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ABSTRACT 

 

An American scientific writer/critic of the mid-20th century, Joseph Wood Krutch, 

stated, “Technology made large populations possible: large populations now make technology 

indispensable.” Unmanned aerial vehicles (UAVs) have become a vital part of society, 

evolving from solely military use to commercial and even personal day-to-day use. UAV 

application has grown for mobility on demand, increasing the number of UAVs in the sky. 

Consequently, more UAVs increases the possibility of aerial collisions, challenging the safety of 

passengers flying and bystanders on the ground. Understanding the behavior of UAVs and 

unmanned aerial systems (UAS) in general, therefore, will decrease the possibility of aerial 

collisions. This thesis focuses on perception of UAVs; comparing how well machine-learning 

(ML) algorithms can analyze and predict their current states through supervised learning 

approaches. In this thesis, a data-driven software tool was developed to create a fundamental 

approach for UAV performance inspection. The developed algorithm was used for UAV 

behavioral analysis and the results provided better accuracy for predicting UAVs current state. This 

procedure includes using a multi-class classification for a single testing scenario, running the 

simulation environment with one Ar.Drones quadcopter for data gathering, hardware 

implementation for real-world implementation, and using Robot Operating System (ROS) as a 

middleware. All software development and implementation were conducted in Python 

programming language due to its high compatibility and robustness within a ROS development 

environment. The scenario stores the velocity readings on x, y, z directions, the altitude, and the 

corresponding state labels in matrix form. The procedure breaks the samples into training and 

testing for application of proposed supervised learning algorithms to predict output states of the 

system. Furthermore, these predictions are evaluated and analyzed, where results were compared 

within different ML approaches.  



2 

 

CHAPTER 1 
 

 

Introduction 

 

1.1 Robots 

 

 A robot, as Oxford’s English Dictionary defines it, is a machine – especially one 

programmable by a computer – capable of carrying out a complex series of actions 

automatically. The word comes from the Czech robota, a word literally meaning forced labor, 

but which is also used figuratively to mean drudgery, hard work (Wilton, 2013). A term coined 

by Czech playwright, novelist and journalist named Karel Čapek, who introduced it in his 1920 

hit play, R.U.R., or Rossum’s Universal Robots. (Science Friday, n.d.). There were many ideas 

and influence of robots such as Leonardo da Vinci sketched plans for a human look-alike robot 

that dates back as early as 1495. During the era between the 17 and 1900s, there were numerous 

life size automatons created. The nature of robots has evolved tremendously since then. 

 

Robots started as simple task machines. Jacques de Vaucanson, a French inventor, 

developed three automata. (Cutting Tool Engineering, 2019). The first two were used for musical 

application, one specifically played flute and the other was capable of playing tambourine, drum, 

and flute. His last and most notable work was a duck capable of mimicking the life of an actual 

duck, including eating, wing flapping, and quacking. Another impactful advancement was 

George Devol’s invention of the industrial manipulator Unimate which specific functions were 

transporting die-castings and welding them into automobiles (Cutting Tool Engineering, 2019). 

This implementation is considered one of the most important milestones in the history of robots, 

creating a process of taking and using industrial robots to replace unskilled workers. These 

examples presented along with other advancements during this era laid the foundations of 

Robotics and sparked heavy interest in the innovation of robots. 
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In general, robots are categorized by several classes, some by their application domains 

and others by their purposes such as locomotion and kinematics. The international federation of 

robotics (IFR), however, has two main classes, service and industrial robots (Robotics, 2016). 

Industrial robots are automatically controlled, reprogrammable, multipurpose 

manipulator programmable in three or more axes, which can be either fixed in place or mobile 

for use in industrial automation applications (Industrial robots, 2016). These robots are classified 

by their mechanical structure and consist of: 

 

● Linear robots (including Cartesian and gantry robots) – axes are corresponding to a 

Cartesian coordinate system and arm has three prismatic joints. 

 
● SCARA robots – two parallel rotary joints to provide compliance in a plane. 

 
● Articulated robots – arm has at least three rotary joints. 

 
● Parallel robots (delta) – arms have rotary or concurrent prismatic joints. 

 
● Cylindrical robots – axes form a cylindrical coordinate system. 

 
● Not classified. 

 

 

Figure 1.1 illustrates the configuration of a few of the above mechanical structures. 
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Figure 1-1 Classification of industrial robots by mechanical structure (Industrial robots,2016). 
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Table 1-1 Classification of personal service robots by application areas and types of robots 

(Service Robots, 2016). 

A service robot is a robot that performs useful tasks for humans or equipment excluding 

industrial automation application (Service Robots, 2016). This class breaks further into two 

subclasses based on the type of service it is performing. 

 
● Personal service robots – applied for non-commercial task, usually by non-

professional person. Represented in Table 1.1 

 
● Professional service robots – applied for commercial task, operated by professionally 

trained personnel. Represented in Table 1.2. 
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Table 1-2 Classification of professional service robots by application areas and types of robots 

(Service Robots, 2016). 
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These categories provided by the IFR can be broken into several other sub-categories. However, 

the focus of this work is Unmanned Aerial Vehicles (UAVs), mainly quadcopters. 

 

1.1.1 Quadcopters 

 

UAVs are a class of aerial vehicles that can take flight with the absent of an on-board 

human operator. Quadcopters classify as a type of UAV, they are agile vehicles that maneuver 

based on the rotational speed of four rotors. They were among the first vertical take-off and 

landing vehicles (VTOLs) (Quadcopter Arena, 2018). Being that helicopters use tail rotors, to 

counter the overall torque of the main rotor causing inefficiencies and limitations with flight 

(Quadcopter Arena, 2018), Quadcopters were designed in order to combat the problems 

helicopters faced when making vertical flights. 

 

1.1.1.1 Quadcopter Societal Impact 
 

 

The limitless potential applications of quadcopters have been reshaping many industries. 

The development of UAVs is primarily rooted in military research (Rao, Gopi, & Maione, 2016). 

Evolving from simply weaponized missions in hostile environments to applications of, but not 

limited to, data collection and surveying, surveillance, transportation, entertainment, emergency 

response, etc. While most intentions of innovating drones are designed for positive use, some of 

society feels reluctant to the push for drone practice. According to (Rao, Gopi, & Maione, 2016), 

the way UAV technology is currently used has an impact on society’s conception of safety and 

security, privacy and ownership, individual and commercial liability, and the effectiveness and 

process of governmental regulation. 
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1.1.1.2 Quadcopter Intelligence 
 

 

The main reason behind the numerous innovations on quadcopter technology and the new 

application domains to use them was the advancement of artificial intelligence. As known, these 

unmanned air systems work in a complex environment and these environments mostly apply to 

industrial domains, engineering problems, as well as the open source community, which generate 

vast scenarios, harsh environments, and incorporate different sensors, to evaluate how well the 

machines can adapt and perform. Due to the many sensors and cameras used in different 

scenarios, drones are creating large amounts of data, sometimes more than humans can handle. 

To date, almost every company that deals with data processing, analytics or ‘autonomous’ flight 

control and claims the use of artificial intelligence, machine or deep learning (Schroth, 2018). 

 

1.2 Motivation 

 

The Federal Aviation Administration (FAA) estimates the number of drones in the U.S. 

to reach seven million by 2020 (Hedlund, 2018). Although drones have had a significant positive 

impact on society, this increase in drone usage has unfortunately increased the risk of drone 

collision related events. There have been numerous reports of drone crashes and “close calls” 

within the past few years: 

 

● August 2013 - drone crashed into grandstand during Virginia’s Great Bull Run 
 

● December 2014 - drone crashed into customer at New York restaurant and in the 

same month drone nearly hits Airbus A320 during approach to Heathrow Airport 

 
● January 2015 - drone crashed on White House lawn, 

 
● September 2015 - American Airline pilots forced evasive action due to drone 
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● November 2015 - drone nearly collides with helicopter leaving St. Louis Children’s 

       Hospital 

These are a few examples on an alarmingly increasing list of incidents. 
 

 

Understanding that these incidents can be reduced with implementing rules and 

regulations, the Federal Aviation Administrations (FAA) released a list of regulations on June 

21, 2016 (Dorr & Duquette, 2016). While the rules were put in place to control drone operation, 

many incidents have and will continue to occur. The FAA should apply a second level of 

screening for drone registration, where significant testing should be executed. These tests would 

incorporate different commands and trajectories for the UAV to perform based off its 

specifications and model dynamics. Evaluators will be able to recognize the structures and 

behaviors of standard flight where this type of second screening can help determine which 

drones should and should not be airborne. 

 

1.3 Problem Description 

 

UAV performance is a significant topic due to the many incidents that have occurred over 

the past years. The FAA has certified individuals to pilot UAVs and have included a mandatory 

drone registration. According to (FAA seal, n.d.), the pilot and drone registration process 

consists of: 

 
1. Register your drone when flying under Part 107. 

 

2. Label your drone (PDF) with your registration number. Registration costs $5 per 

 aircraft and is valid for 3 years. 

In order to register, an individual would need to provide the following information: 
 

● Email address 
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● Credit or debit card 
 

● Physical address and mailing address (if different from physical address) 
 

● Make and model of your unmanned aircraft 
 

● Register an unmanned aircraft online. 
 

● Register an unmanned aircraft by paper. 
 
 

 

Despite these terms, the FAA still needs to consider incorporating different test and evaluation 

processes to ensure that drones are up to par with performance. For instance, a car registration is 

a personal proof that an individual rightly owns and pays taxes on that car. The purpose of 

registration is to declare a connection between a car and an owner. The owner must also have 

proof the particular car they drive passed the required standard inspection (which varies from 

state to state). The registration is important, but not the sole requirement for operations. The 

same should be taken into consideration when operating a UAV manually and unquestionably 

when an autonomous system is implemented with a UAV. 

 
This thesis focuses on generating a test and evaluation process that can be fundamentally 

applied and developed for UAV inspection regarding the FAA for future screening, standards, 

and regulations. For achieving this, a data-driven approach is developed, where five supervised 

learning algorithms, are compared regarding how well they predict the user-defined states of a 

quadcopter for a single scenario in both simulation and real-world environments. 

 

1.4 Thesis Organization 

 

Chapter 2 presents an overview of Artificial Intelligence and its fundamental structures, 

applications, comparisons of those applications, and the metrics. Chapter 3 breaks down the 

classification of UAVs including the different design structures, the system dynamics and 

mathematical representation of a common quadcopter. Chapter 4 introduces the case study 
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regarding test and evaluation of a UAV’s performance. This chapter includes the necessary 

results, modifications and limitations as well. Lastly, Chapter 5 ties the previous chapters 

together while reiterating the significance and contribution of this work. 
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Figure 2-1 Artificial Intelligence Breakdown (Types of Artificial Intelligence, n.d.) 

CHAPTER 2 
 

 

Literature Review 

 

2.1 Artificial Intelligence 

 

In the 21st century, artificial intelligence (AI) has become an important area of research 

in virtually all fields: engineering, science, education, medicine, business, accounting, finance, 

marketing, economics, stock market and law, among others (Oke, 2008). AI has applications for 

multiple aspects of human life – however, there continues to be ambiguity on both the definition 

of AI as well as on its constituent elements (Anand, 2018). Generally, the term “AI” is used 

when a machine simulates functions that human’s associate with other human minds such as 

learning and problem solving. (Gupta, 2017). Changes in the definition of artificial intelligence, 

however, are based upon the goals that are trying to be achieved with an AI system. (Marr, 

2018). AI is difficult to define, but its definition has some consistencies. AI is not natural; as 

shown in human beings and some animal species, it is synthetic. Nevertheless, AI can make 

decisions and reason with respect to several factors, mimicking how the human brain would 

function. Although there are many structures and definitions associated with AI, they all classify 

into two specific types as shown in Figure 2.1. 
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2.1.1 Type 1 

 

Type one AIs consist of three levels: weak (narrow), strong (general), and super 

intelligence. Narrow AI is the most fundamental of type one. Narrow is used for performing a 

single task, whether that be playing chess, weather prediction, or ad suggestions. Even self-

driving cars are a collection of narrow AI structures. Narrow AI is very limited to specific task it 

is programed to complete. For example, one could not expect the chess playing AI to respond to 

a task of reporting the latest news. That is another AI’s task to perform. 

 

General AI is a machine that can think, reason, and perform tasks as a human would. 

They are programmed to handle situations in which they may be required to problem solve 

without having a person intervene (Frankenfield, 2019). This level of AI has not been reached, 

although many marketers will say otherwise to consumers. According to (Yao, 2017), 

developing a true artificial intelligence and establishing it as such is an ongoing challenge that 

continues to be hindered by difficulties devising definitions, metrics and tests. The notion behind 

the general AI is to create a system that could be smarter and think like a human on its own. 

 

Lastly, Super AI is defined by the Oxford’s AI expert as the level in which AI becomes 

much smarter than the best human brains in practically every field, including scientific creativity, 

general wisdom and social skills. Currently this level of AI is further ambiguous than that of 

General AI. Some scientists like Google’s Demis Hassabis, optimistically believe that full AI 

development will help humans in areas such as space exploration, disease fighting, and 

environmental preservation. Other scientists, like Stephen Hawkins, believes the progression of 

AI will ultimately be the demise of humankind. 
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2.1.2 Type 2 

 

Type 2’s basis is functionality and contains four sub categories: (1) reactive machines, (2) 

limited memory, (3) theory of mind, and (4) self-awareness. Reactive machines are the basic types of 

AI. Reactive machines do not store memory or past information for current and future actions. An 

example of this AI is the IBM chess program that beat Garry Kasparov in the 1990s (Kumar GN, 

2018). Their emphasis is on the present scenarios and carry out the best likely action. 

 

Limited memory machines can store and use memory from previous experiences for a 

short time period. Some of the decision-making functions in self-driving cars have been designed 

this way (Kumar GN, 2018). These cars can keep the current speed of nearby cars, the distance 

of other cars, speed, and additional observations to navigate the road. Being that these systems’ 

memory is limited, the observations are not permanently stored. 

 

Theory of mind machines should be able to understand human emotions, different beliefs 

and views of people, and to have the capacity to interact socially. Researchers are making efforts 

to develop these types of machines. Even though many improvements exist, this kind of AI is not 

yet complete (Kumar GN, 2018). 

 

Self-awareness machines are the final versions of AI. These machines will be super 

intelligent, possessing their individual consciousness and sentiments. Self-awareness machines 

will also be smarter than humans. They can be described as, “In simple words a complete human 

being” (Kumar GN, 2018). Although, self-awareness AI does not exist and is a hypothetical 

concept, once achieved it will be a momentous accomplishment in the AI field. 

 

There are various paths towards building intelligent machines. Furthermore, the machines 

path depends on what task(s) or function(s) need(s) to be performed and what level of thought 
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Figure 2-2 Different Paths of AI (Kumar GN, 2018). 

capacity it takes to perform them. This thesis mentions five important paths of AI: (1) Natural 

Language Processing, (2) Vision, (3) Robotics, (4) Autonomous Vehicles, and (5) Machine 

Learning. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.1.3 Natural Processing Language (NLP) 

 

Natural Language Processing (NLP) is an interdisciplinary field of computer science, 

artificial intelligence, and linguistics that explores how computers can be used to understand and 

manipulate natural language text or speech (Collobert & Weston, 2008). According to (Liu, Li, 

& Thomas, 2017), Natural language (NL) refers to any written or spoken human language that 

has naturally evolved for human communication. Two NL actions comprise human and 

computer interaction, generation and understanding. NL generation is the computer system 
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producing understandable human language texts and NL understanding is the computational 

process of transforming human language to a format the machine can understand. Different tasks 

of NLP include: 

 
● Part-of-Speech Tagging (POS) – labeling each word by syntactic role indication. 

 
● Chunking – also referred to as shadow parsing, labeling segments with syntactic role i.e. 

noun phrase (NP) or verb phrase (VP). 

 
● Named Entity Recognition (NER) – labeling elements of a sentence into categories such 

as a place, location, animal, or company. 

 
● Language Models – Uses statistical probability to estimate what the next word would be 

in a sequence. 

 
● Semantic Role Labeling (SER) – assigns labels to phrases or words that specify their 

semantic role in a sentence. 

 
● Semantic Related Words – predicting if words are related semantically i.e. holonyms, 

synonyms, and hypernyms. 

 

2.1.4 Vision 

 

Vision is a field comprised of machine vision and computer vision. This field allows 

machines to “see” as good as and better than humans do. Machine vision captures and analyzes 

visual information using a camera, analog-to-digital conversion, and digital signal processing 

(Kumar GN, 2018). As stated by (Crouch, 2019) computer vision and machine vision systems 

share most of the same components and requirements: 

 

● An imaging device containing an image sensor and a lens.
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● An image capture board or frame grabber may be used (in some digital cameras that 

use a modern interface, a frame grabber is not required). 

 

● Application-appropriate lighting. 
 
 

● Software that processes the images via a computer or an internal system, as in many 

 

“smart” cameras. 
 

 

Computer vision is the automation of capturing and processing images, highlighting image 

analysis. Computer vision’s goal is to see, process, and provide meaningful results with respect 

to the observation. Machine vision is the use of computer vision in industrial environments, 

positioning it a subdivision of computer vision. 

 

2.1.5 Robotics 

 

The field of robotics is devoted to designing, manufacturing, and operation of robots. 

Robots are built to perform repetitive tasks that are either too dangerous or too difficult for 

humans to perform on a consistent basis at an efficient level. Examples include industrial 

assembly lines, massive production, nuclear power plants, military missions and law 

enforcement tasks, surgical operations in hospitals, service and hospitality tasks, and patrolling 

farm areas. There are even new directions to develop new humanoid service robots to assist 

police officers (Kumar GN, 2018). 

 

2.1.6 Autonomous Vehicles 

 

The development of autonomy and vehicles date back as far as the early 20th century, in 

Wisconsin, where a full-sized vehicle was controlled by radio waves. Further, interests sparked 

from the 2004 “DARPA Grand Challenge” creation; a contest that required a driverless car to 

complete a 150-mile course for a one-million-dollar prize. In its first year, no car was able to 
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complete the course; but in 2005, five vehicles were successful and finished it. Autonomous 

vehicles have exponentially increased their success since then, spreading to other platforms 

beyond road vehicles. 

 

The U.S. DOT’s National Highway Traffic Safety Administration policy on automated 

vehicles established five distinct levels of automation in vehicles (Levinson, Boies, Cao, & Fan, 

2016). Defining levels of automation provides clarity for discussing automation among different 

states, product developers, and other stakeholders (Levinson, Boies, Cao, & Fan, 2016). These 

levels range from zero to four and represent the following: 

 

● Level 0 stands for “No Automation” – The operator is in complete control of all 

primary vehicle controls at all times. 

 
● Level 1 stands for “Function Specific Automation” – The vehicle is designated by the 

operator to control one or more specific functions and can seize control at any time. 

 
● Level 2 stands for “Combined Function Automation” – The vehicle automates at least 

two primary-correlated functions of the vehicle, ultimately to relieve the operator from 

those specified primary functions by the operator. Although the two or more specified 

are automated, the operator must be cognizant to regain control from the vehicle. 

 
● Level 3 stands for “Limited Self-Driving Automation” – All safety-critical functions 

are transferred from the operator to the vehicle. The vehicle is responsible for notifying 

the operator to intervene in situations where the operator’s assistance is a necessity. 

 
● Level 4 stands for “Full Self-Driving Automation” – The vehicle is to perform and 

control all safety critical functions while monitoring the surrounding environment for 

adaptation. The operator is only obligated to give a destination for the vehicle. 
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2.2 Machine Learning 

 

Machine learning is an interdisciplinary field of research with influences and concepts 

from mathematics, computer science, artificial intelligence, statistics, biology, psychology, 

economics, control theory, and philosophy. In general terms, machine learning concerns 

computer programs that improve their performance at some task through experience (Lavesson, 

2006). It is a method where the target (goal) is defined and the steps to reach that target is 

learned by the machine itself by training (e.g., gaining experience) (Kumar GN, 2018). 

 

There are generally four questions used to address the design and implementation of 

learning programs. 

 

● What is the input? 
 

● What feedback is available? 
 

● How should the solution be represented? 
 

● What metrics are needed to evaluate performance? 
 

 

The input is data or observations used for processing. The input has a set of attributes that 

describe the specifics of an instance/sample; it could be weight, height, speed, color, and so on. 

These instances can be represented as real (-3.14, 1.2, 0.5, 35.69) and integer numbers (-2, 4, 17, 

-9, -8, 5), or as a Boolean output (True, False). For instance, the attributes length, width, height, 

color, top speed, and horse power could be used to describe cars (Lavesson, 2006). The feedback 

depends on the style of learning applications used. These styles consist of Supervised, 

Unsupervised, and Reinforcement Learning, concepts discussed in detail in the next section. 

 
The type of feedback implemented is also contingent upon the problem constraints and 

requirements. The solution representation of the learning type is the structure of the model 
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created once the machine has learned the pattern of the instances from the correlating attributes. 

The last constraint is the evaluation metrics used to determine how well the machine is learning 

i.e., accuracy, confusion matrix, and F1-score. Addressing these four concerns generates an 

increased level of understanding on how machines learn in different environments. 

 

2.2.1 Machine Learning Types 

 

As mentioned previously, the three types of learning are supervised, unsupervised, and 

reinforcement learning. They are distinguished by their different levels of access to the data 

provided and what type of scenarios are applicably just. This thesis focuses on supervised 

learning but does not exclude the descriptions of the other types. 

 

2.2.1.1 Reinforcement Learning 

 

Reinforcement learning is the problem faced by an agent that learns behavior through 

trial-and-error interactions with a dynamic environment (Kaelbling, Littman, & Moore, 1996). 

There are two main strategies of reinforcement learning: 

 

● Search the behaviors space to find one that is performing well in the environment (i.e. 

Novel Search Genetic Programming, and Genetic Algorithms). 

 
● Estimate the value of the state actions in the environment using statistical techniques 

and dynamic programming. 
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Figure 2-3 Standard reinforcement learning model (Kaelbling, Littman, & Moore, 1996). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Figure 2.3 shows the basic structure of reinforcement learning. In each step of the 

iteration, the machine/agent receives an input: i, and the current state of the environment: s. 

Then, the agent chooses an action: a, to produce an output. The action changes the state of the 

environment and this state transition is relayed to the agent through a scalar reinforcement signal, 

r. The agent's behavior: B, chooses actions to increase the long-run sum of values of 

reinforcement signal. The I in the figure represents an input function for the agent to determine 

how it views the environment state. 

 

2.2.1.2 Unsupervised Learning 

 

In unsupervised learning, only response variables are known (Amruthnath & Gupta, 

2018). This type of learning searches for patterns where an input-output relationship is not given. 

It does not call for human annotation; it is fully automated (Beaula, Marikkannu, Sungheetha, & 

Sahana, 2016). A large subclass of unsupervised tasks is clustering, a method that observes and 

groups together the members that show similarity. These clusters are either user-defined or 

defined based on a constructed model with respect to each member’s distance, density, or 

characteristics from other members. In unsupervised classification, previous information is not 
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Figure 2-4 Supervised machine learning left (a) classification right (b) regression (Korbut, 

2017). 

necessary. The algorithm spots out the huddles in data and also analyst labels huddles (Beaula, 

Marikkannu, Sungheetha, & Sahana, 2016). 

 

2.2.1.3 Supervised Learning 

 

Supervised learning is based on training a data sample from a specific data source with 

the correct classification already assigned (Sathya & Abraham, 2013). Supervised learning tasks 

can be classified into two subgroups, regression and classification predictive modeling. 

Classification is the task of predicting a discrete class labels and regression is the task of 

predicting a continuous quantity shown in figures 2.4(a) and (b). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 These examples of correct input-output pairs can be shown to the machine during a 

training phase. The machine generates a learned model based off the input-output relationships 

provided during training. That model is then tested by trying to predict the output of a new set of 

examples, instances it has not previously seen. Lastly, the model is evaluated on how well it 

predicted the new instances. This process is formally shown in Figure 2.5. 
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Figure 2-5 Real-world application of supervised machine learning (Sathya & Abraham, 2013). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 

1. Collect data. An available expert determines which attributes which attributes are of 

importance to the problem. 

 
2. Data preprocessing. Consists of cleaning the dataset with respect to noise and missing 

values. 

 
3. Definition of training set. There are many methods to split the data into training and 

testing samples. In this research, the data is randomly split into 70% training 30% 

testing. 

 
4. Algorithm selection. This step is problem dependent; in this work, five algorithms are 

selected. 

 
5. Training. The algorithms are applied to the training set learning and creating a model 

from the relationships between the input and outputs based on the attribute values. 
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6. Evaluation with test set. The model generated from training is applied to the test 

dataset and evaluated on user-defined metrics. 

 
7. Based off how well the algorithm performs on the defined metrics of evaluation 

determines if the algorithm can be used as a classifier or needs its parameters tuned to 

increase performance (i.e. training speed, accuracy, and so on) 

 

2.3 Supervised Machine Learning Algorithms 

 

Trend forecasting and price prediction in stock trading, retail commerce, and sales are the 

most common areas that use supervised algorithms. In this work; however, supervised algorithms 

are used for predictive modeling regarding how to infer the behavior of a UAV. In this case, the 

algorithms use data to calculate possible outcomes. Below is a list of widely used supervised 

machine learning algorithms from the literature (Ayodele, 2010): 

 

● Nearest Neighbor 
 

● Gradient Boosted Trees 
 

● Decision Trees 
 

● Logistical Regression 
 

● Naive Bayes 
 

● Support Vector Machines (SVM) 
 

● Random Forest 
 

● Linear Regression 
 

● Neural Networks 
 

 

From these algorithms, five of them were chosen for model comparison and evaluation, k-

Nearest Neighbors, Naïve Bayes, Support Vector Machines, Decision Trees, and Artificial 

Neural Networks. 
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Figure 2-6 kNN Pseudocode (Meneses, Chavez, & Rodriguez, 2019). 

2.3.1 k-Nearest Neighbors (kNN) 

 

The k-Nearest-Neighbors (kNN) is one of the more simple and basic learning algorithms. 

The k-Nearest-Neighbours (kNN) is a non-parametric classification method that is simple but 

effective in many cases of classification (Guo, Wang, Bell, & Bi, 2004). This algorithm finds a 

group of “k” objects in the training set that is closest to the test instance. The instance learning 

process is based on solutions for similarly known problems, establishing the name “nearest 

neighbor learning”. The following pseudocode and parameters illustrate the implementation of 

this type of learning: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Parameters: 
 

 

1. Distance function, to determine closest neighbors between training instances and new 

instances (i.e. Euclidean, Manhattan, Minkowski). 

2. The value k, which determines the number of neighbors considered when 

addressing the new instance. 
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Figure 2-7 Graphical Representation of kNN approach (Guo, Wang, Bell, & Bi, 2004). 

3. A weighting function to evaluate the contribution of each neighbor of the 

new instance. 

 
4. Evaluation method, to testing how well the found neighbors classify the new instance.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 Figure 2.7 represents the kNN implementation by using Euclidean distance as the 

distance measure. An ideal local region can be represented by the central data point – di, the 

number of data instances inside the local region – Num(di), and the similarity of the further point 

inside the local region – Sim(di). 

 kNN is robust to noisy data and is effective when it is applied to large sets of training 

data. This is due to its lazy learning method; where there is no computation performed on the 

data before the new instance is given to the system. 

2.3.2 Naïve Bayes (NB) 

Naïve Bayes is a collection of learning algorithms that depend on probability theory and 

Bayes’ Theorem for prediction. Naïve stems from the algorithm assuming that each feature is 

independent from the other features. Bayes refers to Thomas Bayes, a philosopher and 

statistician famously known for his Bayes Theorem that finds the probability of a hypothesis 
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given some prior knowledge (Hulden, 2014). Thus, the Naïve Bayes algorithm was created; an 

algorithm that is based on independence between input features and Bayes Theorem. 

 

Bayes Theorem is given by the following formula (Sybba, et al., 2017):  
 
 
 
 
 
 
 

 

● P(A|B) – the probability of event A occurring, given the event B has occurred 

(posterior probability). 

 
● P(B|A) – the probability of event B occurring, given event A has occurred (likelihood). 

 

● P(A) – the probability of event A (class prior probability). 

 

● P(B) – the probability of event B (predictor class probability). 
 

 

Notice that both events A and B are independent, meaning the outcome probability of event A 

does not depend on event B’s outcome. This concept of probability is used to classify new 

entries. NB can use several different model references such as normal, lognormal, gamma and 

Poisson density functions. Although NB may be simplistic, it can perform well with inputs of 

high dimensions. 

2.3.3 Support Vector Machine (SVM) 

 

Support Vector Machines performs well among some of the most recognized algorithms 

do to its consistent ability to be robust and accurate. SVM does not require an abundant amount 

of data for training and can handle many dimensions. 

 
SVM works on the principle of margin calculation (Dey, 2016). It uses labeled training 

data to output an optimal hyperplane to categorize new inputs. The fundamental technique 

classifies the data by creating a function to split the data into relating labels on two conditions, 
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Figure 2-8 Graphical Representation of Linearly (a) and Nonlinearly (b) Separable classes 

(Raschka, 2014). 

the data points with the largest likely margin and the least likely amount of inaccuracies. The 

margins are drawn in such a fashion that the distance between the margin and the classes is 

maximum hence, minimizing the classification error (Dey, 2016). Which is illustrated in figure 

2.9: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Support vector machines (SVM) were originally designed for binary classification (Chih-

Wei & Lin, 2002). In this work, the SVM extends to handle multiclass classification. There are 

different ways to extend an SVM for multi class classification. 

 
1. The SVM can be used as a fundamental classifier and can decompose the K-class 

problem into many binary class problems where K is the number of classes. 

 
2. Directly considering all data in one optimization formulation (Chih-Wei & Lin, 

2002). 
 
 

2.3.4 Decision Trees 

 

Decision tree is one of the most widely used techniques used in data mining (Sharma & 

Kumar, 2016). A tree model is represented with a set of if then rules for human interpretation. 

The name, tree model, comes from its tree like structure. It starts with an initial/root node that 
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then grows different branches and other nodes by making decisions until it reaches a leaf node. A 

leaf node corresponds to a tree starting from the roots and grows branches all the way to leaves. 

There many different types of trees such as Iterative Dichotomiser 3 (ID3), C4.5, and 

Chi-square Automatic Interaction Detection (CHID). Although many variations of decisions 

trees were developed, the method of tree learning generally applies to problems with similar 

characteristics. The problems usually have a set of features/inputs (real or attribute values), 

discrete classes/outputs, errors in the training data or missing data, and disjunctive expressions. 

Despite similarities in composition, each tree grows in different ways. The following list 

provides descriptions on how some of the trees are grown (Al-Sagheer, Alharan, & Al-Haboobi, 

2017): 

 
● ID3 (Iterative Dichotomiser 3) is an easy way of decision tree algorithm. The 

evaluation used to build the tree is information gained for splitting criteria. The 

growth of tree stops when all samples have the same class or information gain is not 

greater than zero. It fails with numeric attributes or missing values. 

 
● CHID (Chi-square–Automatic–Interaction–Detection): is an essential decision tree 

learning algorithm to only handle nominal attributes. It is a supplementation of the 

automatic interaction detector and theta automatic interaction detector procedures. 

● C4.5 is the ID3 improvement or extension that presented by the same author. It is a 

mixture of C4.5, C4.5-no-pruning, and C4.5-rules. It uses gain ratio as splitting 

criteria. It is an optimal choice with numeric attributes or missing values. There are 

fundamental points that mark the two algorithms shown in the table below 

 
These methods are some of the most popular algorithms, based upon inference, and 

successfully applies to a variety of tasks. Furthermore, decision trees' most important feature is 
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the capacity to break and represent very complex problems with a collection of simpler 

decisions. 

 
Decision trees contribute a concrete technique for conceptual learning. They search the 

training set and grow top-down greedily choosing the next best feature for each new decision 

branch. The trees grow recursively from the root node down to the leaf node creating a fully 

interpretable tree. 

 

2.3.5 Artificial Neural Networks (ANN) 

 

The general function of a neural network is to produce an output pattern when given a 

particular input pattern and is loosely related to the way the brain operates (Dencelin & 

Ramkumar, 2016). ANNs have the ability of distributed information storage, parallel processing, 

reasoning, and self-organization (Kamruzzaman & Jehad Sarkar, 2011). 

 

Based on the connection pattern (architecture), ANNs can be grouped into two categories 

(Jain & Mao, 1996): 

 

● Feed-forward networks, in which graphs have no loops 
 

● Recurrent (or feedback) networks, in which loops, and occur because of feedback 

connections. 

 

Recurrent networks have the capacity to reprocess data in a feedback manner, acquiring 

information from earlier stages in the learning process, giving it the ability to adapt. On the other 

hand, feedforward networks do not feedback information from previous states, the data flows 

from the inputs through the hidden layer(s) to the output layer, as shown in figure 2.10. The 

output is obtained by applying all input values to a standard function for the network nodes (i.e. 

sigmoid). 
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Figure 2-9 A taxonomy of feed-forward and recurrent network architectures (Raza, 2016). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In supervised learning, ANNs are trained using backpropagation. The theory of the BP 

algorithm is based on the error-correction learning rule which uses the error function in order to 

modify the connection weights to gradually reduce the error (Suliman & Zhang, 2015). The 

function based used for error correcting is defined as: 

 

W = l * ε + m * Wp 
 

 

Where W is the weight change, l is the learning rate, ε is the minimal error, m is the momentum, 

and Wp is the previous weight change. 

2.4 Machine Learning Comparison and Evaluation 

 

Supervised machine learning is the mission of conceiving a meaning from labelled 

training data that has a set of training examples (Praveena & Jaiganesh, 2017). The procedure 

consists of taking a dataset with known features/input and labels/outputs, generating a model 

based on the mapping from the inputs to the outputs, applying the generated model to 

unforeseen/test data and lastly evaluating the performance by different metrics. Many supervised 
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algorithms deal with classification, such as Artificial Neural Networks (ANNs), Support Vector 

Machines (SVMs), Decision Trees (DTs), Random Forest (RF), and Bayesian Networks. 

However, out of all the different algorithms applicable to classification, they all relate back to 

one question: Which one has the best performance compared to others? 

 
To answer this question, one should accept that there is not an algorithm that better 

performs on every metric of evaluation. Learning algorithms are constantly tweaked and pinned 

against one another for performance evaluation. With that said, is it possible to objectively 

compare learning algorithms? This question cannot be generalized, as most algorithms’ 

performance success is situational. It is important to evaluate learning algorithms on a variety of 

performance metrics because different learning algorithms are designed to optimize different 

criteria (e.g. SVMs and boosting optimize accuracy while neural nets typically optimize squared 

error). It is not uncommon for an algorithm to have optimal performance on one performance 

metric and be suboptimal on another (Caruana & Niculescu-Mizil, 2006). It also important to 

take into account the parameters that would give the proposed algorithms an optimal 

performance when applied to the different problems. According to (Hossin & Sulaiman, 2015) 

accuracy or error rate is one of the common metrics in practice used by many researchers to 

evaluate the generalization ability of classifiers. Accuracy is a classifier’s ability to correctly 

predict labels of unforeseen data based on a model generated from training data. 

 
Although accuracy is an important metric, there have been studies of incorporating other 

r metrics for performance evaluation. In (Prusty, Chakraborty, Jayanthi, & Velusamy, 2014) 

study, the authors state that k-nearest neighbors (kNNs), SVMs, and ANNs are the most widely 

used supervised multiclass algorithms. In their study, the authors perform transient classification 
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and compare the algorithms on the metrics of accuracy, training speed, computational cost and 

root mean square error, taking into consideration that accuracy is the major metric. The dataset 

consisted of five classes with two attributes/features. Training size was 746 and the testing size 

was 32. Table 2.1 is the comparison table of the algorithms’ extensions and performance. 

 
 

Table 2-1 Comparison of kNN, SVM, ANN algorithms. (Prusty, Chakraborty, Jayanthi, & 

Velusamy, 2014). 

   Respective average 

Algorithm Best Prediction Respective Parameter prediction accuracy 

 Accuracy (%)  after 10-times 10-fold 

   cross validation (%) 
    

kNN 75.20 k = 13 75.96 
    

SVM 93.75 rbf kernel 93.17 
    

GDM-ANN 61.60 5 neurons 24.1 
    

GDA-ANN 94.60 8 neurons 90.66 
    

GDMA-ANN 99.10 8 neurons 89.5 
    

RB-ANN 97.30 13 neurons 95.29 

CGB-ANN 96.40 15 neurons 81.67 
    

CGF-ANN 85.70 15 neurons 88.57 
    

CGP-ANN 98.20 8 neurons 75.6 
    

SCG-ANN 97.30 5 neurons 9138 
    

QN-ANN 94.60 15 neurons 90.62 
    

LM-ANN 95.50 8 neurons 93.84 
    

OSS-ANN 91.10 15 neurons 90.25 
    

BR-ANN 99.10 5 neurons 95.68 
     
 

 

The table shows that there are different extensions of ANN applied. There are six various 

categories of backpropagation (Prusty, Chakraborty, Jayanthi, & Velusamy, 2014). 
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Backpropagation is the optimization process to train a model in the least number of epochs, 

smallest possible error rate, and the fastest training time. 

 

1. Additive Momentum: 

 

a. Gradient Descent with momentum backpropagation (GDM). 

 

2. Self-adaptive learning rate: 

 

a. Gradient Descent with adaptive learning rate backpropagation (GDA). 

 

b. Gradient Descent with momentum and adaptive learning rate (GDMA). 

 

3. Resilient Backpropagation (RB): 

 

4. Conjugate Gradient Backpropagation. 

 
a. Scaled conjugate gradient back propagation (SCG). 

 

b. Conjugate back propagation with Powell-Beale restarts (CGB). 

 

5. Quasi-Newton: 

 

a. Levenberg-Marquardt backpropagation (LM). 

 

b. BFGS quasi-Newton backpropagation (QN). 
 

6.  Bayesian Regularization (BR). 

 

Table 2.1 also shows that the Bayesian Regularization ANN produces the highest validation 

accuracy. GDM-ANN had a raw accuracy of 61.60 %, but when incorporating a k-fold validation 

metric the accuracy drops to 24.1% portraying a significant difference in accuracy. This outcome 

further proves that other metrics are necessary to effectively compare algorithms. 

 

In a different study, six supervised algorithms’ performances were compared on 

predicting the substrate type (substrate being the type of substance an organism lives on) from 

multibeam echo sounder data. The application techniques were SVMs, Classification Trees, 

ANNs, Naïve Bayes (NB), kNN, and Random Forest (RF). The metrics used for performance 
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evaluation were accuracy, balanced error rate (BER), and the Cohen’s Kappa coefficient. BER is 

the average of the proportion of misclassifications in each class. Kappa measures the percentage 

of data values in the main diagonal and adjust the amount of agreement due to chance. 

According to (Stevens & Diesing, 2014) Kappa provides a more robust measure of agreement 

than accuracy. Table 2.2 shows the performance of each algorithm on the different metrics. 

 
 

 

Table 2-2 Model Performance Comparison. (Stevens & Diesing, 2014). 

Model BER Accuracy Kappa 
    

NB2 0.37 0.80 0.50 
    

RF2 0.40 0.81 0.45 
    

RF1 0.41 0.80 0.45 
    

CT1 0.41 0.80 0.48 
    

RF3 0.43 0.78 0.36 
    

NB3 0.48 0.78 0.38 
    

CT3 0.43 0.69 0.21 
    

CT2 0.48 0.69 0.27 

NN1 0.49 0.80 0.45 
    

SVM1 0.53 0.78 0.39 
    

1-NN 0.54 0.77 0.33 
    

k-NN2 0.61 0.72 0.19 
    

NB1 0.64 0.75 0.34 
    

SVM2 0.67 0.78 0.27 
    

NN3 0.69 0.78 0.21 
    

k-NN3 0.69 0.78 0.22 
    

SVM3 0.70 0.77 0.20 
    

NN2 0.77 0.73 -0.07 
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As shown in the table 2-2, there are different versions of each algorithm. The number 

signifies the type of feature extraction was used in pre-processing; one denotes only primary 

features, two used the subset of features, and three used all features. Table 2-2 also shows RF2 

has the highest accuracy, but it does not have the lowest error rate. This means that RF2 has the 

ability to correctly classify true positives, but it also had a significantly high number of 

misclassifications at 40%. On the other hand, NB2 appears to be the best performing classifier. 

Though NB2 did not have the top accuracy, it was second best. It had promising results in the 

other metrics having the lowest error rate and the highest kappa value signifying that it is the best 

for that problem. 

 
These studies and more studies show that additional metrics are needed to perform a fair 

and unbiased comparison of supervised algorithms. In (Caruana & Niculescu-Mizil, 2006) study, 

the authors compare ten supervised learning algorithms on nine criteria of performance. Given 

this insight, for answering the previous general question presented we can conclude that there is 

not one algorithm that outperforms every evaluation metric. Fortunately, there are ways to 

measure an algorithm’s performance with respect to how well it performs across multiple 

metrics, taking into consideration the problem’s ranking importance of certain metrics. 

 

2.5 Machine Learning and Quadcopters 

 

Machine learning has played a pivotal role in flight navigation and control of UAVs such 

as using reinforcement learning for autonomous navigation, (Pham, La, Feil-Seifer, & Nguyen, 

2018) and providing a framework for applying a RL algorithm to enable a UAV to operate in 

unknown environments. Another study by (Liakos, Busat, Moshou, Pearson, & Bochtis, 2018), 

used machine learning and UAVs to survey and monitor different agriculture parts, i.e., weed 
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detection, livestock production, crop quality, and water management. These and many other 

applications use machine learning to increase the functionality of the UAV, whether that be 

better object detection, increased efficiency of power consumption, path planning and route 

optimization, and so on. This research shifts the machine learning focus of UAV application to 

testing and evaluating the UAV’s behavior, presenting a fundamental approach to standardizing 

how a UAV should behave in certain conditions. 
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Figure 3-1 UAV classification (Norouzi Ghazbi, Aghli, Alimohammadi, & Akbari, 2016). 

CHAPTER 3 
 

 

Unmanned Aerial Vehicles (UAVs) 

 

3.1 Introduction 

 

UAV innovation has become a very popular research area due to the improvement of 

different tools and applications involving their technology. In the previous chapters, I explained 

in-depth techniques used to build different levels of artificially intelligent machines. In the 

remaining chapters, I focus more on the applications of AI in UAVs. This includes modeling, 

simulation, hardware and software design, testing in simulation, and testing in a real-world 

environment. Specifically, I focus on using machine learning techniques to analyze and compare 

behaviors of UAVs in simulation and real-world environment. 

 

3.2 Structures/Types 

 

The types of UAV can be broken into categories distinguishable by their capabilities, 

model, and performance. Figure 3.1 shows the basic structures of UAVs. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fixed wings follow the same architecture as the standard commercial aircraft/airplane. Flapping 

wings mimics the motion of a bird or insect flapping to achieve flight. Rotary wings, most 

known for their ability to vertically take off and land, uses blades that revolve around a fixed 

mast for flight. These different types of wings coincide with how many rotors they have i.e. 

helicopter (1), hexacopter (6), and so on. 
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3.3 State of the Art 

 

UAVs are increasingly adapted as remote sensing platforms (Aasen, 2017). Surveying 

and monitoring systems have become increasingly powerful due to specialized sensors. 

Collectively, this enables the aircraft to be significantly smaller than manned systems and thus 

capable of greater maneuverability (Jordan, et al., 2017). These improvements in UAV 

technology allows flights to be piloted in difficult access areas. The utility of UAVs is 

expanding dramatically, which increases the need of functional evaluation for drone inspection. 

 

3.4 Mathematical Representation 

 

 There are many articles in the literature for mathematical and dynamic modeling of 

quadcopters. The primary focus of this thesis is on the state space model. To develop the 

dynamic mathematical model of a quadcopter, Newton-Euler and Euler-Lagrange equations are 

used and complex aerodynamic properties are considered. Being that quadcopter has only six 

degrees of freedom it is considered an under actuated robotic system. The mathematical model is 

linearized using these equations. The state space model adopted by the control system is 𝑋˙ = (𝑋, 

𝑈) , where 𝑋 is the state vector and 𝑈 is the control input vector. The state vector is chosen as 𝑋 

= [x  x˙ y  y˙ z  z˙ θ θ˙ φ φ˙ ψ ψ˙]. In the design of controller, the state variables are chosen as 𝑥1 

= 𝑥, 𝑥2 = �̇�, 𝑥3 = y, 𝑥4= y˙,  5 = z,  𝑥6 = �̇�, 𝑥7 = 𝜙, 𝑥8 = 𝜙˙,  𝑥9 = 𝜃, 𝑥10 = θ˙, 𝑥11 = 𝜓, and 𝑥12 

= �̇� (he & Zhao, 2014). 
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Figure 3-2 State space model of quadcopter (he & Zhao, 2014). 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

In the above figure, m is the mass of the quadcopter, g is the gravitational acceleration, Ix, Iy, 

and Iz are inertia along each axis, Ω is the relative angular velocity of the rotor, Jr is the 

propeller inertia and l are the axis length of the quadcopter. 



41 

 

CHAPTER 4 
 

 

Case Study, Results, and Discussion 

 

4.1 Problem Statement 

 

This thesis uses data driven supervised machine learning algorithms to predict and 

analyze the behaviors of a UAV given a predefined scenario. This scenario is carried out through 

simulation and real-world implementation in a controlled lab environment. The quadcopter 

generates data after the flight scenario is completed. Each proposed algorithm is applied to the 

data, creating a prediction model from the training portion of the data. The models produced are 

then evaluated and compared on the applicable performance metrics. 

 

4.2 Experimental Setup 

 

The experiment breaks into two parts simulation and real environment implementation, 

each of which follow the same scenario structure. That structure is a rectangular area-based 

structure in which the UAV searches through with the goal to observe the complete ground area 

below. The UAV begins from a home location, which has been predefined. Next, it vertically 

takes off, hovers shortly at a constant altitude, and then searches the area using a lawnmower 

pattern incorporating the waypoint navigation algorithm. Once it completes its search, it returns 

to the home location, hovers for a moment, and lands. 
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Figure 4-1 Scenario visual representation. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

In this scenario, there are five high-level predefined states based four state variables. 
 

 

1. Hold, h = 0, Vx = 0, Vy = 0, and Vz = 0. 
 
 

2. Take-off, h ≠ 0, Vx = 0, Vy = 0, and Vz > 0. 
 
 

3. Hover, h = constant & h ≠ 0, Vx = 0, Vy = 0, and Vz = 0. 
 
 

4. Search, h = constant & h ≠ 0, Vx ≠ 0, Vy ≠ 0, and Vz = 0. 
 
 

5. Land, h ≠ 0, Vx = 0, Vy = 0, and Vz < 0. 
 

 

Where, 
 

 

h = altitude, Vx = velocity in x direction, Vy = velocity in y direction, Vz = velocity in z 

direction. If we discretize the scenario, we observe that it is a combination of hold-takeoff-hover 
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Figure 4-2 State Transition Flow Chart. 

Figure 4-3 Drones used for experiment. 

search-hover-land-hold. Figure 4-2 illustrates the transition of the states traversed by the 

quadcopter throughout the scenario. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

For the simulation portion, the scenario was generated in a ROS Gazebo environment. In 

both environments the sensor data was logged and save in a comma-separated value (.csv) 

formatted file based on the five user defined states x velocity, y velocity, z velocity, and altitude. 

All twelve state positions were saved position x, position y, position z, roll angle φ, pitch angle θ, 

yaw angle ψ, linear velocity in X direction ˙ x, linear velocity in Y direction ˙ y, linear velocity 

in Z direction ˙ z, roll speed ˙ φ, pitch speed ˙ θ, and yaw speed ˙ ψ. Figure 4-3 shows the drones 

used for simulation 3DR SOLO (left) and real implementation the Parrot AR.Drone 2.0. 
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4.3 Preliminary Results 

 

The results are represented using three metrics: 
 

 

● Accuracy – the number of correctly predicted labels divided by the number of labels 

in that state. 

 
● Confusion Matrix – evaluation of the quality of the classifier outputs. The diagonal 

represents the correctly predicted labels regarding the true labels. The off diagonal 

represents the incorrectly predicted labels. 

 
● Classification Report – it is a summary report of the precision, recall, f1-score, and 

support with respect to the true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN). Also including how each class is weighted. 

 
o Precision - the ability of a classifier not to label an instance positive that is actually 

negative, TP / (TP + FP). 
 

o Recall - the ability of a classifier to find all positive instances, TP / (TP + FN). 
 

o F1-score - a weighted harmonic mean of precision and recall such that the best 

score is 1.0 and the worst is 0.0. 2 * (Recall * Precision) / (Recall + Precision). 

 
o Micro average – average with respect to the total true positives, false positives, 

and false negatives. 
 

o Macro average – unweighted mean per label. 
 

o Weighted average – support-weighted mean per label. 
 

 

For the following figures, the left half of the figures represents the algorithms performance in the 

simulated environment and the right half represents the performance in real world environment. 
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Figure 4-4 Decision Tree performance. 
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Figure 4-5 Naïve Bayes Performance. 
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Figure 4-6 k-Nearest Neighbors Performance. 
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Figure 4-7 Artificial Neural Network Performance. 
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Figure 4-8 Support Vector Machine Performance. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

4.4 System Representation and Modification 

 

In produced the aforementioned results, I attempted to see how far the algorithms could 

be tested with respect to adding white gaussian noise. The process for adding noise begins 

with separating the input data by the corresponding features, then finding the mean and 
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Figure 4-9 Adding noise to simulation test signal velocity in y directions. 

Figure 4-10 Adding noise to simulation train signal altitude. 

standard deviation of each input feature and randomly adding it to different instances in that 

specific feature. This process is done for 1, 2, and 3 standard deviations and is shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The above graphs represent only two implementation of noise addition to give a visual 

representation of how adding one to three standard deviations of noise impacts the signal. This 
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Figure 4-11 Decision Tree Performance 1-std. 

method was done sixteen times, breaking down into four attributes for both real-world and 

simulation done for testing and training datasets. 

 

4.5 Results 

 

The results are organized in the same structure as the preliminary results; the simulation 

on the left and real world on the right. Each algorithm will have figures showing the progression 

from one to three standard deviations. 
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Figure 4-12 Decision Tree Performance 2-std. 

Figure 4-13 Decision Tree Performance 3-std. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



53 

 

Figure 4-14 Naïve Bayes Performances 1-std. 

Figure 4-15 Naïve Bayes Performance 2-std. 
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Figure 4-16 Naïve Bayes Performance 3-std. 

Figure 4-17 k-Nearest Neighbors Performance 1-std. 
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Figure 4-18 k-Nearest Neighbors Performance 2-std. 

Figure 4-19 k-Nearest Neighbors Performance 3-std. 
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Figure 4-20 Artificial Neural Networks Performance 1-std. 

Figure 4-21 Artificial Neural Networks Performance 2-std. 
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Figure 4-22 Artificial Neural Networks Performance 3-std. 

Figure 4-23 Support Vector Machine Performance 1-std. 
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Figure 4-24 Support Vector Machine Performance 2-std. 

Figure 4-25 Support Vector Machine Performance 3-std. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

4.6 Discussion/Limitations 

 

This research is done on two levels of comparison. The first comparison being the 

algorithms with respect to how well they perform against themselves in simulation versus real 

world performance evaluation (for example; How well does the ANN perform in the real world 
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versus how ANN performs in simulation?) and the second being how well the algorithms 

perform against each other in different environments (i.e. how well an algorithm performs in a 

simulation environment based off F1-score). 

 

These preliminary results show that each individual algorithm performs better on the 

simulated data versus the real-world experiment. Which stems from the fact that simulation is 

ideal in the manner of operating perfectly as opposed to real world implementation, where 

different constraints can cause the scenario not to be executed flawlessly. These results also 

provide that the k-Nearest Neighbors outperforms all the algorithms in both simulation and real-

world environments. Further proving that even though it is simplistic in construct, it can perform 

as well or better than its counterparts. 

 

Many inferences can be made from the inclusion of noise, trivially the addition of noise 

significantly decreases the performance of each algorithm in both simulation and real-world 

implementation. ANN had the highest accuracy in simulation across all three stds of noise addition. 

However, SVM was the least affected in both experiments by the initial addition of noise. SVM also 

had the highest accuracy in real world implementation with 1 and 2-std of noise and kNN produce 

the highest accuracy in real world implementation with 3-std of noise. The kNN algorithm 

performance on the simulations experiment was outperformed across all three stds by the real-world 

implementation. Lastly, the performance level drop was consistently greater in the simulation 

experiment demonstrating that though both experiments are very sensitive to noise addition with 

respect standard deviation, the real-world implementation is less sensitive. 

 

The incorporation of noise provides additional insight to better improve algorithms, making 

them more robust. However, the level in which noise is added can be improved, seeing as though 1-

std was significantly harsh on the input signal. Re-evaluating the algorithms performance led to 
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introducing a second method of noise addition, signal to noise ratio (SNR). The SNR is defined 

as signal strength divided by noise strength and is measured in decibels (db). A noiseless signal 

has a decibel value closer infinity. In this study I calculated the SNR for 1std of the signals in the 

system and all of which were less than 4db. Hence, my signals were completely distorted causing 

the algorithms to perform poorly. 

 
 
 

Table 4-1 Algorithm Accuracy with addition of SNR. 

      Algorithm Accuracy   
                

Name  Noiseless  1 STD Noise  SNR 90db  SNR 70db  SNR 50db 
                

Simulation DT  95.60%   29.60%  88.49%  85.12%  79.04% 

Experimental DT  90.87%   24.66%  75.85%   68.54%  56.37% 
                

Simulation NB  70.92%   31.76%  70.78%   70.74%  70.87% 

Experimental NB  63.75%   14.82%  63.31%   63.63%  54.68% 

Simulation kNN  95.88%  31.93%  87.88%   85.50%  80.19% 

Experimental kNN  91.16%   33.46%  73.97%   71.36%  61.79% 
                

Simulation ANN  84.53%   34.49%  83.99%   83.91%  82.91% 

Experimental  70.50%   27.34%  70.06%   69.27%  67.91% 

ANN                

Simulation SVM  79.70%   31.54%  79.68%   79.65%  79.51% 

Experimental  65.34%   37.00%  65.40%   65.30%  65.28  

SVM                
 
 

 

Table 4.1 illustrates the algorithms performance with the addition of noise by means of SNR. The 

bold values signify the algorithms that had the highest accuracy in the simulation environment for 

each test and the underline is the highest accuracy in the real-world environment test. The kNN 

algorithm performance accuracy remains the highest in the simulation environment for the noise 

addition of 90db and 70db. However, it was the most impacted by the addition of noise, followed by 

DT. Although SVM was second to last in accuracy, was least impacted by noise. ANN 

performed decent in the accuracy metric as well as demonstrated high robustness. The use of 

SNR in this problem domain better validates how well the algorithms perform at different noise 
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Figure 4-26 Highest Accuracy Performing Algorithm (Noiseless). 

levels rather than using standard deviation. The following figures, Figure 4-26 to Figure 4-29, 

depict a graphical representation of the algorithms that achieved the highest accuracy with 

respect to each level of noise, plotting the predicted values and true values of each state. 

Following the figures, Table 4-2 illustrates the percentage distribution of how accurate each 

method classified each state with respect to the noise level. 
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Figure 4-28 Highest Accuracy Performing Algorithm (70db). 

Figure 4-27 Highest Accuracy Performing Algorithm (90db). 
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Figure 4-29 Highest Accuracy Performing Algorithm (50db). 
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Table 4-2 Percentage distribution table representing the accuracy of each classification method 

regarding the noise level. 

Algorithms HOLD TAKE OFF HOVER SEARCH LAND 

Noise           

Measurement SIM EXP SIM EXP SIM EXP SIM EXP SIM EXP 

           

Decision Tree           

Noiseless 100% 95% 98% 96% 93% 87% 92% 75% 98% 72% 

SNR 90db 100% 93% 93% 89% 83% 77% 84% 58% 93% 67% 

SNR 70db 97% 94% 87% 84% 78% 75% 78% 52% 85% 59% 

SNR 50db 92% 40% 66% 72% 77% 72% 74% 40% 62% 19% 

1 STD 40% 0% 14% 22% 9% 12% 49% 41% 16% 15% 

Naïve Bayes           

Noiseless 96% 93% 27% 81% 69% 77% 44% 27% 56% 17% 

SNR 90db 98% 93% 32% 81% 64% 78% 46% 28% 69% 17% 

SNR 70db 98% 93% 32% 81% 64% 77% 46% 27% 69% 17% 

SNR 50db 98% 51% 32% 62% 64% 77% 46% 27% 69% 15% 

1 STD 16% 0% 18% 17% 29% 3% 45% 32% 21% 10% 

kNN           

Noiseless 99% 93% 98% 96% 87% 85% 88% 74% 93% 68% 

SNR 90db 99% 95% 95% 84% 84% 82% 86% 64% 90% 26% 

SNR 70db 98% 95% 86% 84% 79% 81% 80% 61% 74% 32% 

SNR 50db 95% 64% 74% 78% 79% 73% 79% 51% 75% 11% 

1 STD 32% 47% 18% 25% 12% 32% 51% 41% 18% 15% 

ANN           

Noiseless 99% 95% 87% 85% 77% 82% 70% 55% 79% 16% 

SNR 90db 99% 96% 86% 85% 78% 81% 75% 53% 79% 26% 

SNR 70db 99% 94% 86% 85% 76% 79% 74% 54% 79% 18% 

SNR 50db 99% 91% 78% 81% 75% 77% 75% 53% 79% 17% 

1 STD 49% 3% 16% 24% 8% 13% 50% 42% 16% 13% 

SVM           

Noiseless 99% 91% 87% 78% 74% 79% 57% 24% 81% 9% 

SNR 90db 99% 91% 87% 79% 74% 79% 57% 26% 81% 9% 

SNR 70db 99% 91% 87% 78% 74% 79% 57% 26% 81% 9% 

SNR 50db 99% 91% 87% 79% 74% 79% 57% 26% 81% 9% 

1 STD 35% 63% 16% 23% 14% 50% 50% 26% 16% 14% 
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CHAPTER 5 
 

 

Conclusion 

 

The main purpose of this thesis was to develop data-driven testing and evaluation of 

UAVs using supervised machine learning algorithms to address the increasing safety issues of 

UAVs. This work highlights the importance of these techniques in generating a fundamental 

approach for inspecting UAVs that may be used by certification companies and organizations 

such as the FAA to increase safety operations and regulations. 

 

Chapter 1 explains the history behind robotics, first touching on the creation of 

“Unimate” and progressing to the development of very complex machines we have today. 

Chapter 1 points out that even though society has achieved great milestones in developing flying 

robotics like UAVs, it should apply more levels of safety and tests to ensure that the UAVs 

operating have met the necessary requirements to be operated. 

 

Chapter 2 reviews artificial intelligence techniques and their importance in several 

problem domains. It briefly discusses various types of machine learning algorithms features and 

their applications, while also foreshadowing the uses of these techniques for data-driven UAV 

testing and evaluation. 

 

In Chapter 3 we presented the mathematical modeling and state space representation of a 

general quadrotor. It centralizes the explanation of different types of UAVs and how they can 

fundamentally be represented in the simulation environment. 

Chapter 4 presents our case study for machine learning algorithms modeling for overall 

testing and evaluation of UAVs' behavior. It provides scenarios for the simulation and real-world 

environment. It analyzes and compares five widely used supervised machine learning algorithms 
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for predicting the UAVs' behavior based on two levels of comparison, where the first comparison 

is based on their performance in simulation versus real world experiment and the second 

comparison is each algorithm’s performance against one another, regarding the different 

environments. These algorithms were unbiasedly compared across a different selection of 

metrics, considering accuracy as the top metric, due to classification being the problem domain. 

 

This work presents different classification methods that were developed for test and 

evaluation of unmanned quadcopters. In the post experiments, we introduce the noise to the 

system to test the robustness of each algorithm. Adding noise is a meaningful step to take to 

evaluate the experiment’s robustness, since the nature of the real-world use cases are not in 

perfect condition. However, increasing from one standard deviation to three by using a step value 

of one has resulted in unstable test outcomes. Therefore, using SNR was a more feasible method 

while adding noise to the system. The proposed extension of this work is incorporating UGV-

UAV collaboration in the scenario for multiple behavior predictions and analysis. 
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Appendix 
 

 

The following code was executed for experiment and simulation. However, only experiment 
code was provided. 
 
 

 

Experiment Decision Tree 

import pandas as pd  
from sklearn.tree import DecisionTreeClassifier 
from sklearn.model_selection import train_test_split 
from sklearn import metrics 

 

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

agg_acc = 0 

for x in range(10):  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3)  
dt_exp_mod = DecisionTreeClassifier(max_depth = None, criterion = 

'gini').fit(X_train, y_train)  
y_pred = dt_exp_mod.predict(X_test) 

acc = metrics.accuracy_score(y_test, y_pred) 

conf_mat = metrics.confusion_matrix(y_test,y_pred) 

agg_acc += acc 

mathews_coef = metrics.matthews_corrcoef(y_test,y_pred) 

report = metrics.classification_report(y_test,y_pred) 

print('The accuracy is',agg_acc/10) 

print(conf_mat) 

print('The mathew coefficient is',mathews_coef) 

print(report) 

 

Experiment k_nearest_Neihgbors 

import pandas as pd 

import matplotlib.pyplot as plt  
from sklearn.neighbors import KNeighborsClassifier 
from sklearn.model_selection import train_test_split 
from sklearn import metrics 

 

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

myList = list(range(1,50)) 

neighbors = list(filter(lambda x: x % 2 != 0, myList)) 

cv_scores = [] 

for k in neighbors: 
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knn = KNeighborsClassifier(n_neighbors=k) 

X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 
test_size=0.3)  

knn.fit(X_train, y_train) 

y_pred = knn.predict(X_test) 

scores = metrics.accuracy_score(y_test, y_pred) 

cv_scores.append(scores) 

MSE = [1 - x for x in cv_scores] 

optimal_k = neighbors[MSE.index(min(MSE))] 

plt.plot(neighbors, MSE) 

plt.xlabel('Number of Neighbors K') 

plt.ylabel('Misclassification Error') 

plt.show()  
agg_acc = 0 

for x in range(10): 

optk = KNeighborsClassifier(n_neighbors=optimal_k, metric = 'manhattan')  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3)  
knn_exp_mod = optk.fit(X_train, y_train) 

ykopt_pred = knn_exp_mod.predict(X_test) 

acc = metrics.accuracy_score(y_test, ykopt_pred)  
conf_mat = metrics.confusion_matrix(y_test,ykopt_pred) 

report = metrics.classification_report(y_test,ykopt_pred) 

agg_acc += acc 

 

Experiment Naïve Bayes 

import pandas as pd 

from sklearn.preprocessing import StandardScaler 

from sklearn.naive_bayes import GaussianNB 

from sklearn.model_selection import train_test_split 

from sklearn import metrics 

 

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

agg_acc = 0 

for x in range(10):  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3)  
scaler = StandardScaler() 

scaler.fit(X_train) 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 

gnb_exp_mod = GaussianNB(priors=None).fit(X_train, y_train) 

y_pred = gnb_exp_mod.predict(X_test) 

acc = metrics.accuracy_score(y_test, y_pred) 

conf_mat = metrics.confusion_matrix(y_test,y_pred) 
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report = metrics.classification_report(y_test,y_pred) 

 

agg_acc += acc 

Experiment Artificial Neural Network 

import pandas as pd  
from sklearn.model_selection import train_test_split 

from sklearn.neural_network import MLPClassifier 
from sklearn.preprocessing import StandardScaler 

from sklearn import metrics 

 

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis/files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

 

agg_acc = 0 

 

for x in range(10):  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3)  
scaler = StandardScaler() 

scaler.fit(X_train) 

 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 

 

mlp_exp_mod = MLPClassifier(activation = 'tanh', alpha = 0.0001, 

learning_rate = 'constant', solver='adam', 

hidden_layer_sizes = (50,100,50)) 

mlp_exp_mod.fit(X_train,y_train) 

y_pred = mlp_exp_mod.predict(X_test) 

acc = metrics.accuracy_score(y_test, y_pred) 

conf_mat = metrics.confusion_matrix(y_test,y_pred) 

agg_acc += acc 

 

Experiment Support Vector Machine 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn import svm 

from sklearn import metrics 

from sklearn.externals import joblib 

 

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

clf = svm.SVC(C = 1, gamma = 1, kernel = 'rbf') 

agg_acc = 0 

for x in range(10):  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3)  
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svm_exp_mod = clf.fit(X_train, y_train) 

y_pred = svm_exp_mod.predict(X_test) 

acc = metrics.accuracy_score(y_test, y_pred)  
conf_mat = metrics.confusion_matrix(y_test,y_pred) 

report = metrics.classification_report(y_test,y_pred) 

agg_acc += acc 

 

Clean Train Noisy Test knn, dt, nb 

import pandas as pd 

import numpy as np 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.naive_bayes import GaussianNB 

from sklearn.model_selection import train_test_split  
from sklearn.neighbors import KNeighborsClassifier 

from sklearn.preprocessing import StandardScaler 

from sklearn import metrics 
 

 

def add_1_std_noise(x): 

df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 

noise_zv = np.random.normal(0, std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std() 

noise_alt = np.random.normal(0, std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_1std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_1std_data 

 

def add_2_std_noise(x): 

df=x 

std_xv = df.xv.std()  
noise_xv = np.random.normal(0, 2*std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, 2*std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 

noise_zv = np.random.normal(0, 2*std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 
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std_alt = df.alt.std() 

 

noise_alt = np.random.normal(0, 2*std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_2std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_2std_data 

 

def add_3_std_noise(x): 

df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, 3*std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, 3*std_yv, df.yv.shape)  
noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 

noise_zv = np.random.normal(0, 3*std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std() 

noise_alt = np.random.normal(0, 3*std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_3std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_3std_data 

 

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

 

dt_agg_acc = 0 

dt_agg_acc_1std = 0 

dt_agg_acc_2std = 0 

dt_agg_acc_3std = 0 

 

nb_agg_acc = 0 

nb_agg_acc_1std = 0 

nb_agg_acc_2std = 0 

nb_agg_acc_3std = 0 

 

knn_agg_acc = 0 

knn_agg_acc_1std = 0  
knn_agg_acc_2std = 0 

knn_agg_acc_3std = 0 
 
 
 
 

for x in range(10):  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3) 
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scaler = StandardScaler() 

scaler.fit(X_train) 

 

X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 

 

############################################################################## 
##########################################  

dt_exp_mod = DecisionTreeClassifier(max_depth = None, criterion = 
'gini').fit(X_train, y_train)  

dt_y_pred = dt_exp_mod.predict(X_test)  
dt_acc = metrics.accuracy_score(y_test, dt_y_pred) 

dt_conf_mat = metrics.confusion_matrix(y_test,dt_y_pred) 

dt_agg_acc += dt_acc 

dt_report = metrics.classification_report(y_test,dt_y_pred) 
 

 

X_test_1std = add_1_std_noise(X_test) 

dt_y_pred_1std = dt_exp_mod.predict(X_test_1std) 

dt_acc_1std = metrics.accuracy_score(y_test, dt_y_pred_1std) 

dt_conf_mat_1std = metrics.confusion_matrix(y_test,dt_y_pred_1std) 

dt_agg_acc_1std += dt_acc_1std 

dt_report_1std = metrics.classification_report(y_test,dt_y_pred_1std) 

 

X_test_2std = add_2_std_noise(X_test) 

dt_y_pred_2std = dt_exp_mod.predict(X_test_2std) 

dt_acc_2std = metrics.accuracy_score(y_test, dt_y_pred_2std) 

dt_conf_mat_2std = metrics.confusion_matrix(y_test,dt_y_pred_2std) 

dt_agg_acc_2std += dt_acc_2std 

dt_report_2std = metrics.classification_report(y_test,dt_y_pred_2std) 

 

X_test_3std = add_3_std_noise(X_test) 

dt_y_pred_3std = dt_exp_mod.predict(X_test_3std) 

dt_acc_3std = metrics.accuracy_score(y_test, dt_y_pred_3std) 

dt_conf_mat_3std = metrics.confusion_matrix(y_test,dt_y_pred_3std) 

dt_agg_acc_3std += dt_acc_3std  
dt_report_3std = metrics.classification_report(y_test,dt_y_pred_3std) 

############################################################################## 
############################################### 

 

nb_exp_mod = GaussianNB(priors=None).fit(X_train, y_train) 

nb_y_pred = nb_exp_mod.predict(X_test) 

nb_acc = metrics.accuracy_score(y_test, nb_y_pred) 

nb_conf_mat = metrics.confusion_matrix(y_test,nb_y_pred) 

nb_agg_acc += nb_acc 
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nb_report = metrics.classification_report(y_test,nb_y_pred) 
 

 

X_test_1std = add_1_std_noise(X_test) 

nb_y_pred_1std = nb_exp_mod.predict(X_test_1std) 

nb_acc_1std = metrics.accuracy_score(y_test, nb_y_pred_1std) 

nb_conf_mat_1std = metrics.confusion_matrix(y_test,nb_y_pred_1std) 

nb_agg_acc_1std += nb_acc_1std 

nb_report_1std = metrics.classification_report(y_test,nb_y_pred_1std) 

 

X_test_2std = add_2_std_noise(X_test) 

nb_y_pred_2std = nb_exp_mod.predict(X_test_2std)  
nb_acc_2std = metrics.accuracy_score(y_test, nb_y_pred_2std) 

nb_conf_mat_2std = metrics.confusion_matrix(y_test,nb_y_pred_2std) 

nb_agg_acc_2std += nb_acc_2std 

nb_report_2std = metrics.classification_report(y_test,nb_y_pred_2std) 

 

X_test_3std = add_3_std_noise(X_test) 

nb_y_pred_3std = nb_exp_mod.predict(X_test_3std) 

nb_acc_3std = metrics.accuracy_score(y_test, nb_y_pred_3std) 

nb_conf_mat_3std = metrics.confusion_matrix(y_test,nb_y_pred_3std) 

nb_agg_acc_3std += nb_acc_3std 

nb_report_3std = metrics.classification_report(y_test,nb_y_pred_3std) 

############################################################################## 

################################################## 

myList = list(range(1,50)) 

neighbors = list(filter(lambda x: x % 2 != 0, myList)) 

cv_scores = [] 

for k in neighbors: 

knn = KNeighborsClassifier(n_neighbors=k) 

knn.fit(X_train, y_train) 

optk_y_pred = knn.predict(X_test) 

scores = metrics.accuracy_score(y_test, optk_y_pred) 

cv_scores.append(scores) 

MSE = [1 - x for x in cv_scores] 

optimal_k = neighbors[MSE.index(min(MSE))] 

 

optk = KNeighborsClassifier(n_neighbors=optimal_k, metric = 'manhattan') 

knn_exp_mod = optk.fit(X_train, y_train) 

knn_y_pred = knn_exp_mod.predict(X_test) 

knn_acc = metrics.accuracy_score(y_test, knn_y_pred) 

knn_conf_mat = metrics.confusion_matrix(y_test,knn_y_pred) 

knn_agg_acc += knn_acc 

knn_report = metrics.classification_report(y_test,knn_y_pred) 



78 

 

X_test_1std = add_1_std_noise(X_test) 

knn_y_pred_1std = knn_exp_mod.predict(X_test_1std) 

knn_acc_1std = metrics.accuracy_score(y_test, knn_y_pred_1std) 

knn_conf_mat_1std = metrics.confusion_matrix(y_test,knn_y_pred_1std) 

knn_agg_acc_1std += knn_acc_1std 

knn_report_1std = metrics.classification_report(y_test,knn_y_pred_1std) 

 

X_test_2std = add_2_std_noise(X_test) 

knn_y_pred_2std = knn_exp_mod.predict(X_test_2std) 

knn_acc_2std = metrics.accuracy_score(y_test, knn_y_pred_2std) 

knn_conf_mat_2std = metrics.confusion_matrix(y_test,knn_y_pred_2std) 

knn_agg_acc_2std += knn_acc_2std  
knn_report_2std = metrics.classification_report(y_test,knn_y_pred_2std) 

 

X_test_3std = add_3_std_noise(X_test) 

knn_y_pred_3std = knn_exp_mod.predict(X_test_3std) 

knn_acc_3std = metrics.accuracy_score(y_test, knn_y_pred_3std) 

knn_conf_mat_3std = metrics.confusion_matrix(y_test,knn_y_pred_3std) 

knn_agg_acc_3std += knn_acc_3std 

knn_report_3std = metrics.classification_report(y_test,knn_y_pred_3std) 

 

Clean Train Noisy Test SVM 

import pandas as pd 

import numpy as np 

from sklearn.model_selection import train_test_split 

from sklearn import svm 

from sklearn import metrics 

 

def add_1_std_noise(x): 

df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std()  
noise_zv = np.random.normal(0, std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std() 

noise_alt = np.random.normal(0, std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_1std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, sort=False) 
return sim_test_1std_data 

 

def add_2_std_noise(x): 
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df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, 2*std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, 2*std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 

noise_zv = np.random.normal(0, 2*std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std() 

noise_alt = np.random.normal(0, 2*std_alt, df.alt.shape)  
noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_2std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_2std_data 

 

def add_3_std_noise(x): 

df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, 3*std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, 3*std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 

noise_zv = np.random.normal(0, 3*std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std() 

noise_alt = np.random.normal(0, 3*std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_3std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_3std_data 

 

svm_agg_acc = 0 

svm_agg_acc_1std = 0 

svm_agg_acc_2std = 0 

svm_agg_acc_3std = 0 

 

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

 

for x in range(10):  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3)  
X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 
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clf = svm.SVC(C = 10, gamma = 1, kernel = 'rbf') 

svm_exp_mod = clf.fit(X_train, y_train) 

svm_y_pred = svm_exp_mod.predict(X_test) 

svm_acc = metrics.accuracy_score(y_test, svm_y_pred) 

svm_conf_mat = metrics.confusion_matrix(y_test,svm_y_pred) 

svm_agg_acc += svm_acc 

svm_report = metrics.classification_report(y_test,svm_y_pred) 

 

X_test_1std = add_1_std_noise(X_test) 

svm_y_pred_1std = svm_exp_mod.predict(X_test_1std) 

svm_acc_1std = metrics.accuracy_score(y_test, svm_y_pred_1std)  
svm_conf_mat_1std = metrics.confusion_matrix(y_test,svm_y_pred_1std) 

svm_agg_acc_1std += svm_acc_1std 

svm_report_1std = metrics.classification_report(y_test,svm_y_pred_1std) 

 

X_test_2std = add_2_std_noise(X_test) 

svm_y_pred_2std = svm_exp_mod.predict(X_test_2std) 

svm_acc_2std = metrics.accuracy_score(y_test, svm_y_pred_2std) 

svm_conf_mat_2std = metrics.confusion_matrix(y_test,svm_y_pred_2std) 

svm_agg_acc_2std += svm_acc_2std 

svm_report_2std = metrics.classification_report(y_test,svm_y_pred_2std) 

 

X_test_3std = add_3_std_noise(X_test) 

svm_y_pred_3std = svm_exp_mod.predict(X_test_3std) 

svm_acc_3std = metrics.accuracy_score(y_test, svm_y_pred_3std) 

svm_conf_mat_3std = metrics.confusion_matrix(y_test,svm_y_pred_3std) 

svm_agg_acc_3std += svm_acc_3std 

svm_report_3std = metrics.classification_report(y_test,svm_y_pred_3std) 

 

Clean Train Noisy Test ANN 

import pandas as pd 

import numpy as np  
from sklearn.model_selection import train_test_split 
from sklearn.neural_network import MLPClassifier 
from sklearn import metrics 

 

def add_1_std_noise(x): 

df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 
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noise_zv = np.random.normal(0, std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std() 

noise_alt = np.random.normal(0, std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_1std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_1std_data 

 

def add_2_std_noise(x): 

df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, 2*std_xv, df.xv.shape)  
noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, 2*std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 

noise_zv = np.random.normal(0, 2*std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std() 

noise_alt = np.random.normal(0, 2*std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_2std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_2std_data 

 

def add_3_std_noise(x): 

df=x 

std_xv = df.xv.std() 

noise_xv = np.random.normal(0, 3*std_xv, df.xv.shape) 

noisy_xv = pd.DataFrame(df.xv + noise_xv) 

std_yv = df.yv.std() 

noise_yv = np.random.normal(0, 3*std_yv, df.yv.shape) 

noisy_yv = pd.DataFrame(df.yv + noise_yv) 

std_zv = df.zv.std() 

noise_zv = np.random.normal(0, 3*std_zv, df.zv.shape) 

noisy_zv = pd.DataFrame(df.zv + noise_zv) 

std_alt = df.alt.std()  
noise_alt = np.random.normal(0, 3*std_alt, df.alt.shape) 

noisy_alt = pd.DataFrame(df.alt + noise_alt)  
sim_test_3std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, 
sort=False) return sim_test_3std_data 

 

ann_agg_acc = 0 

ann_agg_acc_1std = 0 

ann_agg_acc_2std = 0 

ann_agg_acc_3std = 0 
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df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv') 

df.columns = ['xv','yv','zv','alt','label'] 

 

for x in range(10):  
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt']], df['label'], 

test_size=0.3)  
X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 

 

ann_exp_mod = MLPClassifier(activation = 'tanh', alpha = 0.0001, 

learning_rate = 'constant', solver='adam',  
hidden_layer_sizes = (50,100,50)) 

ann_exp_mod.fit(X_train,y_train) 

ann_y_pred = ann_exp_mod.predict(X_test) 

ann_acc = metrics.accuracy_score(y_test, ann_y_pred) 

ann_conf_mat = metrics.confusion_matrix(y_test,ann_y_pred) 

ann_agg_acc += ann_acc 

ann_report = metrics.classification_report(y_test,ann_y_pred) 
 

 

X_test_1std = add_1_std_noise(X_test) 

ann_y_pred_1std = ann_exp_mod.predict(X_test_1std) 

ann_acc_1std = metrics.accuracy_score(y_test, ann_y_pred_1std) 

ann_conf_mat_1std = metrics.confusion_matrix(y_test,ann_y_pred_1std) 

ann_agg_acc_1std += ann_acc_1std 

ann_report_1std = metrics.classification_report(y_test,ann_y_pred_1std) 

 

X_test_2std = add_2_std_noise(X_test) 

ann_y_pred_2std = ann_exp_mod.predict(X_test_2std) 

ann_acc_2std = metrics.accuracy_score(y_test, ann_y_pred_2std) 

ann_conf_mat_2std = metrics.confusion_matrix(y_test,ann_y_pred_2std) 

ann_agg_acc_2std += ann_acc_2std 

ann_report_2std = metrics.classification_report(y_test,ann_y_pred_2std) 

 

X_test_3std = add_3_std_noise(X_test) 

ann_y_pred_3std = ann_exp_mod.predict(X_test_3std)  
ann_acc_3std = metrics.accuracy_score(y_test, ann_y_pred_3std) 

ann_conf_mat_3std = metrics.confusion_matrix(y_test,ann_y_pred_3std) 

ann_agg_acc_3std += ann_acc_3std 

ann_report_3std = metrics.classification_report(y_test,ann_y_pred_3std) 
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