)

5.5 Simulations

The amplitude of the arbitrary main source is AH = −130.99, the impedance Z0 is

considered as 1 and the excitation frequency is f = 54.6Hz. Figure (21) displays the complex

amplitude of the equivalent sources placed below the undulating surface. Because of the soft

nature of the undulating surface, the sound pressure that is lost due to the impedance conditions is

found to be twice that of a rigid surface.

Figure (22) shows the estimate of the acoustic sources, with the interest points located

directly on the surface. Figure (23) shows the case where the interest points are located 1m above

the undulating surface. Figure (24) shows the case where the interest points are located 1.5m

above the undulating surface. Figure (25) shows the acoustic loss for an interest points are located

horizontal above the undulating surface. Figure (26) shows the pressure field where the interest

points are located 1m over the corrugation length of 100m.

Simulation with excitation frequency defined as f = 78.6Hz for the corrugation length

of 50m and 100m is also examined. Figures (27), (28), (29) and (30) illustrates the acoustic loss
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Figure 21. Magnitudes and phase angles of the equivalent source amplitudes below a soft surface.

over the undulating surface. The results show that increasing the length of the corrugation of the

surface will result in a significant loss of the low-frequency as it propagates over the surface. This

loss is estimated to be about 1 dB for a change of about 1/2 octave of frequency change.
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Figure 22. Pressure magnitude at points x = 0.1m to x = 50m over soft surface. The boundary
condition is enforced on these test points.
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Figure 23. Pressure magnitude at points x = 0.1m to x = 50m and y = 1m above the soft surface
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Figure 24. Pressure magnitude at points x = 0.1m to x = 50m and y = 1.5m above the soft
surface
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Figure 25. Pressure magnitude at points x = 0.1m to x = 50m and y = 0.9m.



54

0 20 40 60 80 100
-1

-0.5

0

0.5

1

1.5

2
Defined test points

Distance(m)

H
e
ig

h
t(

m
)

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5
Pressure field

Distance (m)
A

b
s
(P

re
s
s
u

re
 f

ie
ld

) 
(d

B
)

Figure 26. Pressure magnitude at points x = 0.1m to x = 100m and y = 1m above the soft
surface
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Figure 27. Pressure magnitude at points x = 0.1m to x = 50m over soft surface, with k = 1.5m−1.
The boundary condition is enforced on these test points.
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Figure 28. Pressure magnitude at points x = 0.1m to x = 50m and y = 1.5m above the soft
surface, with k = 1.5m−1. The field is computed at these test points.
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Figure 29. Pressure magnitude at points x = 0.1m to x = 50m and y = 0.9m, with k = 1.5m−1

over a soft surface
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Figure 30. Pressure magnitude at points x = 0.1m to x = 100m and y = 0.9m with k = 1.5m−1

over a soft surface
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CHAPTER 6

CONCLUSIONS

The wave acoustic wave propagating over an unbounded undulating outdoor surface is

derived. Green’s function for unbounded space is used to derive the responses to a Gaussian pulse

and to harmonic source. Representing the effect of undulation by a set of equivalent sources just

below the surface and combining the free-space Green’s functions due to these sources allows

us to represent the acoustic field faraway without having to solve a finite element problem. The

complex amplitudes of the equivalent sources are solved by enforcing the boundary condition at

a predetermined number of test points on the surface. We showed that a flat hard surface can be

molded by placing the mirror of the main sources at the same height along the x-axis. We used

Ochmann’s approximation of the impedance contribution to derive a similar least-squares problem

for an undulating soft surface.

We used the equivalent source method to model the acoustic transmission loss over

an undulating boundary condition. The complex amplitudes of these equivalent sources are

estimated using the least square method. For the case where the undulating surface is hard,

with wavelength of 6.067m, amplitude of 0.8m, the first resonance occurs at 54Hz, the acoustic

loss at this frequency is 20.43dB. We also show that by increasing the amplitude and the length

of the undulation surface, the acoustic loss over the surface tends to also increase. This loss is

estimated to be about 1.0dB for a change of about 1/2 octave of frequency change from the

optimal frequency.

The ground impedance rate is found to be important to the study of acoustic wave

propagation. We observed that very soft surfaces (vegetation, grasses, etc.) with an impedance of

1 absorb two times more sound pressure compared to a hard surface (infinite impedance) and the
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closer the source of the noise is to the ground, the more the sound pressure will be attenuated by

the ground. This is important for propagation over a long distance. In addition, the undulating

nature of the boundary surface also causes quite significant loss of the low-frequency compared to

the hard undulating surfaces.

For future research, we note the following:

1. The effect of frequency on noise and the distortion that it will produce on a typical

explosion waveform is not well understood. Different methods to include these effects

such as those based on inverse Fourier Transforms or a purely time-domain formulation

must be carefully considered.

2. The derivations shown indicate the effect of undulation along a radial point away from the

main source. The undulations are therefore basically one-dimensional. The size of these

mounds and their off-plane effects must be addressed.

3. A parametric analysis showing the effect of geometry, frequency content, and impact

location should be studied. A neural network or a fuzzy inference engine can be used to

summarize the data relationships and can be used to derive design guidelines.
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