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Abstract 

With the growth of digital audio data, various and fast access to music data is strongly 

desired, especially for large music databases. A more natural way to retrieve a song from a 

database will be to hum to the tune. To relate and compare musical pieces is a very complex task. 

Musical compositions usually collapse multiple information sources and complex, multifaceted 

interactions established between parts. Despite such degrees of complexity, humans are 

outstandingly good at performing individual musical judgments with little conscious effort, while 

a computer cannot efficiently achieve this task.  

In this work, we focus on one such task: music information retrieval using content-based 

input such as users’ hum to tune a music piece. Query by humming (QBH) is another content-

based retrieval method for Music Information Retrieval in an extensive music database. This 

method is a form of audio to audio mapping of events in one recording to the similar events in 

the other recording.  In particular, we adopt computational approach information provided by the 

audio signal. We propose a system for music retrieval that matches a user humming to the best 

song in an audio database. We developed an algorithm to map the difference in two musical 

pieces in time series domain based on dynamic programming and longest subsequence. We 

explored alternative tunes for user query input, which might be off-tune, thereby achieving high 

accuracy on query identification from a music database. However, the accuracy of the result is 

highly dependent on the query quality and closeness to the actual song. 
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CHAPTER 1 

Introduction 

In this chapter, We introduced Music Information Retrieval and discussed the need for a 

new way to retrieve songs from a music database by using hum melody from a user as input. In 

this system, the user will hum the desired tune to a microphone and the system will use the user’s 

hum melody as input to retrieve the desired target song. 

1.1 Overview of Music Information Retrieval 

  To relate and compare musical pieces is a very complex task. Musical pieces usually 

collapse multiple information sources and several complex multifaceted interactions established 

between parts. In spite of such degrees of complexity, humans are outstandingly good at 

performing individual musical judgments with little conscious effort (Dowling & Harwood, 

1985).  Think for instance in the song “Happy birthday to you.” If somebody sings its melody, 

even if some parts are out of tune, most listeners can easily recognize this musical piece provided 

that they are familiar with the song. Our research framed in the context of music information 

retrieval explores to achieve this result efficiently. 

With the growth of digital audio data, various and fast access to music data is strongly 

desired, especially for large music databases. A more natural way to retrieve a song from a 

database will be to hum to the tune. Query by humming (QBH) is another content-based retrieval 

method for Music Information Retrieval in an extensive music database. This method is a form 

of audio to audio mapping of events in one recording to the similar events in the other recording. 

It applies typically to songs or other music with a distinct single theme or melody.  
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Figure 1. Query by Humming System Flow Chart. 

1.2 Definition of Terms 

• A hum is a sound with a tune in this instance made by producing a wordless tone with 

the mouth opened or closed, forcing the sound to emerge from the nose.  A hum has a 

particular timbre, usually a monotone.  

• Timbre is the facet of sound that distinguishes the tone of different instruments and 

voices even if the sounds have the same pitch and loudness 

• Audio refers to the production, transmission, or reception of sounds that are audible by 

humans.  

• An audio signal is a representation of the sound that represents the fluctuation in air 

pressure caused by the vibration as a function of time. Unlike sheet music or symbolic 

representations, audio representations encode everything necessary to reproduce an 

acoustic realization of a piece of music 
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• Symbolic music representations comprise any score representation with an explicit 

encoding of notes or other musical events. These include machine-readable data formats 

such as MIDI. Digital data based on alphabet of letters or symbols are regarded as 

symbolic. 

• The energy of a signal corresponds to the total magnitude of the signal. For audio signals, 

that roughly corresponds to how loud the signal is.  

The energy in a signal is defined as: 

∑|𝑥(𝑛)|2

𝑛

 

1.3 Problem Statement 

With the growth of musical data and the availability of cloud-based music streaming 

access to users, it is essential to innovate on better human-friendly way to retrieve songs from a 

large dataset. 

Music data retrieval in the presence of uncertainty in a vast database is a challenging 

problem in multimedia information retrieval. In query-by-humming (QBH) systems, uncertainty 

can arise in query formulation due to user-dependent variability (Unal et al., 2008). 

1.4 Purpose of the Research 

The goal of the Query by Humming task is to explore MIR system that takes as query 

audio recording from a user or an audio file hummed by real-world users and find the highest 

similarity of the input humming.  

The objective of this research is to develop an algorithm or a system to retrieve a 

matching song given a user’s query input. To achieve this task, we will be extracting chroma-

based statistical features from an audio file for content-based matching. We will explore 
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experiments and approaches used in a similar study and evaluate the result against our proposed 

method.  

1.5 Organization of the Thesis 

The general overview of the chapters in this thesis paper is as follows: 

Chapter one introduces the music information retrieval using the dynamic time warping 

approach. It presents the problem statement and the purpose of the research. 

Chapter two reflects on previous related literature. Chapter two projects the general 

overview of music information retrieval and discusses the effects of scholars and researchers in 

Query by humming. 

Chapter three outlines the methodology of the research. This chapter focuses on data pre-

processing and the task of feature extraction. In this chapter, we described the dynamic time 

warping algorithm which takes advantage of dynamic programming and the longest common 

subsequence approach to finding the best match for two different pieces of music. It also 

describes the distance matrix. 

Chapter four presents the experiments for the study. This chapter discusses the results of 

the query using different kinds of features extracted. It also compares the features that perform 

best for a query by humming project and the varying distance matrix functions to identify which 

feature performs best for a query by humming project. 

Chapter five presents the conclusion and discussion of the research. 
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CHAPTER 2 

Literature Review 

The approach to MIR can be categorized based on the information source, e.g., audio 

signal, symbolic music representation, music metadata or tag, etc. In this research, using 

Metadata or tag-based approach would separate us from our initial motivation, namely that the 

computer ‘hears’ a query humming and fetches the best possible outcomes. Hence, we select the 

raw audio signal as its primary and only source of information 
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Table 1 

Summary of version identification methods and their ways of transcending alteration in musical features 

Reference (s) Extracted feature Tempo Invariance Similarity computation 

Foote (2000a) Energy + Spectral DP DTW 

Yang (2001) Spectral DP Match length 

Nagano et al. (2002) PBFV Beat + DP Match length 

Izmirli (2005) Key templates DP DTW 

Muller et al. (2005) PCP Temporal comp./exp Dot product 

Tsai et al. (2005, 2008) Melody DP DTW 

Gomez & Herrera (2006) PCP DP DTW 

Gomez et al. (2006a) PCP DP DTW 

Lee (2006) Chords DP DTW 

Marolt (2006) Melody DP Cross-correlation 
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Table 1  

Cont. 

Sailer & Dressler (2006) Melody Relative Edit distance 

Bello (2007) Chords DP Edit distance 

Ellis & Cotton (2007); Ellis & 

Poliner (2007) 

PCP Beat Cross-correlation 

Kim & Perelstein (2007) PCP HMM MLSS 

Ahonen & Lemstrom (2008) Chords  NCD 

Egorov & Linetsky (2008) PCP DP Match length 

Jensen et al. (2008a) PCP Fourier transform Frobenius norm 

Jensen et al. (2008b) PCP 2D autocorrelation Euclidean distance 

Kim & Narayanan (2008); PCP + Delta PCP  Dot product 
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Table 1  

Cont. 

Kurth & Muller (2008) PCP Temporal comp./exp. Dot product 

Marolt (2008) Melody Beat + 2D spectrum Euclidean distance 

Serra et al. (2008b, 2009a) PCP DP Match length 

Ahonen (2010) Chords + Other  NCD 

Serra et al. (2010c) PCP  Prediction error 

Di Buccio et al. (2010) PCP  Set intersection 

 

Source: Serra (2011) Identification of Versions of the Same Musical Composition by Processing Audio Description. 

Abbreviations for DP is dynamic programming, HMM is Hidden Markov Models, DTW is Dynamic time warping, PBFV is 

Polyphonic binary features vector, MLSS is the most likely sequence of states, PCP is Pitch class profile, and NCD Normalized 

compression distance
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Figure 2.General Diagram of Dynamic Time Warping Approach for Audio-based Retrieval. 

Query by humming system architecture explained in Figure 2 consists of the following: 

1. Knowledge Base: This contains the dataset of songs and also includes the target song a 

user will be attempting to retrieve. 

2. Query Hum:  This is the hum provided by the user via a microphone. 

3. Feature Extraction and Preprocessing. For our research we will extract Chroma Constant-

Q Transform, Chroma Cens, and Chroma STFT. 

4. DTW Algorithm 

5. Ranked List of Result. 
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2.1 Audio-based retrieval  

In audio content-based MIR, much effort has been focused on extracting information 

from the raw audio signal to represent certain musical aspects such as timbre, onset detection, 

beat tracking and chord estimation. Fingerprinting algorithms have been explored for content-

based search using tonal features (Matti Ryyna ̈ne, 2008). There have been Experiments to 

portray the robustness of Query by humming systems using Mel-frequency Cepstral Coefficients 

(MFCC), Linear Predictive Coefficients (LPC), and Linear Predictive Cepstral Coefficients 

(LPCC) and the Performance and Precision diminishes gradually with a growing database size 

(Trisiladevil & Nagappa, 2012). Tree approach has been explored using similarity measures 

based on statistics derived from a supervised vector quantizer (Foote, 1997). 

2.2 Symbol-based retrieval 

Most of the research in pre-existing query by humming systems use pitch contour to 

match similar melodies (Lu, You, & Zhang, 2001). The user’s humming is transcribed to a 

sequence of discrete notes, and the contour information is extracted from the notes. A 

hierarchical matching technique which is matching pitch contour of higher, lower or similar note 

has been employed for MIR on symbolic database (Lu, You, & Zhang, 2001).  DTW has shown 

to produce good results on symbolic dataset; (Zhu & Shasha, 2003) addressed using local 

dynamic time warping on symbolic database.  
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CHAPTER 3 

Methodology 

3.1 Data preprocessing 

The quality and accuracy of a user hum ultimately affect the result of a query by 

humming system. If we can extract melody from humming correctly, the desired song can be 

retrieved more accurately. The objective of the preprocessing algorithm was to strip the leading 

silence from a signal. We used energy and zero-crossing rate to discriminate silence and noise 

from a useful humming signal. 

3.2 Feature Extraction 

Extracting significant feature vectors from an audio signal is a considerable task to 

produce a better retrieval performance. Chroma-based audio features are robust tool for 

analyzing music, music synchronization, and audio alignment. A 12-dimensional chroma feature 

encodes the short-time energy distribution of the underlying music signals over the twelve 

chroma bands which correspond to the 12 pitch classes in standard Western music: C, C#, D, D#, 

E, F, F#, G, G#, A, A#, and B.  
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Figure 3. A chroma CQT showing a 12-element feature vector indicating how much energy of 

each pitch class. 

Chroma features capture the harmonic and melodic characteristics of music and very 

robust to changes in timbre and instrumentation. Performing short-time statistics over energy 

distributions within the chroma bands results in CENS (Chroma Energy Normalized Statistics) 

features. This smooths the local deviations in tempo, articulation, and musical ornaments. 

The main idea of CENS features is that taking statistics over large windows smooths local 

deviations in tempo, articulation, and musical ornaments. This characteristic makes CENS best 

used for tasks such as audio matching and similarity. 

To calculate CENS: 

1. the first step is to decompose the audio signal into 88 frequency bands corresponding to 

the musical notes A0 to C8. 
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2. Compute the short-time mean-square power (STMSP) for each of the 88 sub-bands by 

convolving the squared sub-band signal with a rectangular window corresponding to 200 

ms with an overlap of half the size.  

3. Add up all corresponding STMPs of all pitches belonging to the respective class to 

Compute STMSPs of all chroma classes. Then, we compute STM- SPs of all chroma 

classes C, C#,... ., B by adding up the corresponding STMSPs of all pitches belonging to 

the respective class. For example, to compute the STMSP of the chroma A, we add up the 

STMSPs of the pitches A0, A1,... ., A7. This yields for every 100 ms a real 12-

dimensional vector �⃗� = (v1, v2 . . ., v12) ∈ R12, for each analysis window 

4. Finally, for each window, we compute the energy distribution relative to the 12 chroma 

classes by replacing the vectors �⃗�  from Step (3) by �⃗� / (∑ 𝑣𝑖12
𝑖=1 ). 

5. Quantize each normalized chroma vector ⃗v = (v1, . . . , v12) from Step (4) by assigning 

the value 4 if a chroma component vi exceeds the value 0.4 (i.e., if it contains more than 

40 percent of the signal’s total energy in the ith chroma component for the respective 

analysis window).  

6. Convolve the sequence of the quantized chroma vectors from Step (5) component-wise 

using a Hann window of length 41. This results in a series of 12-dimensional vectors with 

non-negative entries, representing a kind of weighted statistics of the energy distribution 

over a window of 41 consecutive chroma vectors. In the last step, downsample the 

sequence by a factor of 10 and normalize the vectors to the Euclidean norm.  

3.3 Dynamic Time Warping 

In MIR, we often want to compare two sequences of different lengths. For example, we  
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may want to compute a similarity measure between two versions of the same song. We can align 

two various performances of the same musical work; hence we can hop from one performance to 

another at any moment in work. This problem is known as music synchronization. DTW is an 

algorithm used to align two sequences of similar content but possibly different lengths. 

 

 
Figure 4. Alignment of arrays. Chroma features are a sequence of vectors. 

Dynamic programming string matching best describes the computation DTW distance. 

The basic idea of DTW is to find a path of index coordinate pairs where the sum of distances 

along the path P is minimized: 

𝑚𝑖𝑛∑𝑑(𝑥[𝑖

(𝑖,𝑗)

], 𝑦[𝑗]) 

The path constraint is that, at (i, j) (i, j), the valid steps are (i+1,j) (i+1,j), (i,j+1) (i,j+1), 

and (i+1,j+1) (i+1,j+1). In other words, the alignment always moves forward in time for at least 

one of the signals. It never goes forward in time for one signal and backward in time for the other 

signal. 
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Table 2 

Visualization of Optimal Cost Calculation 

  1 3 4 3 1 -1 -2 -1 0 

 0 inf inf inf Inf inf inf inf inf inf 

0 inf 1 1 8 11 12 13 15 16 16 

4 inf 4 2 2 3 6 11 17 20 20 

4 inf 7 3 2 3 6 11 17 22 24 

0 inf 8 6 6 5 4 5 7 8 8 

-4 inf 13 13 14 12 9 7 7 10 12 

-4 inf 18 20 21 19 14 10 9 10 14 

0 inf 19 21 24 22 15 11 11 10 10 

 

Here is the optimal substructure. Suppose that the best alignment lies in index pair (i, j), 

i.e., m_1[i] and m_2[j] are part of the optimal DTW path. we prepend to the optimal path 

min {d(m_1[i−1], m_2[j]), d(m_1[i], m_2[j−1]), d(m_1[i−1], j−1])}. 
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Figure 5. An example of a dynamic time warping path. 

3.4 Distance Metric 

DTW requires the use of a distance metric between corresponding observations of two 

musical notes. One common choice is the Euclidean Distance. We would explore Euclidean 

distance and Manhattan distance for this research. 
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3.5 Final Ranking 

To obtain the final list of retrieved melodies, the candidate melodies are ranked according 

to their distance to the subset of the query input. The ranking is performed by examining all the 

matches preserved in the previous step. Each result is stored in a dictionary with the frame and 

rotation as the key. The results are ranked, and the least score for each unique database song is 

retrieved.  
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CHAPTER 4 

Experiments 

The experiments are divided into three parts. First, we segmented our query input into 

frames and used a portion of the user humming query as input into our system. We also verified 

the tune the user is singing in the event the user is singing off-tune. We compared the result of 

different features and distance metrics. 

4.1 Quality of the query by humming system 

We collected 50 songs manually and further segmented to frame size of 400. Our query 

set consists of hum from people with different musical skills. For this experiment, we used the 

hum queries of better singers in this experiment because for hum queries of poor quality it is 

hard for even a human being to recognize the target song. We extracted Chroma features from 

the input query. We tested our system with some hum queries of poor quality against a more 

quality hum, which performed better. 

4.2 Experiments for indexing DTW 

We examined the performance of three chroma features: Chroma Cens, Chroma CQT, 

and Chroma Short Time Fourier Transform. On average, chroma CQT gave the best result for 

the experiment. A user hum melody is said to be a perfect match if the intended target melody is 

ranked 1 in the search result.  

4.2.1 Query rotation. The index of the query input is rotated to search for the best match 

with the smallest similarity score. This is important as it always finds the best similarity score for 

the data, even for a scenario where the input hum is initially off-key.  
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Table 3 

Comparison of Chroma Features Query Hum 

Query 

Feature 

Chroma_CQT Chroma_CENS Chroma_STFT 

Query Target song Title Target Rank Target Rank Target Rank 

Hum 1 Mother Nature's Son 1 2 2 

Hum 2 Led Zeppelin - Stairway to Heaven 4 2 4 

Hum 3 I me mine - The Beatles 11 10 11 

Hum 4 Let It Be 1 1 6 

Hum 5 Bob Marley - No Women No Cry 5 11 11 

Hum 6 Louis Armstrong - What A Wonderful World 3 2 3 

Hum 7 Bob Marley - No Women No Cry 7 4 6 

Hum 8 The Beatles - Help! 11 4 10 

Hum 9 Duke Ellington, Take the A Train 9 7 4 
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Table 3 

Cont. 

Hum 10 Imagine - John Lennon 4 4 4 

Hum 11 Bob Marley - No Women No Cry 6 10 11 

Hum 12 Led Zeppelin - Stairway to Heaven 2 4 1 

Average Ranking 5.6 5.1 6.1 

 

Table 3 above shows the target rank of 12 experiments each for Chroma CQT, Chroma Cens, and Chroma STFT.  The ranked 

score compares the performance of the three different features for QBH task.



   22 

 

Figure 6. Chroma Features Error Comparison 
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Table 4 

 Comparison of Chroma Features Query Hum with knowledge base overlapping 

Query 

Feature 

Chroma_CQT Chroma_CENS Chroma_STFT 

Query Target song Title Target Rank Target Rank Target Rank 

Hum 1 Mother Nature's Son 1 4 2 

Hum 2 Led Zeppelin - Stairway to Heaven 4 3 4 

Hum 3 I me mine - The Beatles 2 4 11 

Hum 4 Let It Be 2 1 7 

Hum 5 Bob Marley - No Women No Cry 2 11 6 

Hum 6 Louis Armstrong - What A Wonderful World 3 4 6 

Hum 7 Bob Marley - No Women No Cry 2 7 6 

Hum 8 The Beatles - Help! 11 6 7 

Hum 9 Duke Ellington, Take the A Train 8 5 1 
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Table 4 

Cont. 

Hum 10 Imagine - John Lennon 1 1 5 

Hum 11 Bob Marley - No Women No Cry 2 9 10 

Hum 12 Led Zeppelin - Stairway to Heaven 2 1 1 

Average Ranking 3.3 4.7 5.5 

 

Table 4 above shows the target rank of 12 experiments each for Chroma CQT, Chroma Cens, and Chroma STFT with overlap 

of the knowledge base. 
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Figure 7. Chroma Features Error Comparison with Overlapping knowledge base. 

The ranked score compares the performance of the three different features for the QBH 

task. The knowledge base was overlapped by one-tenth to improve music alignment. With an 

overlap, Chroma CQT performed best compared to Chrom Cens and Chroma STFT. 

.
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Table 5 

Comparison of Features on Rotated Query Index 

Query 

Feature 

Chroma_CQT Chroma_CENS Chroma_STFT 

Query Target song Title Target Rank Target Rank Target Rank 

Hum 1 Mother Nature's Son 1 5 1 

Hum 2 Led Zeppelin - Stairway to Heaven 2 3 4 

Hum 3 I me mine - The Beatles 1 1 5 

Hum 4 Let It Be 3 3 1 

Hum 5 Bob Marley - No Women No Cry 2 1 7 

Hum 6 Louis Armstrong - What A Wonderful World 5 3 1 

Hum 7 Bob Marley - No Women No Cry 4 5 5 

Hum 8 The Beatles - Help! 2 4 5 

Hum 9 Duke Ellington, Take the A Train 3 5 7 
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Table 5 

Cont. 

Hum 10 Imagine - John Lennon 6 4 4 

Hum 11 Bob Marley - No Women No Cry 1 1 4 

Hum 12 Led Zeppelin - Stairway to Heaven 3 3 5 

Average Ranking 2.8 3.2 4.1 

 

Table 5 above shows the result of 12 experiments to compare the performance of Chroma CQT, Chroma Cens, and Chroma 

STFT. For each analysis, Query rotation was performed to get the lowest possible similarity for the database files, and a ranked result 

was produced from the QBH system. We recorded the position of the target song returned from the QBH system and calculated the 

accuracy of the search.
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Figure 8. Chroma Features Error Comparison on Rotated Query Index. 

A detailed view of each experiment shows the performance of chroma features of the 

dataset. The error rate of Chroma CQT is consistently lower than on Chroma Cens and STFT. 

Chroma CQT gave the best performance in 66% of the experiments. Chroma Cens gave the best 

performance by 41%, while Chroma STFT gave the best performance in 25% of the 

investigation. The accuracy shows that with query rotation, the result of the search can be 
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significantly improved. The lowest similarity score is always guaranteed, thereby enhancing the 

efficiency of the search.  

From our experiments, the number of hum melody with perfect match was low. Still, the 

result is quite encouraging and its possible application. We noticed that changing the portion or 

frame of user input used as query can significantly alter the result of the search. Also, Increasing 

the length of the query also produce better humming from poor hummers. We also rotated the 

users' hum to identity the tune a user is humming to. From our experiments, the similarity value 

between two music pieces decreases if we rotate the pitch class of the hummed song to find a 

closer match. 
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CHAPTER 5 

Conclusion 

We presented an improved system for retrieving a target song from a time series database 

using user hum melody as input. Our work compares the different chroma features to identify 

which is best for a query by humming task. We noticed changing the distance metric from 

Euclidean distance to Manhattan causes a negligible effect on the result of the search. We 

compared different Chroma features and Identified Chroma Constant-Q Transform as best 

among Chroma Cens and Chroma Short Time Fourier Transform for Query by Humming task. 

We also explore the effect of overlapping extracted database for search. While the impact on the 

execution time was not significantly different, the result of the search was improved compared to 

a search without overlapping the knowledge base. Finally, the best performance for our 

experiment was from rotating the hummed query input to find the best match and overlapping 

the knowledge base. 

Based on our experiment, DTW showed a more promising result for Query by Humming 

tasks where the input varies from the target as compared to local sensitive hashing. The testing of 

the system using the query from real people gave good results with high satisfaction. Some 

improvements will be to implement a dimension reduction algorithm and increase the size of the 

database for scalability testing. 
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Appendix 

Thesis Implementation QBH using DTW on Chroma Constant-Q Transform 

import sys 

import os, os.path, pprint, pickle 

from collections import defaultdict 

 

import numpy as np, numpy, pandas as pd 

from sklearn import preprocessing, decomposition 

import scipy.spatial 

import random 

 

import IPython.display as ipd 

import librosa, librosa.display 

# Preprocessing and Feature Extraction 

# Database File path 

training_dir = 'db/latestdb/' 

training_files = [os.path.join(training_dir, f) for f in os.listdir(training_dir) if not 

(f.startswith('.'))] 

# Parameter 

hop_length = 1024 

def extractsubfeature(features_dict, filepath): 

    filename = os.path.basename(filepath).rstrip('.wav') 

    print('ADDED',filename) 

    x, sr = librosa.load(filepath) 
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    y_h, y_p = librosa.effects.hpss(x) 

    C_cqt = librosa.feature.chroma_cqt(y_h, sr=sr, hop_length=hop_length) 

    C_cqt = C_cqt.T 

    u, count, s = 400, 0, 0 

    while s < C_cqt.shape[0]:  

        key = filepath +'_'+str(count) 

        frame = C_cqt[s:u+s,...] 

        features_dict[key] = frame#preprocessing.scale(frame) 

        s += u//10 

        count += 1 

    return features_dict 

def getFeatures(training_files, features_dict): 

    """A Funtion that extracts Chroma Cqt features from files. 

    It returns a dictionary of transposed chroma cqt features. 

    """ 

    print("Added Features: ") 

    count = 0 

    for filepath in training_files: 

        features_items = [f.split('_',1)[0] for f in features_dict] 

        if filepath in features_items: 

            continue 

        features_dict = extractsubfeature(features_dict, filepath) 

        if count >= 10: 
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            return features_dict 

        count +=1 

    # remove files in featues not in training folder dictionary 

    print("deleting file-features not training folder: ") 

    temp = [] 

    for file in features_dict: 

        file_x = file.split('_',1)[0] 

        if file_x not in training_files: 

            temp.append(file) 

        delkey = file.split('_',1)[1] 

        if delkey == 0: 

            print('REMOVED:', delkey) 

            del features_dict[delkey] 

    # Deleting files in temp 

    if len(temp) > 0: 

        for x in temp: 

            print('REMOVED:', x) 

            del features_dict[x] 

    return features_dict 

filename_to_load = 'db/latestdb_cqt.pkl' 

value = int(input('Enter 1 run create new Feature or 2 to load/update existing features: ')) 

if value == 1: 

    features = dict() 
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    features = getFeatures(training_files, features) 

    output = open(filename_to_load, 'wb') 

    pickle.dump(features, output) 

    knowledge_features = features 

else: 

    features_file = open(filename_to_load, 'rb') 

    features = pickle.load(features_file) 

    features_file.close() 

    # update features from file 

    features_update = getFeatures(training_files, features) 

    output = open(filename_to_load, 'wb') 

    pickle.dump(features_update, output) 

    knowledge_features = features_update 

print("**knowledge base contains: ", len(knowledge_features), "number of files**") 

# Selecting Query File 

x, sr_query = librosa.load('db/hum/q44.wav') 

x_query, y_p = librosa.effects.hpss(x) 

queryFeatureCqt = librosa.feature.chroma_cqt(x_query, sr=sr_query, hop_length=hop_length) 

queryFeatureCqt_c = queryFeatureCqt.T 

queryFeatureCqt_c = queryFeatureCqt_c[:][100:500] 

print('original: ', queryFeatureCqt.shape, 'query: ', queryFeatureCqt_c.shape) 

x, x_query, y_p, queryFeatureCqt = None, None, None, None 

# Dynamic Time Warping Algorithm 
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def dtw_table(x, y, distance=None): 

    if distance is None: 

        distance = scipy.spatial.distance.euclidean 

    nx = len(x) 

    ny = len(y) 

    table = numpy.zeros((nx+1, ny+1)) 

    # Compute left column separately, i.e. j=0. 

    table[1:, 0] = numpy.inf 

    # Compute top row separately, i.e. i=0. 

    table[0, 1:] = numpy.inf 

    # Fill in the rest. 

    for i in range(1, nx+1): 

        for j in range(1, ny+1): 

            d = distance(x[i-1], y[j-1]) 

            table[i, j] = d + min(table[i-1, j], table[i, j-1], table[i-1, j-1]) 

# Execution 

%%time 

def getResult(features_x, query, sr): 

    resultDict = dict() 

    y = preprocessing.scale(query) 

    for feature in features_x: 

        if features_x[feature].shape[0] != 400: 

            continue 
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        D = dtw_table(features_x[feature], y) 

        sim_score = D[D.shape[0]-1][D.shape[1]-1] 

        resultDict[feature] = sim_score 

    query, y, D, features_x = None, None, None, None 

    return resultDict 

results = getResult(knowledge_features, queryFeatureCqt_c, sr=22050) 

# Result 

def printResult(results): 

    print("Rank list of result") 

    distinct_result = defaultdict() 

    position = 1 

    for result in sorted(results, key=results.get): 

        r_t = result.split('_',-1)[0] 

        if r_t not in distinct_result or distinct_result[r_t][0] > results[result]: 

            distinct_result[r_t] = [results[result], result.split('_',-1)[1]] 

    for filename in distinct_result: 

        print("No: ", position,"SongTitle: ", filename, distinct_result[filename]) 

        position +=1 

printResult(results) 
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