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ABSTRACT

An American scientific writer/critic of the mid-20th century, Joseph Wood Krutch,
stated, “Technology made large populations possible: large populations now make technology
indispensable.” Unmanned aerial vehicles (UAVs) have become a vital part of society,
evolving from solely military use to commercial and even personal day-to-day use. UAV
application has grown for mobility on demand, increasing the number of UAVs in the sky.
Consequently, more UAVs increases the possibility of aerial collisions, challenging the safety of
passengers flying and bystanders on the ground. Understanding the behavior of UAVs and
unmanned aerial systems (UAS) in general, therefore, will decrease the possibility of aerial
collisions. This thesis focuses on perception of UAVs; comparing how well machine-learning
(ML) algorithms can analyze and predict their current states through supervised learning
approaches. In this thesis, a data-driven software tool was developed to create a fundamental
approach for UAV performance inspection. The developed algorithm was used for UAV
behavioral analysis and the results provided better accuracy for predicting UAVs current state. This
procedure includes using a multi-class classification for a single testing scenario, running the
simulation environment with one Ar.Drones quadcopter for data gathering, hardware
implementation for real-world implementation, and using Robot Operating System (ROS) as a
middleware. All software development and implementation were conducted in Python
programming language due to its high compatibility and robustness within a ROS development
environment. The scenario stores the velocity readings on X, y, z directions, the altitude, and the
corresponding state labels in matrix form. The procedure breaks the samples into training and
testing for application of proposed supervised learning algorithms to predict output states of the
system. Furthermore, these predictions are evaluated and analyzed, where results were compared

within different ML approaches.



CHAPTER 1

Introduction

1.1 Robots

A robot, as Oxford’s English Dictionary defines it, is a machine — especially one
programmable by a computer — capable of carrying out a complex series of actions
automatically. The word comes from the Czech robota, a word literally meaning forced labor,
but which is also used figuratively to mean drudgery, hard work (Wilton, 2013). A term coined
by Czech playwright, novelist and journalist named Karel Capek, who introduced it in his 1920
hit play, R.U.R., or Rossum’s Universal Robots. (Science Friday, n.d.). There were many ideas
and influence of robots such as Leonardo da Vinci sketched plans for a human look-alike robot
that dates back as early as 1495. During the era between the 17 and 1900s, there were numerous

life size automatons created. The nature of robots has evolved tremendously since then.

Robots started as simple task machines. Jacques de Vaucanson, a French inventor,
developed three automata. (Cutting Tool Engineering, 2019). The first two were used for musical
application, one specifically played flute and the other was capable of playing tambourine, drum,
and flute. His last and most notable work was a duck capable of mimicking the life of an actual
duck, including eating, wing flapping, and quacking. Another impactful advancement was
George Devol’s invention of the industrial manipulator Unimate which specific functions were
transporting die-castings and welding them into automobiles (Cutting Tool Engineering, 2019).
This implementation is considered one of the most important milestones in the history of robots,
creating a process of taking and using industrial robots to replace unskilled workers. These
examples presented along with other advancements during this era laid the foundations of

Robotics and sparked heavy interest in the innovation of robots.



In general, robots are categorized by several classes, some by their application domains
and others by their purposes such as locomotion and kinematics. The international federation of
robotics (IFR), however, has two main classes, service and industrial robots (Robotics, 2016).

Industrial robots are automatically controlled, reprogrammable, multipurpose
manipulator programmable in three or more axes, which can be either fixed in place or mobile
for use in industrial automation applications (Industrial robots, 2016). These robots are classified

by their mechanical structure and consist of:

e Linear robots (including Cartesian and gantry robots) — axes are corresponding to a
Cartesian coordinate system and arm has three prismatic joints.

e SCARA robots — two parallel rotary joints to provide compliance in a plane.

e Atrticulated robots — arm has at least three rotary joints.

e Parallel robots (delta) — arms have rotary or concurrent prismatic joints.

e Cylindrical robots — axes form a cylindrical coordinate system.

e Not classified.

Figure 1.1 illustrates the configuration of a few of the above mechanical structures.



Principle Kinematic Structure Photo

Cartesian Robot

Figure 1-1 Classification of industrial robots by mechanical structure (Industrial robots,2016).



A service robot is a robot that performs useful tasks for humans or equipment excluding
industrial automation application (Service Robots, 2016). This class breaks further into two
subclasses based on the type of service it is performing.

e Personal service robots — applied for non-commercial task, usually by non-

professional person. Represented in Table 1.1

e Professional service robots — applied for commercial task, operated by professionally

trained personnel. Represented in Table 1.2.

Table 1-1 Classification of personal service robots by application areas and types of robots
(Service Robots, 2016).

Section | Types of robots: Service robots for personal/domestic use
1-6 Robots for domestic tasks
Robot companions/assistants/humanoids
Vacuuming, floor cleaning
Lawn-mowing
Pool cleaning
Window cleaning
Others
7-10 Entertainment robots
Toy/hobby robots
Multimedia/remote presence
Education and research
Others
11-13 Elderly and handicap assistance
1 Robotized wheelchairs
12 Personal aids and assistive devices
13 Other assistance functions
14 Personal transportation (AGV for persons)
15 Home security & surveillance
16 Other Personal / domestic robots
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Table 1-2 Classification of professional service robots by application areas and types of robots
(Service Robots, 2016).

Section Il Types of robots: Service robots for professional use
17-23 Field robotics
17 Agriculture
18 Milking robots
19 Other robots for livestock farming
20 Forestry and silviculture
21 Mining robots
22 Space robots
23 Other field robotics
24-28 Professional cleaning
24 Floor cieaning
25 Window and wall cleaning (incl. wall climbing robots)
26 Tank, tube and pipe cleaning
27 Hull cleaning (aircraft vehicles etc.)
28 Other cleaning tasks
29-31 Inspection and maintenance systems
29 Facilities, plants
30 Tank, tubes, pipes and sewers
31 Other inspection and maintenance systems
32-35 Construction and demolition
32 Nuciear demolition & dismantling
33 Building construction
34 Robots for heavy/civil construction
35 Other construction and demolition systems
36-39 Logistic systems
36 Automated guided (AGV) vehicles manufacturing environments
37 AGVs non-manufacturing environments (indoor)
38 Cargo handling, outdoor logistics
39 Other logistic systems
40-43 Medical robotics
40 Diagnostic systems
41 Robot assisted surgery or therapy
42 Rehabilitation systems
43 Other medical robots
44-46 Rescue & security applications
<L Fire and disaster fighting robots
45 Surveillance / security robots
46 Other rescue and security robots
47-50 Defense applications
47 Demining robots
48 Unmanned aerial vehicles
49 Unmanned ground based vehicles
50 Unmanned underwater vehicles
51 Other defense applications
52 Underwater systems (civil / general use)
53 Powered Human Exoskeletons
54 Unmanned aerial vehicies (general use)
55 Mobile Platforms in general use
56-60 Underwater systems (civil / general use)
56 Hotel & restaurant robots
57 Mobile guidance, information robots
58 Robots in marketing
59 Robot joy rides
60 Others (i.e. library robots)
61 Other professional service robots not specified above




These categories provided by the IFR can be broken into several other sub-categories. However,

the focus of this work is Unmanned Aerial Vehicles (UAVs), mainly quadcopters.

1.1.1 Quadcopters

UAVs are a class of aerial vehicles that can take flight with the absent of an on-board
human operator. Quadcopters classify as a type of UAV, they are agile vehicles that maneuver
based on the rotational speed of four rotors. They were among the first vertical take-off and
landing vehicles (VTOLSs) (Quadcopter Arena, 2018). Being that helicopters use tail rotors, to
counter the overall torque of the main rotor causing inefficiencies and limitations with flight
(Quadcopter Arena, 2018), Quadcopters were designed in order to combat the problems

helicopters faced when making vertical flights.

1.1.1.1 Quadcopter Societal Impact

The limitless potential applications of quadcopters have been reshaping many industries.
The development of UAVs is primarily rooted in military research (Rao, Gopi, & Maione, 2016).
Evolving from simply weaponized missions in hostile environments to applications of, but not
limited to, data collection and surveying, surveillance, transportation, entertainment, emergency
response, etc. While most intentions of innovating drones are designed for positive use, some of
society feels reluctant to the push for drone practice. According to (Rao, Gopi, & Maione, 2016),
the way UAV technology is currently used has an impact on society’s conception of safety and
security, privacy and ownership, individual and commercial liability, and the effectiveness and

process of governmental regulation.



1.1.1.2 Quadcopter Intelligence

The main reason behind the numerous innovations on quadcopter technology and the new
application domains to use them was the advancement of artificial intelligence. As known, these
unmanned air systems work in a complex environment and these environments mostly apply to
industrial domains, engineering problems, as well as the open source community, which generate
vast scenarios, harsh environments, and incorporate different sensors, to evaluate how well the
machines can adapt and perform. Due to the many sensors and cameras used in different
scenarios, drones are creating large amounts of data, sometimes more than humans can handle.
To date, almost every company that deals with data processing, analytics or ‘autonomous’ flight

control and claims the use of artificial intelligence, machine or deep learning (Schroth, 2018).

1.2 Motivation

The Federal Aviation Administration (FAA) estimates the number of drones in the U.S.
to reach seven million by 2020 (Hedlund, 2018). Although drones have had a significant positive
impact on society, this increase in drone usage has unfortunately increased the risk of drone
collision related events. There have been numerous reports of drone crashes and “close calls”

within the past few years:

e August 2013 - drone crashed into grandstand during Virginia’s Great Bull Run

e December 2014 - drone crashed into customer at New York restaurant and in the
same month drone nearly hits Airbus A320 during approach to Heathrow Airport

e January 2015 - drone crashed on White House lawn,

e September 2015 - American Airline pilots forced evasive action due to drone



e November 2015 - drone nearly collides with helicopter leaving St. Louis Children’s
Hospital

These are a few examples on an alarmingly increasing list of incidents.

Understanding that these incidents can be reduced with implementing rules and
regulations, the Federal Aviation Administrations (FAA) released a list of regulations on June
21, 2016 (Dorr & Duquette, 2016). While the rules were put in place to control drone operation,
many incidents have and will continue to occur. The FAA should apply a second level of
screening for drone registration, where significant testing should be executed. These tests would
incorporate different commands and trajectories for the UAV to perform based off its
specifications and model dynamics. Evaluators will be able to recognize the structures and
behaviors of standard flight where this type of second screening can help determine which

drones should and should not be airborne.

1.3 Problem Description

UAYV performance is a significant topic due to the many incidents that have occurred over
the past years. The FAA has certified individuals to pilot UAVs and have included a mandatory
drone registration. According to (FAA seal, n.d.), the pilot and drone registration process
consists of:

1. Register your drone when flying under Part 107.

2. Label your drone (PDF) with your registration number. Registration costs $5 per

aircraft and is valid for 3 years.

In order to register, an individual would need to provide the following information:

e Email address
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e Credit or debit card

e Physical address and mailing address (if different from physical address)
e Make and model of your unmanned aircraft

e Register an unmanned aircraft online.

e Register an unmanned aircraft by paper.

Despite these terms, the FAA still needs to consider incorporating different test and evaluation
processes to ensure that drones are up to par with performance. For instance, a car registration is
a personal proof that an individual rightly owns and pays taxes on that car. The purpose of
registration is to declare a connection between a car and an owner. The owner must also have
proof the particular car they drive passed the required standard inspection (which varies from
state to state). The registration is important, but not the sole requirement for operations. The
same should be taken into consideration when operating a UAV manually and unquestionably
when an autonomous system is implemented with a UAV.

This thesis focuses on generating a test and evaluation process that can be fundamentally
applied and developed for UAV inspection regarding the FAA for future screening, standards,
and regulations. For achieving this, a data-driven approach is developed, where five supervised
learning algorithms, are compared regarding how well they predict the user-defined states of a

quadcopter for a single scenario in both simulation and real-world environments.

1.4 Thesis Organization

Chapter 2 presents an overview of Artificial Intelligence and its fundamental structures,
applications, comparisons of those applications, and the metrics. Chapter 3 breaks down the
classification of UAVs including the different design structures, the system dynamics and

mathematical representation of a common quadcopter. Chapter 4 introduces the case study
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regarding test and evaluation of a UAV’s performance. This chapter includes the necessary
results, modifications and limitations as well. Lastly, Chapter 5 ties the previous chapters

together while reiterating the significance and contribution of this work.
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CHAPTER 2

Literature Review

2.1 Artificial Intelligence

In the 21st century, artificial intelligence (Al) has become an important area of research
in virtually all fields: engineering, science, education, medicine, business, accounting, finance,
marketing, economics, stock market and law, among others (Oke, 2008). Al has applications for
multiple aspects of human life — however, there continues to be ambiguity on both the definition
of Al as well as on its constituent elements (Anand, 2018). Generally, the term “AI” is used
when a machine simulates functions that human’s associate with other human minds such as
learning and problem solving. (Gupta, 2017). Changes in the definition of artificial intelligence,
however, are based upon the goals that are trying to be achieved with an Al system. (Marr,
2018). Al is difficult to define, but its definition has some consistencies. Al is not natural; as
shown in human beings and some animal species, it is synthetic. Nevertheless, Al can make
decisions and reason with respect to several factors, mimicking how the human brain would
function. Although there are many structures and definitions associated with Al, they all classify

into two specific types as shown in Figure 2.1.

Artificial Intelligence
]

D

Narrow General Stron g Reactive
Al Al Al Machines
Awareness

Limited Theory
Memory of mind

Self

Figure 2-1 Artificial Intelligence Breakdown (Types of Artificial Intelligence, n.d.)
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21.1Typel

Type one Als consist of three levels: weak (narrow), strong (general), and super
intelligence. Narrow Al is the most fundamental of type one. Narrow is used for performing a
single task, whether that be playing chess, weather prediction, or ad suggestions. Even self-
driving cars are a collection of narrow Al structures. Narrow Al is very limited to specific task it
is programed to complete. For example, one could not expect the chess playing Al to respond to

a task of reporting the latest news. That is another AI’s task to perform.

General Al is a machine that can think, reason, and perform tasks as a human would.
They are programmed to handle situations in which they may be required to problem solve
without having a person intervene (Frankenfield, 2019). This level of Al has not been reached,
although many marketers will say otherwise to consumers. According to (Yao, 2017),
developing a true artificial intelligence and establishing it as such is an ongoing challenge that
continues to be hindered by difficulties devising definitions, metrics and tests. The notion behind

the general Al is to create a system that could be smarter and think like a human on its own.

Lastly, Super Al is defined by the Oxford’s Al expert as the level in which Al becomes
much smarter than the best human brains in practically every field, including scientific creativity,
general wisdom and social skills. Currently this level of Al is further ambiguous than that of
General Al Some scientists like Google’s Demis Hassabis, optimistically believe that full Al
development will help humans in areas such as space exploration, disease fighting, and
environmental preservation. Other scientists, like Stephen Hawkins, believes the progression of

Al will ultimately be the demise of humankind.
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2.1.2 Type 2

Type 2’s basis is functionality and contains four sub categories: (1) reactive machines, (2)
limited memory, (3) theory of mind, and (4) self-awareness. Reactive machines are the basic types of
Al. Reactive machines do not store memory or past information for current and future actions. An
example of this Al is the IBM chess program that beat Garry Kasparov in the 1990s (Kumar GN,

2018). Their emphasis is on the present scenarios and carry out the best likely action.

Limited memory machines can store and use memory from previous experiences for a
short time period. Some of the decision-making functions in self-driving cars have been designed
this way (Kumar GN, 2018). These cars can keep the current speed of nearby cars, the distance
of other cars, speed, and additional observations to navigate the road. Being that these systems’

memory is limited, the observations are not permanently stored.

Theory of mind machines should be able to understand human emotions, different beliefs
and views of people, and to have the capacity to interact socially. Researchers are making efforts
to develop these types of machines. Even though many improvements exist, this kind of Al is not

yet complete (Kumar GN, 2018).

Self-awareness machines are the final versions of Al. These machines will be super
intelligent, possessing their individual consciousness and sentiments. Self-awareness machines
will also be smarter than humans. They can be described as, “In simple words a complete human
being” (Kumar GN, 2018). Although, self-awareness Al does not exist and is a hypothetical

concept, once achieved it will be a momentous accomplishment in the Al field.

There are various paths towards building intelligent machines. Furthermore, the machines

path depends on what task(s) or function(s) need(s) to be performed and what level of thought
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capacity it takes to perform them. This thesis mentions five important paths of Al: (1) Natural
Language Processing, (2) Vision, (3) Robotics, (4) Autonomous Vehicles, and (5) Machine

Learning.

Figure 2-2 Different Paths of Al (Kumar GN, 2018).

2.1.3 Natural Processing Language (NLP)

Natural Language Processing (NLP) is an interdisciplinary field of computer science,
artificial intelligence, and linguistics that explores how computers can be used to understand and
manipulate natural language text or speech (Collobert & Weston, 2008). According to (Liu, Li,
& Thomas, 2017), Natural language (NL) refers to any written or spoken human language that
has naturally evolved for human communication. Two NL actions comprise human and

computer interaction, generation and understanding. NL generation is the computer system
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producing understandable human language texts and NL understanding is the computational
process of transforming human language to a format the machine can understand. Different tasks

of NLP include:

e Part-of-Speech Tagging (POS) — labeling each word by syntactic role indication.

e Chunking — also referred to as shadow parsing, labeling segments with syntactic role i.e.
noun phrase (NP) or verb phrase (VP).

e Named Entity Recognition (NER) — labeling elements of a sentence into categories such
as a place, location, animal, or company.

e Language Models — Uses statistical probability to estimate what the next word would be
in a sequence.

e Semantic Role Labeling (SER) — assigns labels to phrases or words that specify their

semantic role in a sentence.
e Semantic Related Words — predicting if words are related semantically i.e. holonyms,

synonyms, and hypernyms.

2.1.4 Vision

Vision is a field comprised of machine vision and computer vision. This field allows
machines to “see” as good as and better than humans do. Machine vision captures and analyzes
visual information using a camera, analog-to-digital conversion, and digital signal processing
(Kumar GN, 2018). As stated by (Crouch, 2019) computer vision and machine vision systems

share most of the same components and requirements:

e Animaging device containing an image sensor and a lens.
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e An image capture board or frame grabber may be used (in some digital cameras that

use a modern interface, a frame grabber is not required).

e Application-appropriate lighting.

e Software that processes the images via a computer or an internal system, as in many

“smart” cameras.

Computer vision is the automation of capturing and processing images, highlighting image
analysis. Computer vision’s goal is to see, process, and provide meaningful results with respect
to the observation. Machine vision is the use of computer vision in industrial environments,

positioning it a subdivision of computer vision.

2.1.5 Robotics

The field of robotics is devoted to designing, manufacturing, and operation of robots.
Robots are built to perform repetitive tasks that are either too dangerous or too difficult for
humans to perform on a consistent basis at an efficient level. Examples include industrial
assembly lines, massive production, nuclear power plants, military missions and law
enforcement tasks, surgical operations in hospitals, service and hospitality tasks, and patrolling
farm areas. There are even new directions to develop new humanoid service robots to assist

police officers (Kumar GN, 2018).

2.1.6 Autonomous Vehicles

The development of autonomy and vehicles date back as far as the early 20th century, in
Wisconsin, where a full-sized vehicle was controlled by radio waves. Further, interests sparked
from the 2004 “DARPA Grand Challenge” creation; a contest that required a driverless car to

complete a 150-mile course for a one-million-dollar prize. In its first year, no car was able to
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complete the course; but in 2005, five vehicles were successful and finished it. Autonomous
vehicles have exponentially increased their success since then, spreading to other platforms

beyond road vehicles.

The U.S. DOT’s National Highway Traffic Safety Administration policy on automated
vehicles established five distinct levels of automation in vehicles (Levinson, Boies, Cao, & Fan,
2016). Defining levels of automation provides clarity for discussing automation among different
states, product developers, and other stakeholders (Levinson, Boies, Cao, & Fan, 2016). These

levels range from zero to four and represent the following:

e [ evel 0 stands for “No Automation” — The operator is in complete control of all
primary vehicle controls at all times.

e Level 1 stands for “Function Specific Automation” — The vehicle is designated by the
operator to control one or more specific functions and can seize control at any time.

e Level 2 stands for “Combined Function Automation” — The vehicle automates at least
two primary-correlated functions of the vehicle, ultimately to relieve the operator from
those specified primary functions by the operator. Although the two or more specified
are automated, the operator must be cognizant to regain control from the vehicle.

e L evel 3 stands for “Limited Self-Driving Automation” — All safety-critical functions
are transferred from the operator to the vehicle. The vehicle is responsible for notifying
the operator to intervene in situations where the operator’s assistance is a necessity.

e L evel 4 stands for “Full Self-Driving Automation” — The vehicle is to perform and
control all safety critical functions while monitoring the surrounding environment for

adaptation. The operator is only obligated to give a destination for the vehicle.
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2.2 Machine Learning

Machine learning is an interdisciplinary field of research with influences and concepts
from mathematics, computer science, artificial intelligence, statistics, biology, psychology,
economics, control theory, and philosophy. In general terms, machine learning concerns
computer programs that improve their performance at some task through experience (Lavesson,
2006). It is a method where the target (goal) is defined and the steps to reach that target is

learned by the machine itself by training (e.g., gaining experience) (Kumar GN, 2018).

There are generally four questions used to address the design and implementation of

learning programs.

e What is the input?
e \What feedback is available?
e How should the solution be represented?

e \What metrics are needed to evaluate performance?

The input is data or observations used for processing. The input has a set of attributes that
describe the specifics of an instance/sample; it could be weight, height, speed, color, and so on.
These instances can be represented as real (-3.14, 1.2, 0.5, 35.69) and integer numbers (-2, 4, 17,
-9, -8, 5), or as a Boolean output (True, False). For instance, the attributes length, width, height,
color, top speed, and horse power could be used to describe cars (Lavesson, 2006). The feedback
depends on the style of learning applications used. These styles consist of Supervised,

Unsupervised, and Reinforcement Learning, concepts discussed in detail in the next section.

The type of feedback implemented is also contingent upon the problem constraints and

requirements. The solution representation of the learning type is the structure of the model
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created once the machine has learned the pattern of the instances from the correlating attributes.
The last constraint is the evaluation metrics used to determine how well the machine is learning
i.e., accuracy, confusion matrix, and F1-score. Addressing these four concerns generates an

increased level of understanding on how machines learn in different environments.

2.2.1 Machine Learning Types

As mentioned previously, the three types of learning are supervised, unsupervised, and
reinforcement learning. They are distinguished by their different levels of access to the data
provided and what type of scenarios are applicably just. This thesis focuses on supervised

learning but does not exclude the descriptions of the other types.

2.2.1.1 Reinforcement Learning
Reinforcement learning is the problem faced by an agent that learns behavior through
trial-and-error interactions with a dynamic environment (Kaelbling, Littman, & Moore, 1996).

There are two main strategies of reinforcement learning:

e Search the behaviors space to find one that is performing well in the environment (i.e.
Novel Search Genetic Programming, and Genetic Algorithms).
e Estimate the value of the state actions in the environment using statistical techniques

and dynamic programming.
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Figure 2-3 Standard reinforcement learning model (Kaelbling, Littman, & Moore, 1996).

Figure 2.3 shows the basic structure of reinforcement learning. In each step of the
iteration, the machine/agent receives an input: i, and the current state of the environment: s.
Then, the agent chooses an action: a, to produce an output. The action changes the state of the
environment and this state transition is relayed to the agent through a scalar reinforcement signal,
r. The agent's behavior: B, chooses actions to increase the long-run sum of values of
reinforcement signal. The | in the figure represents an input function for the agent to determine

how it views the environment state.

2.2.1.2 Unsupervised Learning

In unsupervised learning, only response variables are known (Amruthnath & Gupta,
2018). This type of learning searches for patterns where an input-output relationship is not given.
It does not call for human annotation; it is fully automated (Beaula, Marikkannu, Sungheetha, &
Sahana, 2016). A large subclass of unsupervised tasks is clustering, a method that observes and
groups together the members that show similarity. These clusters are either user-defined or
defined based on a constructed model with respect to each member’s distance, density, or

characteristics from other members. In unsupervised classification, previous information is not
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necessary. The algorithm spots out the huddles in data and also analyst labels huddles (Beaula,

Marikkannu, Sungheetha, & Sahana, 2016).

2.2.1.3 Supervised Learning

Supervised learning is based on training a data sample from a specific data source with
the correct classification already assigned (Sathya & Abraham, 2013). Supervised learning tasks
can be classified into two subgroups, regression and classification predictive modeling.
Classification is the task of predicting a discrete class labels and regression is the task of

predicting a continuous quantity shown in figures 2.4(a) and (b).
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Figure 2-4 Supervised machine learning left (a) classification right (b) regression (Korbut,
2017).

These examples of correct input-output pairs can be shown to the machine during a
training phase. The machine generates a learned model based off the input-output relationships
provided during training. That model is then tested by trying to predict the output of a new set of
examples, instances it has not previously seen. Lastly, the model is evaluated on how well it

predicted the new instances. This process is formally shown in Figure 2.5.
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Figure 2-5 Real-world application of supervised machine learning (Sathya & Abraham, 2013).

1.

Collect data. An available expert determines which attributes which attributes are of
importance to the problem.

Data preprocessing. Consists of cleaning the dataset with respect to noise and missing
values.

Definition of training set. There are many methods to split the data into training and
testing samples. In this research, the data is randomly split into 70% training 30%
testing.

Algorithm selection. This step is problem dependent; in this work, five algorithms are
selected.

Training. The algorithms are applied to the training set learning and creating a model

from the relationships between the input and outputs based on the attribute values.
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6. Evaluation with test set. The model generated from training is applied to the test
dataset and evaluated on user-defined metrics.

7. Based off how well the algorithm performs on the defined metrics of evaluation
determines if the algorithm can be used as a classifier or needs its parameters tuned to

increase performance (i.e. training speed, accuracy, and so on)

2.3 Supervised Machine Learning Algorithms

Trend forecasting and price prediction in stock trading, retail commerce, and sales are the
most common areas that use supervised algorithms. In this work; however, supervised algorithms
are used for predictive modeling regarding how to infer the behavior of a UAV. In this case, the
algorithms use data to calculate possible outcomes. Below is a list of widely used supervised

machine learning algorithms from the literature (Ayodele, 2010):

e Nearest Neighbor

e Gradient Boosted Trees

e Decision Trees

e Logistical Regression

e Naive Bayes

e Support Vector Machines (SVM)
e Random Forest

e Linear Regression

e Neural Networks

From these algorithms, five of them were chosen for model comparison and evaluation, k-
Nearest Neighbors, Naive Bayes, Support Vector Machines, Decision Trees, and Artificial

Neural Networks.
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2.3.1 k-Nearest Neighbors (kNN)

The k-Nearest-Neighbors (kNN) is one of the more simple and basic learning algorithms.
The k-Nearest-Neighbours (KkNN) is a non-parametric classification method that is simple but
effective in many cases of classification (Guo, Wang, Bell, & Bi, 2004). This algorithm finds a
group of “k” objects in the training set that is closest to the test instance. The instance learning
process is based on solutions for similarly known problems, establishing the name ‘“nearest
neighbor learning”. The following pseudocode and parameters illustrate the implementation of

this type of learning:

Algorithm 1: The k-nearest neighbors (KNN) algorithm.

Data: D = {(x;,¢;), fori= 1tom}, where x; = (v}, ), ..., v} ) is an observation that belongs to
class ¢;

Data: x = (vy, 05, ..., Uy ) data to be classified

Result: class to which x belongs

distances + @;

for y;in D do
d: i d(.‘l/i,.l‘),'
distances « distances U {d;};
end
Sort distances = {d;, fori = 1 to m} in ascending order;
Get the first K cases closer to x, D{‘ 3
class + most frequent class in D¥

Figure 2-6 kNN Pseudocode (Meneses, Chavez, & Rodriguez, 2019).

Parameters:

1. Distance function, to determine closest neighbors between training instances and new
instances (i.e. Euclidean, Manhattan, Minkowski).
2. The value Kk, which determines the number of neighbors considered when

addressing the new instance.
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3. A weighting function to evaluate the contribution of each neighbor of the
new instance.

4. Evaluation method, to testing how well the found neighbors classify the new instance.
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Figure 2-7 Graphical Representation of KNN approach (Guo, Wang, Bell, & Bi, 2004).

Figure 2.7 represents the KNN implementation by using Euclidean distance as the
distance measure. An ideal local region can be represented by the central data point — di, the
number of data instances inside the local region — Num(di), and the similarity of the further point
inside the local region — Sim(di).

KNN is robust to noisy data and is effective when it is applied to large sets of training
data. This is due to its lazy learning method; where there is no computation performed on the
data before the new instance is given to the system.

2.3.2 Naive Bayes (NB)

Naive Bayes is a collection of learning algorithms that depend on probability theory and
Bayes’ Theorem for prediction. Naive stems from the algorithm assuming that each feature is
independent from the other features. Bayes refers to Thomas Bayes, a philosopher and

statistician famously known for his Bayes Theorem that finds the probability of a hypothesis



27

given some prior knowledge (Hulden, 2014). Thus, the Naive Bayes algorithm was created; an

algorithm that is based on independence between input features and Bayes Theorem.

Bayes Theorem is given by the following formula (Sybba, et al., 2017):

P(B|A)P(A)

P(A|B)= P(B)

e P(A|B) — the probability of event A occurring, given the event B has occurred
(posterior probability).

e P(B|A) — the probability of event B occurring, given event A has occurred (likelihood).

e P(A) - the probability of event A (class prior probability).

e P(B) - the probability of event B (predictor class probability).

Notice that both events A and B are independent, meaning the outcome probability of event A
does not depend on event B’s outcome. This concept of probability is used to classify new
entries. NB can use several different model references such as normal, lognormal, gamma and
Poisson density functions. Although NB may be simplistic, it can perform well with inputs of
high dimensions.

2.3.3 Support Vector Machine (SVM)

Support Vector Machines performs well among some of the most recognized algorithms
do to its consistent ability to be robust and accurate. SVM does not require an abundant amount

of data for training and can handle many dimensions.

SVM works on the principle of margin calculation (Dey, 2016). It uses labeled training
data to output an optimal hyperplane to categorize new inputs. The fundamental technique

classifies the data by creating a function to split the data into relating labels on two conditions,
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the data points with the largest likely margin and the least likely amount of inaccuracies. The
margins are drawn in such a fashion that the distance between the margin and the classes is

maximum hence, minimizing the classification error (Dey, 2016). Which is illustrated in figure
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Figure 2-8 Graphical Representation of Linearly (a) and Nonlinearly (b) Separable classes
(Raschka, 2014).

Support vector machines (SVM) were originally designed for binary classification (Chih-
Wei & Lin, 2002). In this work, the SVM extends to handle multiclass classification. There are

different ways to extend an SVM for multi class classification.

1. The SVM can be used as a fundamental classifier and can decompose the K-class
problem into many binary class problems where K is the number of classes.

2. Directly considering all data in one optimization formulation (Chih-Wei & Lin,
2002).

2.3.4 Decision Trees
Decision tree is one of the most widely used techniques used in data mining (Sharma &
Kumar, 2016). A tree model is represented with a set of if then rules for human interpretation.

The name, tree model, comes from its tree like structure. It starts with an initial/root node that
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then grows different branches and other nodes by making decisions until it reaches a leaf node. A
leaf node corresponds to a tree starting from the roots and grows branches all the way to leaves.
There many different types of trees such as Iterative Dichotomiser 3 (ID3), C4.5, and
Chi-square Automatic Interaction Detection (CHID). Although many variations of decisions
trees were developed, the method of tree learning generally applies to problems with similar
characteristics. The problems usually have a set of features/inputs (real or attribute values),
discrete classes/outputs, errors in the training data or missing data, and disjunctive expressions.
Despite similarities in composition, each tree grows in different ways. The following list
provides descriptions on how some of the trees are grown (Al-Sagheer, Alharan, & Al-Haboobi,

2017):

e D3 (lterative Dichotomiser 3) is an easy way of decision tree algorithm. The
evaluation used to build the tree is information gained for splitting criteria. The
growth of tree stops when all samples have the same class or information gain is not
greater than zero. It fails with numeric attributes or missing values.

e CHID (Chi-square—Automatic—Interaction—Detection): is an essential decision tree
learning algorithm to only handle nominal attributes. It is a supplementation of the
automatic interaction detector and theta automatic interaction detector procedures.

e (C4.5 is the ID3 improvement or extension that presented by the same author. It is a
mixture of C4.5, C4.5-no-pruning, and C4.5-rules. It uses gain ratio as splitting
criteria. It is an optimal choice with numeric attributes or missing values. There are

fundamental points that mark the two algorithms shown in the table below

These methods are some of the most popular algorithms, based upon inference, and

successfully applies to a variety of tasks. Furthermore, decision trees' most important feature is
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the capacity to break and represent very complex problems with a collection of simpler

decisions.

Decision trees contribute a concrete technique for conceptual learning. They search the
training set and grow top-down greedily choosing the next best feature for each new decision
branch. The trees grow recursively from the root node down to the leaf node creating a fully

interpretable tree.

2.3.5 Artificial Neural Networks (ANN)

The general function of a neural network is to produce an output pattern when given a
particular input pattern and is loosely related to the way the brain operates (Dencelin &
Ramkumar, 2016). ANNs have the ability of distributed information storage, parallel processing,

reasoning, and self-organization (Kamruzzaman & Jehad Sarkar, 2011).

Based on the connection pattern (architecture), ANNSs can be grouped into two categories

(Jain & Mao, 1996):

e Feed-forward networks, in which graphs have no loops

e Recurrent (or feedback) networks, in which loops, and occur because of feedback

connections.

Recurrent networks have the capacity to reprocess data in a feedback manner, acquiring
information from earlier stages in the learning process, giving it the ability to adapt. On the other
hand, feedforward networks do not feedback information from previous states, the data flows
from the inputs through the hidden layer(s) to the output layer, as shown in figure 2.10. The
output is obtained by applying all input values to a standard function for the network nodes (i.e.

sigmoid).
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Figure 2-9 A taxonomy of feed-forward and recurrent network architectures (Raza, 2016).

In supervised learning, ANNs are trained using backpropagation. The theory of the BP
algorithm is based on the error-correction learning rule which uses the error function in order to
modify the connection weights to gradually reduce the error (Suliman & Zhang, 2015). The

function based used for error correcting is defined as:

W=1l*eg+m* Wp

Where W is the weight change, | is the learning rate, € is the minimal error, m is the momentum,
and Wp is the previous weight change.
2.4 Machine Learning Comparison and Evaluation

Supervised machine learning is the mission of conceiving a meaning from labelled
training data that has a set of training examples (Praveena & Jaiganesh, 2017). The procedure
consists of taking a dataset with known features/input and labels/outputs, generating a model
based on the mapping from the inputs to the outputs, applying the generated model to

unforeseen/test data and lastly evaluating the performance by different metrics. Many supervised
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algorithms deal with classification, such as Artificial Neural Networks (ANNSs), Support Vector
Machines (SVMs), Decision Trees (DTs), Random Forest (RF), and Bayesian Networks.
However, out of all the different algorithms applicable to classification, they all relate back to

one question: Which one has the best performance compared to others?

To answer this question, one should accept that there is not an algorithm that better
performs on every metric of evaluation. Learning algorithms are constantly tweaked and pinned
against one another for performance evaluation. With that said, is it possible to objectively
compare learning algorithms? This question cannot be generalized, as most algorithms’
performance success is situational. It is important to evaluate learning algorithms on a variety of
performance metrics because different learning algorithms are designed to optimize different
criteria (e.g. SVMs and boosting optimize accuracy while neural nets typically optimize squared
error). It is not uncommon for an algorithm to have optimal performance on one performance
metric and be suboptimal on another (Caruana & Niculescu-Mizil, 2006). It also important to
take into account the parameters that would give the proposed algorithms an optimal
performance when applied to the different problems. According to (Hossin & Sulaiman, 2015)
accuracy or error rate is one of the common metrics in practice used by many researchers to
evaluate the generalization ability of classifiers. Accuracy is a classifier’s ability to correctly

predict labels of unforeseen data based on a model generated from training data.

Although accuracy is an important metric, there have been studies of incorporating other
r metrics for performance evaluation. In (Prusty, Chakraborty, Jayanthi, & Velusamy, 2014)
study, the authors state that k-nearest neighbors (KNNs), SVMs, and ANNs are the most widely

used supervised multiclass algorithms. In their study, the authors perform transient classification
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and compare the algorithms on the metrics of accuracy, training speed, computational cost and
root mean square error, taking into consideration that accuracy is the major metric. The dataset
consisted of five classes with two attributes/features. Training size was 746 and the testing size

was 32. Table 2.1 is the comparison table of the algorithms’ extensions and performance.

Table 2-1 Comparison of KNN, SVM, ANN algorithms. (Prusty, Chakraborty, Jayanthi, &
Velusamy, 2014).

Respective average
Algorithm Best Prediction | Respective Parameter prediction accuracy
Accuracy (%) after 10-times 10-fold
cross validation (%)
KNN 75.20 k=13 75.96
SVM 93.75 rbf kernel 93.17
GDM-ANN 61.60 5 neurons 24.1
GDA-ANN 94.60 8 neurons 90.66
GDMA-ANN 99.10 8 neurons 89.5
RB-ANN 97.30 13 neurons 95.29
CGB-ANN 96.40 15 neurons 81.67
CGF-ANN 85.70 15 neurons 88.57
CGP-ANN 98.20 8 neurons 75.6
SCG-ANN 97.30 5 neurons 9138
QN-ANN 94.60 15 neurons 90.62
LM-ANN 95.50 8 neurons 93.84
OSS-ANN 91.10 15 neurons 90.25
BR-ANN 99.10 5 neurons 95.68

The table shows that there are different extensions of ANN applied. There are six various

categories of backpropagation (Prusty, Chakraborty, Jayanthi, & Velusamy, 2014).



34

Backpropagation is the optimization process to train a model in the least number of epochs,

smallest possible error rate, and the fastest training time.

1. Additive Momentum:
a. Gradient Descent with momentum backpropagation (GDM).
2. Self-adaptive learning rate:
a. Gradient Descent with adaptive learning rate backpropagation (GDA).
b. Gradient Descent with momentum and adaptive learning rate (GDMA).
3. Resilient Backpropagation (RB):
4. Conjugate Gradient Backpropagation.
a. Scaled conjugate gradient back propagation (SCG).
b. Conjugate back propagation with Powell-Beale restarts (CGB).
5. Quasi-Newton:
a. Levenberg-Marquardt backpropagation (LM).
b. BFGS quasi-Newton backpropagation (QN).
6. Bayesian Regularization (BR).
Table 2.1 also shows that the Bayesian Regularization ANN produces the highest validation
accuracy. GDM-ANN had a raw accuracy of 61.60 %, but when incorporating a k-fold validation
metric the accuracy drops to 24.1% portraying a significant difference in accuracy. This outcome

further proves that other metrics are necessary to effectively compare algorithms.

In a different study, six supervised algorithms’ performances were compared on
predicting the substrate type (substrate being the type of substance an organism lives on) from
multibeam echo sounder data. The application techniques were SVMs, Classification Trees,

ANNSs, Naive Bayes (NB), kNN, and Random Forest (RF). The metrics used for performance
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evaluation were accuracy, balanced error rate (BER), and the Cohen’s Kappa coefficient. BER is
the average of the proportion of misclassifications in each class. Kappa measures the percentage
of data values in the main diagonal and adjust the amount of agreement due to chance.
According to (Stevens & Diesing, 2014) Kappa provides a more robust measure of agreement

than accuracy. Table 2.2 shows the performance of each algorithm on the different metrics.

Table 2-2 Model Performance Comparison. (Stevens & Diesing, 2014).

Model BER Accuracy Kappa
NB2 0.37 0.80 0.50
RF2 0.40 0.81 0.45
RF1 0.41 0.80 0.45
CT1 0.41 0.80 0.48
RF3 0.43 0.78 0.36
NB3 0.48 0.78 0.38
CT3 0.43 0.69 0.21
CT2 0.48 0.69 0.27
NN1 0.49 0.80 0.45
SVM1 0.53 0.78 0.39
1-NN 0.54 0.77 0.33
k-NN2 0.61 0.72 0.19
NB1 0.64 0.75 0.34
SVM2 0.67 0.78 0.27
NN3 0.69 0.78 0.21
k-NN3 0.69 0.78 0.22
SVM3 0.70 0.77 0.20
NN2 0.77 0.73 -0.07
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As shown in the table 2-2, there are different versions of each algorithm. The number
signifies the type of feature extraction was used in pre-processing; one denotes only primary
features, two used the subset of features, and three used all features. Table 2-2 also shows RF2
has the highest accuracy, but it does not have the lowest error rate. This means that RF2 has the
ability to correctly classify true positives, but it also had a significantly high number of
misclassifications at 40%. On the other hand, NB2 appears to be the best performing classifier.
Though NB2 did not have the top accuracy, it was second best. It had promising results in the
other metrics having the lowest error rate and the highest kappa value signifying that it is the best

for that problem.

These studies and more studies show that additional metrics are needed to perform a fair
and unbiased comparison of supervised algorithms. In (Caruana & Niculescu-Mizil, 2006) study,
the authors compare ten supervised learning algorithms on nine criteria of performance. Given
this insight, for answering the previous general question presented we can conclude that there is
not one algorithm that outperforms every evaluation metric. Fortunately, there are ways to
measure an algorithm’s performance with respect to how well it performs across multiple

metrics, taking into consideration the problem’s ranking importance of certain metrics.

2.5 Machine Learning and Quadcopters

Machine learning has played a pivotal role in flight navigation and control of UAVs such
as using reinforcement learning for autonomous navigation, (Pham, La, Feil-Seifer, & Nguyen,
2018) and providing a framework for applying a RL algorithm to enable a UAV to operate in
unknown environments. Another study by (Liakos, Busat, Moshou, Pearson, & Bochtis, 2018),

used machine learning and UAVs to survey and monitor different agriculture parts, i.e., weed
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detection, livestock production, crop quality, and water management. These and many other
applications use machine learning to increase the functionality of the UAV, whether that be
better object detection, increased efficiency of power consumption, path planning and route
optimization, and so on. This research shifts the machine learning focus of UAV application to
testing and evaluating the UAV’s behavior, presenting a fundamental approach to standardizing

how a UAYV should behave in certain conditions.
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CHAPTER 3

Unmanned Aerial Vehicles (UAVS)

3.1 Introduction

UAYV innovation has become a very popular research area due to the improvement of
different tools and applications involving their technology. In the previous chapters, I explained
in-depth techniques used to build different levels of artificially intelligent machines. In the
remaining chapters, | focus more on the applications of Al in UAVs. This includes modeling,
simulation, hardware and software design, testing in simulation, and testing in a real-world
environment. Specifically, | focus on using machine learning techniques to analyze and compare

behaviors of UAVSs in simulation and real-world environment.

3.2 Structures/Types
The types of UAV can be broken into categories distinguishable by their capabilities,

model, and performance. Figure 3.1 shows the basic structures of UAVs.

UAV |

[ |
| Fixed Wing | | Rotary Wing Flapping Wing
1

|
| Helicopter | Quadrotor | | Hexacopter || Octocopter

Figure 3-1 UAV classification (Norouzi Ghazbi, Aghli, Alimohammadi, & Akbari, 2016).

Fixed wings follow the same architecture as the standard commercial aircraft/airplane. Flapping
wings mimics the motion of a bird or insect flapping to achieve flight. Rotary wings, most
known for their ability to vertically take off and land, uses blades that revolve around a fixed
mast for flight. These different types of wings coincide with how many rotors they have i.e.

helicopter (1), hexacopter (6), and so on.
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3.3 State of the Art

UAVs are increasingly adapted as remote sensing platforms (Aasen, 2017). Surveying
and monitoring systems have become increasingly powerful due to specialized sensors.
Collectively, this enables the aircraft to be significantly smaller than manned systems and thus
capable of greater maneuverability (Jordan, et al., 2017). These improvements in UAV
technology allows flights to be piloted in difficult access areas. The utility of UAVS is

expanding dramatically, which increases the need of functional evaluation for drone inspection.

3.4 Mathematical Representation

There are many articles in the literature for mathematical and dynamic modeling of
quadcopters. The primary focus of this thesis is on the state space model. To develop the
dynamic mathematical model of a quadcopter, Newton-Euler and Euler-Lagrange equations are
used and complex aerodynamic properties are considered. Being that quadcopter has only six
degrees of freedom it is considered an under actuated robotic system. The mathematical model is
linearized using these equations. The state space model adopted by the control system is X* = (X,
U) , where X is the state vector and U is the control input vector. The state vector is chosen as X
=[x x'yyzz 00 ¢o yvy]. Inthe design of controller, the state variables are chosen as x1
=x,x2=x,x3=Y,x4=y’, 5=2, x6=7Z,x7T=¢,x8=¢", x9=0,x10=0", x11 =, and x12

=1y (he & Zhao, 2014).
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Figure 3-2 State space model of quadcopter (he & Zhao, 2014).

In the above figure, m is the mass of the quadcopter, g is the gravitational acceleration, Ix, ly,
and Iz are inertia along each axis, Q is the relative angular velocity of the rotor, Jr is the

propeller inertia and | are the axis length of the quadcopter.
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CHAPTER 4

Case Study, Results, and Discussion

4.1 Problem Statement

This thesis uses data driven supervised machine learning algorithms to predict and
analyze the behaviors of a UAV given a predefined scenario. This scenario is carried out through
simulation and real-world implementation in a controlled lab environment. The quadcopter
generates data after the flight scenario is completed. Each proposed algorithm is applied to the
data, creating a prediction model from the training portion of the data. The models produced are

then evaluated and compared on the applicable performance metrics.

4.2 Experimental Setup

The experiment breaks into two parts simulation and real environment implementation,
each of which follow the same scenario structure. That structure is a rectangular area-based
structure in which the UAV searches through with the goal to observe the complete ground area
below. The UAV begins from a home location, which has been predefined. Next, it vertically
takes off, hovers shortly at a constant altitude, and then searches the area using a lawnmower
pattern incorporating the waypoint navigation algorithm. Once it completes its search, it returns

to the home location, hovers for a moment, and lands.
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' Home

Figure 4-1 Scenario visual representation.

In this scenario, there are five high-level predefined states based four state variables.
1. Hold,h=0,Vx=0,Vy=0,and Vz=0.
2. Take-off, h#0,Vx=0, Vy=0, and Vz > 0.
3. Hover, h=constant & h#0, Vx =0, Vy=0, and Vz = 0.
4. Search, h=constant & h#0, Vx #0, Vy #0, and Vz = 0.
5. Land,h#0,Vx=0, Vy=0, and Vz <0.
Where,

h = altitude, Vx = velocity in x direction, Vy = velocity in y direction, Vz = velocity in z

direction. If we discretize the scenario, we observe that it is a combination of hold-takeoff-hover



43

search-hover-land-hold. Figure 4-2 illustrates the transition of the states traversed by the

quadcopter throughout the scenario.

SEARCH

Figure 4-2 State Transition Flow Chart.

For the simulation portion, the scenario was generated in a ROS Gazebo environment. In
both environments the sensor data was logged and save in a comma-separated value (.csv)
formatted file based on the five user defined states x velocity, y velocity, z velocity, and altitude.
All twelve state positions were saved position x, position y, position z, roll angle ¢, pitch angle 0,
yaw angle y, linear velocity in X direction " X, linear velocity in Y direction  y, linear velocity
in Z direction * z, roll speed ~ @, pitch speed * 0, and yaw speed ~ y. Figure 4-3 shows the drones

used for simulation 3DR SOLO (left) and real implementation the Parrot AR.Drone 2.0.

Figure 4-3 Drones used for experiment.
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4.3 Preliminary Results

The results are represented using three metrics:

e Accuracy — the number of correctly predicted labels divided by the number of labels
in that state.

e Confusion Matrix — evaluation of the quality of the classifier outputs. The diagonal
represents the correctly predicted labels regarding the true labels. The off diagonal
represents the incorrectly predicted labels.

e Classification Report — it is a summary report of the precision, recall, f1-score, and
support with respect to the true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN). Also including how each class is weighted.

o Precision - the ability of a classifier not to label an instance positive that is actually
negative, TP / (TP + FP).

o Recall - the ability of a classifier to find all positive instances, TP / (TP + FN).

o F1-score - a weighted harmonic mean of precision and recall such that the best
score is 1.0 and the worst is 0.0. 2 * (Recall * Precision) / (Recall + Precision).

o Micro average — average with respect to the total true positives, false positives,

and false negatives.
o Macro average — unweighted mean per label.

o Weighted average — support-weighted mean per label.

For the following figures, the left half of the figures represents the algorithms performance in the

simulated environment and the right half represents the performance in real world environment.
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Figure 4-8 Support Vector Machine Performance.

4.4 System Representation and Modification
In produced the aforementioned results, | attempted to see how far the algorithms could
be tested with respect to adding white gaussian noise. The process for adding noise begins

with separating the input data by the corresponding features, then finding the mean and
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standard deviation of each input feature and randomly adding it to different instances in that

specific feature. This process is done for 1, 2, and 3 standard deviations and is shown below.

125 1 —— Orignial Simulation Test Signal YV
- 1-std-Noise
100 1 — 2.std-Noise
- 3.std-Noise
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0.50 -
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0.00 -
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-1.00 - = 3.std-Noise
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Figure 4-10 Adding noise to simulation train signal altitude.

The above graphs represent only two implementation of noise addition to give a visual

representation of how adding one to three standard deviations of noise impacts the signal. This
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method was done sixteen times, breaking down into four attributes for both real-world and

simulation done for testing and training datasets.

4.5 Results
The results are organized in the same structure as the preliminary results; the simulation
on the left and real world on the right. Each algorithm will have figures showing the progression

from one to three standard deviations.
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Figure 4-11 Decision Tree Performance 1-std.
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Figure 4-13 Decision Tree Performance 3-std.
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Figure 4-15 Naive Bayes Performance 2-std.
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Figure 4-16 Naive Bayes Performance 3-std.
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Figure 4-17 k-Nearest Neighbors Performance 1-std.
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Figure 4-18 k-Nearest Neighbors Performance 2-std.
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Figure 4-19 k-Nearest Neighbors Performance 3-std.

precision

recall fl-score

oise

350]

227]

966]

599]

157]]
0.17
9.39
0.06
0.46
0.26
0.23
0.27
0.23

55

support

1383
1315
6522
4246

6082

14068
14068
14068

support

1383
1315
6522
4246

602

14068
14068
14068



Accuracy 1std noise is

Confusion Matrix 1std noise

[[3721 1119
[ 343 547
[ 633 1668
[ 440 1164
[ 269 197

236 1080 3686]

67 649 367]
425 6041 1479]
305 5510 1033]

41 293 718]]

Report 1std noise

v HwN e

micro avg
macro avg
weighted avg

precision

N

SE8RS

oo e®

DISi®
SRR

©.3449252286847117

recall fl-score

(SRR

e
8.
[}

38

.28
.04

65

.47

.34

36

.34

DO

00

.49
.16
.88
.50
.16

.34
.28
.32

Accuracy 1std noise is

©.2734646005117998

Confusion Matrix 1std noise

@ 1216
3 264

2 1 762]
34 200 348]
487 3120 1120]
318 2074 716]
19 90 255]]

Report 1std noise

support

9842
1973
10246
8452
1518

v B wWwN e

320831 micro avg
32831  macro avg
32831 weighted avg

Figure 4-20 Artificial Neural Networks Performance 1-std.
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Figure 4-21 Artificial Neural Networks Performance 2-std.
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Figure 4-22 Artificial Neural Networks Performance 3-std.
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Figure 4-23 Support Vector Machine Performance 1-std.
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Figure 4-24 Support Vector Machine Performance 2-std.
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Figure 4-25 Support Vector Machine Performance 3-std.
4.6 Discussion/Limitations
This research is done on two levels of comparison. The first comparison being the
algorithms with respect to how well they perform against themselves in simulation versus real

world performance evaluation (for example; How well does the ANN perform in the real world
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versus how ANN performs in simulation?) and the second being how well the algorithms
perform against each other in different environments (i.e. how well an algorithm performs in a

simulation environment based off F1-score).

These preliminary results show that each individual algorithm performs better on the
simulated data versus the real-world experiment. Which stems from the fact that simulation is
ideal in the manner of operating perfectly as opposed to real world implementation, where
different constraints can cause the scenario not to be executed flawlessly. These results also
provide that the k-Nearest Neighbors outperforms all the algorithms in both simulation and real-
world environments. Further proving that even though it is simplistic in construct, it can perform

as well or better than its counterparts.

Many inferences can be made from the inclusion of noise, trivially the addition of noise
significantly decreases the performance of each algorithm in both simulation and real-world
implementation. ANN had the highest accuracy in simulation across all three stds of noise addition.
However, SVM was the least affected in both experiments by the initial addition of noise. SVM also
had the highest accuracy in real world implementation with 1 and 2-std of noise and KNN produce
the highest accuracy in real world implementation with 3-std of noise. The kNN algorithm
performance on the simulations experiment was outperformed across all three stds by the real-world
implementation. Lastly, the performance level drop was consistently greater in the simulation
experiment demonstrating that though both experiments are very sensitive to noise addition with

respect standard deviation, the real-world implementation is less sensitive.

The incorporation of noise provides additional insight to better improve algorithms, making
them more robust. However, the level in which noise is added can be improved, seeing as though 1-

std was significantly harsh on the input signal. Re-evaluating the algorithms performance led to
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introducing a second method of noise addition, signal to noise ratio (SNR). The SNR is defined
as signal strength divided by noise strength and is measured in decibels (db). A noiseless signal
has a decibel value closer infinity. In this study I calculated the SNR for 1std of the signals in the
system and all of which were less than 4db. Hence, my signals were completely distorted causing

the algorithms to perform poorly.

Table 4-1 Algorithm Accuracy with addition of SNR.

Algorithm Accuracy
Name Noiseless | 1 STD Noise | SNR 90db | SNR 70db SNR 50db
Simulation DT 95.60% 29.60% 88.49% 85.12% 79.04%
Experimental DT | 90.87% 24.66% 75.85% 68.54% 56.37%
Simulation NB 70.92% 31.76% 70.78% 70.74% 70.87%
Experimental NB | 63.75% 14.82% 63.31% 63.63% 54.68%
Simulation KNN 95.88% [ 31.93% 87.88% 85.50% 80.19%
Experimental KNN | 91.16% 33.46% 73.97% 71.36% 61.79%
Simulation ANN | 84.53% 34.49% 83.99% 83.91% 82.91%
Experimental 70.50% 27.34% 70.06% 69.27% 67.91%
ANN
Simulation SVM [ 79.70% 31.54% 79.68% 79.65% 79.51%
Experimental 65.34% 37.00% 65.40% 65.30% 65.28
SVM

Table 4.1 illustrates the algorithms performance with the addition of noise by means of SNR. The
bold values signify the algorithms that had the highest accuracy in the simulation environment for
each test and the underline is the highest accuracy in the real-world environment test. The KNN
algorithm performance accuracy remains the highest in the simulation environment for the noise
addition of 90db and 70db. However, it was the most impacted by the addition of noise, followed by
DT. Although SVM was second to last in accuracy, was least impacted by noise. ANN
performed decent in the accuracy metric as well as demonstrated high robustness. The use of

SNR in this problem domain better validates how well the algorithms perform at different noise
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levels rather than using standard deviation. The following figures, Figure 4-26 to Figure 4-29,
depict a graphical representation of the algorithms that achieved the highest accuracy with
respect to each level of noise, plotting the predicted values and true values of each state.
Following the figures, Table 4-2 illustrates the percentage distribution of how accurate each

method classified each state with respect to the noise level.
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Figure 4-26 Highest Accuracy Performing Algorithm (Noiseless).
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Figure 4-27 Highest Accuracy Performing Algorithm (90db).
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Figure 4-28 Highest Accuracy Performing Algorithm (70db).
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Figure 4-29 Highest Accuracy Performing Algorithm (50db).
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Table 4-2 Percentage distribution table representing the accuracy of each classification method
regarding the noise level.

Algorithms HOLD TAKE OFF HOVER SEARCH LAND
Noise
Measurement SIM EXP SIM EXP SIM EXP SIM EXP SIM EXP
Decision Tree
Noiseless 100% | 95% 98% | 96% 93% | 87% | 92% | 75% | 98% 72%
SNR 90db 100% | 93% 93% | 89% 83% | 77% | 84% | 58% | 93% 67%
SNR 70db 97% 94% | 87% | 84% 78% | 75% | 78% | 52% | 85% 59%
SNR 50db 92% | 40% 66% | 72% 7% | 72% | 74% | 40% | 62% 19%
1STD 40% 0% 14% | 22% 9% 12% | 49% | 41% | 16% 15%
Naive Bayes
Noiseless 96% 93% 27% | 81% 69% | 77% | 44% | 27% | 56% 17%
SNR 90db 98% 93% | 32% | 81% 64% | 78% | 46% | 28% | 69% 17%
SNR 70db 98% 93% | 32% | 81% 64% | 77% | 46% | 27% | 69% 17%
SNR 50db 98% 51% | 32% | 62% 64% | 77% | 46% | 27% | 69% 15%
1STD 16% 0% 18% | 17% 29% 3% 45% | 32% | 21% 10%
kNN
Noiseless 99% 93% 98% | 96% 87% | 85% | 88% | 74% | 93% 68%
SNR 90db 99% 95% 95% | 84% 84% | 82% | 86% | 64% | 90% 26%
SNR 70db 98% 95% | 86% | 84% 79% | 81% | 80% | 61% | 74% 32%
SNR 50db 95% 64% 74% | 78% 79% | 73% | 79% | 51% | 75% 11%
1STD 32% | 47% 18% | 25% 12% | 32% | 51% | 41% | 18% 15%
ANN
Noiseless 99% 95% | 87% | 85% 77% | 82% | 70% | 55% | 79% 16%
SNR 90db 99% 96% | 86% | 85% 78% | 81% | 75% | 53% | 79% 26%
SNR 70db 99% 94% | 86% | 85% 76% | 79% | 74% | 54% | 79% 18%
SNR 50db 99% 91% 78% | 81% 75% | 77% | 75% | 53% | 79% 17%
1STD 49% 3% 16% | 24% 8% 13% | 50% | 42% | 16% 13%
SVM
Noiseless 99% 91% | 87% | 78% 74% | 79% | 57% | 24% | 81% 9%
SNR 90db 99% 91% | 87% | 79% 74% | 79% | 57% | 26% | 81% 9%
SNR 70db 99% 91% | 87% | 78% 74% | 79% | 57% | 26% | 81% 9%
SNR 50db 99% 91% | 87% | 79% 74% | 79% | 57% | 26% | 81% 9%
1STD 35% 63% 16% | 23% 14% | 50% | 50% | 26% | 16% 14%
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CHAPTER 5

Conclusion
The main purpose of this thesis was to develop data-driven testing and evaluation of
UAVs using supervised machine learning algorithms to address the increasing safety issues of
UAVs. This work highlights the importance of these techniques in generating a fundamental
approach for inspecting UAVs that may be used by certification companies and organizations

such as the FAA to increase safety operations and regulations.

Chapter 1 explains the history behind robotics, first touching on the creation of
“Unimate” and progressing to the development of very complex machines we have today.
Chapter 1 points out that even though society has achieved great milestones in developing flying
robotics like UAVSs, it should apply more levels of safety and tests to ensure that the UAVs

operating have met the necessary requirements to be operated.

Chapter 2 reviews artificial intelligence techniques and their importance in several
problem domains. It briefly discusses various types of machine learning algorithms features and
their applications, while also foreshadowing the uses of these techniques for data-driven UAV

testing and evaluation.

In Chapter 3 we presented the mathematical modeling and state space representation of a
general quadrotor. It centralizes the explanation of different types of UAVs and how they can
fundamentally be represented in the simulation environment.

Chapter 4 presents our case study for machine learning algorithms modeling for overall
testing and evaluation of UAVS' behavior. It provides scenarios for the simulation and real-world

environment. It analyzes and compares five widely used supervised machine learning algorithms
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for predicting the UAVS' behavior based on two levels of comparison, where the first comparison
is based on their performance in simulation versus real world experiment and the second
comparison is each algorithm’s performance against one another, regarding the different
environments. These algorithms were unbiasedly compared across a different selection of

metrics, considering accuracy as the top metric, due to classification being the problem domain.

This work presents different classification methods that were developed for test and
evaluation of unmanned quadcopters. In the post experiments, we introduce the noise to the
system to test the robustness of each algorithm. Adding noise is a meaningful step to take to
evaluate the experiment’s robustness, since the nature of the real-world use cases are not in
perfect condition. However, increasing from one standard deviation to three by using a step value
of one has resulted in unstable test outcomes. Therefore, using SNR was a more feasible method
while adding noise to the system. The proposed extension of this work is incorporating UGV-

UAV collaboration in the scenario for multiple behavior predictions and analysis.
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Appendix

The following code was executed for experiment and simulation. However, only experiment

code was provided.

Experiment Decision Tree

import pandas as pd

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt’,'label']
agg_acc=0
for x in range(10):
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv","alt']], df['labelT,
test_size=0.3)
dt_exp_mod = DecisionTreeClassifier(max_depth = None, criterion =
‘gini’).fit(X_train, y_train)
y_pred = dt_exp_mod.predict(X_test)
acc = metrics.accuracy_score(y_test, y_pred)
conf_mat = metrics.confusion_matrix(y_test,y pred)
agg_acc += acc
mathews_coef = metrics.matthews_corrcoef(y_test,y pred)
report = metrics.classification_report(y_test,y pred)
print('The accuracy is',agg_acc/10)
print(conf_mat)
print('The mathew coefficient is',mathews_coef)
print(report)

Experiment k_nearest_Neihgbors

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt’,'label']

myL.ist = list(range(1,50))

neighbors = list(filter(lambda x: x % 2 1= 0, myList))

cv_scores =[]

for k in neighbors:
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knn = KNeighborsClassifier(n_neighbors=k)
X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt]], df['label],
test_size=0.3)
knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
scores = metrics.accuracy_score(y_test, y_pred)
cv_scores.append(scores)
MSE = [1 - x for x in cv_scores]
optimal_k = neighbors[MSE.index(min(MSE))]
plt.plot(neighbors, MSE)
plt.xlabel('Number of Neighbors K")
plt.ylabel('Misclassification Error’)
plt.show()
agg_acc=0
for x in range(10):
optk = KNeighborsClassifier(n_neighbors=optimal_k, metric = 'manhattan’)
X_train, X_test, y train, y_test = train_test split(df[['xv','yv','’zv','alt']], df'labelT],
test_size=0.3)
knn_exp_mod = optk.fit(X_train, y_train)
ykopt_pred = knn_exp_mod.predict(X_test)
acc = metrics.accuracy_score(y_test, ykopt_pred)
conf_mat = metrics.confusion_matrix(y_test,ykopt_pred)
report = metrics.classification_report(y_test,ykopt_pred)
agg_acc += acc

Experiment Naive Bayes

import pandas as pd

from sklearn.preprocessing import StandardScaler
from sklearn.naive_bayes import GaussianNB

from sklearn.model_selection import train_test_split
from sklearn import metrics

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt’,'label']
agg_acc=0
for x in range(10):

X_train, X_test, y train, y_test = train_test split(df[['xv','yv','’zv','alt']], df['labelT],
test_size=0.3)

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

gnb_exp_mod = GaussianNB(priors=None).fit(X_train, y_train)

y_pred = gnb_exp_mod.predict(X_test)

acc = metrics.accuracy_score(y_test, y_pred)

conf_mat = metrics.confusion_matrix(y_test,y pred)
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report = metrics.classification_report(y_test,y pred)

agg_acc += acc
Experiment Artificial Neural Network
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler
from sklearn import metrics

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis/files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt’,'label']

agg_acc=0

for x in range(10):

X_train, X_test, y train, y_test = train_test split(df[['xv','yv','’zv','alt']], df'labelT],
test_size=0.3)

scaler = StandardScaler()

scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

mlp_exp_mod = MLPClassifier(activation = 'tanh’, alpha = 0.0001,
learning_rate = ‘constant’, solver="adam’,
hidden_layer_sizes = (50,100,50))

mlp_exp_mod.fit(X_train,y_train)

y_pred = mlp_exp_mod.predict(X_test)

acc = metrics.accuracy_score(y_test, y_pred)

conf_mat = metrics.confusion_matrix(y_test,y pred)

agg_acc += acc

Experiment Support Vector Machine

import pandas as pd

from sklearn.model_selection import train_test_split
from sklearn import svm

from sklearn import metrics

from sklearn.externals import joblib

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt’,'label']
clf =svm.SVC(C =1, gamma = 1, kernel = 'rbf")
agg_acc=0
for x in range(10):

X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv',’zv','alt]], df['label],
test_size=0.3)



svm_exp_mod = clf.fit(X_train, y_train)

y_pred = svm_exp_mod.predict(X_test)

acc = metrics.accuracy_score(y_test, y_pred)
conf_mat = metrics.confusion_matrix(y_test,y_pred)
report = metrics.classification_report(y_test,y pred)
agg_acc += acc

Clean Train Noisy Test knn, dt, nb

import pandas as pd

import numpy as np

from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB

from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn import metrics

defadd_1 std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
noise_zv = np.random.normal(0, std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)
std_alt = df.alt.std()
noise_alt = np.random.normal(0, std_alt, df.alt.shape)
noisy_alt = pd.DataFrame(df.alt + noise_alt)
sim_test_1std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 1std_data

def add_2_std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, 2*std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, 2*std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
noise_zv = np.random.normal(0, 2*std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)
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std_alt = df.alt.std()

noise_alt = np.random.normal(0, 2*std_alt, df.alt.shape)

noisy_alt = pd.DataFrame(df.alt + noise_alt)

sim_test_2std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 2std_data

def add_3 std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, 3*std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, 3*std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
noise_zv = np.random.normal(0, 3*std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)
std_alt = df.alt.std()
noise_alt = np.random.normal(0, 3*std_alt, df.alt.shape)
noisy_alt = pd.DataFrame(df.alt + noise_alt)
sim_test_3std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 3std_data

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt",'label']

dt agg_acc=0

dt agg_acc_1std=0
dt agg_acc_2std=0
dt agg_acc_3std=0

nb_agg_acc =0

nb_agg_acc _1std=0
nb_agg_acc _2std =0
nb_agg_acc 3std =0

knn_agg_acc=0

knn_agg_acc_1std=0
knn_agg_acc 2std =0
knn_agg_acc_3std=0

for x in range(10):
X_train, X_test, y _train, y_test = train_test_split(df[['xv','yv','’zv',"alt']], df['label],
test_size=0.3)
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scaler = StandardScaler()
scaler.fit(X_train)

X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

HHH R R R
HHHHHHH R R

dt_exp_mod = DecisionTreeClassifier(max_depth = None, criterion =
'gini").fit(X_train, y_train)

dt y pred = dt_exp_mod.predict(X_test)

dt_acc = metrics.accuracy_score(y_test, dt_y pred)

dt_conf_mat = metrics.confusion_matrix(y_test,dt_y pred)

dt_agg_acc +=dt_acc

dt_report = metrics.classification_report(y_test,dt y pred)

X_test_1std =add 1 std noise(X_test)

dt y pred_1std = dt_exp_mod.predict(X_test 1std)

dt_acc_1std = metrics.accuracy_score(y_test, dt_y pred_1std)
dt_conf_mat_1std = metrics.confusion_matrix(y_test,dt y pred_1std)
dt_agg_acc_1std +=dt_acc_1std

dt_report_1std = metrics.classification_report(y_test,dt y pred 1std)

X _test 2std =add 2 std_noise(X_test)

dt_y pred_2std = dt_exp_mod.predict(X_test_2std)

dt_acc_2std = metrics.accuracy_score(y_test, dt_y pred_2std)
dt_conf_mat_2std = metrics.confusion_matrix(y_test,dt_y pred_2std)
dt agg_acc_2std +=dt_acc_2std

dt_report_2std = metrics.classification_report(y_test,dt_y pred 2std)

X_test_3std =add_3 std_noise(X_test)

dt y pred_3std = dt_exp_mod.predict(X_test 3std)

dt_acc_3std = metrics.accuracy_score(y_test, dt_y pred_3std)

dt_conf_mat_3std = metrics.confusion_matrix(y_test,dt y pred 3std)

dt_agg_acc_3std +=dt_acc_3std

dt_report_3std = metrics.classification_report(y_test,dt y pred 3std)
HHHH A
HHHHHHH R

nb_exp_mod = GaussianNB(priors=None).fit(X_train, y_train)
nb_y pred =nb_exp_mod.predict(X_test)

nb_acc = metrics.accuracy_score(y_test, nb_y pred)
nb_conf_mat = metrics.confusion_matrix(y_test,nb_y pred)
nb_agg_acc +=nb_acc
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nb_report = metrics.classification_report(y_test,nb_y pred)

X test _1std =add 1 std noise(X test)

nb_y pred 1std = nb_exp_mod.predict(X_test_1std)

nb_acc_1std = metrics.accuracy_score(y_test, nb_y pred_1std)
nb_conf_mat_1std = metrics.confusion_matrix(y_test,nb_y pred_1std)
nb_agg_acc_1std +=nb_acc_1std

nb_report_1std = metrics.classification_report(y_test,nb_y pred_1std)

X_test 2std =add 2 std noise(X_test)

nb_y pred_2std = nb_exp_mod.predict(X_test_2std)

nb_acc_2std = metrics.accuracy_score(y_test, nb_y pred_2std)
nb_conf_mat_2std = metrics.confusion_matrix(y_test,nb_y pred_2std)
nb_agg_acc_2std +=nb_acc_2std

nb_report_2std = metrics.classification_report(y_test,nb_y pred_2std)

X_test_3std =add_3 std_noise(X_test)
nb_y pred 3std = nb_exp_mod.predict(X_test 3std)
nb_acc_3std = metrics.accuracy_score(y_test, nb_y pred_3std)
nb_conf_mat_3std = metrics.confusion_matrix(y_test,nb_y pred 3std)
nb_agg_acc_3std +=nb_acc_3std
nb_report_3std = metrics.classification_report(y_test,nb_y pred 3std)
HHH R
B e e e S e
myList = list(range(1,50))
neighbors = list(filter(lambda x: x % 2 =0, myList))
cv_scores =[]
for k in neighbors:
knn = KNeighborsClassifier(n_neighbors=k)
knn.fit(X_train, y_train)
optk_y pred = knn.predict(X_test)
scores = metrics.accuracy_score(y_test, optk_y pred)
cv_scores.append(scores)
MSE = [1 - x for x in cv_scores]
optimal_k = neighbors[MSE.index(min(MSE))]

optk = KNeighborsClassifier(n_neighbors=optimal_k, metric = 'manhattan’)
knn_exp_mod = optk.fit(X_train, y_train)

knn_y pred = knn_exp_mod.predict(X_test)

knn_acc = metrics.accuracy_score(y_test, knn_y pred)

knn_conf_mat = metrics.confusion_matrix(y_test,knn_y _pred)
knn_agg_acc += knn_acc

knn_report = metrics.classification_report(y_test,knn_y pred)
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X _test 1std =add 1 std noise(X_test)

knn_y pred_1std = knn_exp_mod.predict(X_test_1std)

knn_acc_1std = metrics.accuracy_score(y_test, knn_y pred 1std)
knn_conf_mat_1std = metrics.confusion_matrix(y_test,knn_y pred_1std)
knn_agg_acc_1std += knn_acc_1std

knn_report_1std = metrics.classification_report(y_test,knn_y pred_1std)

X _test 2std = add 2 std noise(X_test)

knn_y pred_2std = knn_exp_mod.predict(X_test_2std)

knn_acc_2std = metrics.accuracy_score(y_test, knn_y pred_2std)
knn_conf_mat_2std = metrics.confusion_matrix(y_test,knn_y pred_2std)
knn_agg_acc_2std += knn_acc_2std

knn_report_2std = metrics.classification_report(y_test,knn_y pred_2std)

X_test 3std =add 3 std_noise(X_test)

knn_y pred_3std = knn_exp_mod.predict(X_test_3std)

knn_acc_3std = metrics.accuracy_score(y_test, knn_y pred 3std)
knn_conf_mat_3std = metrics.confusion_matrix(y_test,knn_y pred_3std)
knn_agg_acc_3std += knn_acc_3std

knn_report_3std = metrics.classification_report(y_test,knn_y pred_3std)

Clean Train Noisy Test SVM

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn import svm

from sklearn import metrics

defadd_1 std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
noise_zv = np.random.normal(0, std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)
std_alt = df.alt.std()
noise_alt = np.random.normal(0, std_alt, df.alt.shape)
noisy_alt = pd.DataFrame(df.alt + noise_alt)
sim_test_1std data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1, sort=False)
return sim_test 1std_data

def add_2_std_noise(x):
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df=x

std_xv = df.xv.std()

noise_xv = np.random.normal(0, 2*std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)

std_yv = df.yv.std()

noise_yv = np.random.normal(0, 2*std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)

std_zv = df.zv.std()

noise_zv = np.random.normal(0, 2*std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)

std_alt = df.alt.std()

noise_alt = np.random.normal(0, 2*std_alt, df.alt.shape)
noisy_alt = pd.DataFrame(df.alt + noise_alt)
sim_test_2std_data = pd.concat([noisy_Xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 2std_data

def add_3 std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, 3*std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, 3*std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
noise_zv = np.random.normal(0, 3*std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)
std_alt = df.alt.std()
noise_alt = np.random.normal(0, 3*std_alt, df.alt.shape)
noisy_alt = pd.DataFrame(df.alt + noise_alt)
sim_test_3std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 3std_data

svm_agg_acc =0

svm_agg_acc_1std=0
svm_agg_acc_2std =0
svm_agg_acc_3std =0

df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt’,'label']

for x in range(10):

X_train, X _test, y train, y_test = train_test_split(df[['xv','yv','zv',"alt"]], df['label'],
test_size=0.3)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)



clf =svm.SVC(C = 10, gamma = 1, kernel = 'rbf")
svm_exp_mod = clf.fit(X_train, y_train)

svm_y_ pred = svm_exp_mod.predict(X_test)

svm_acc = metrics.accuracy_score(y_test, svm_y pred)
svm_conf_mat = metrics.confusion_matrix(y_test,svm_y pred)
svm_agg_acc += svm_acc

svm_report = metrics.classification_report(y_test,svm_y pred)

X _test 1std=add 1 std noise(X_test)

svm_y pred_1std = svm_exp_mod.predict(X_test_1std)

svm_acc_1std = metrics.accuracy_score(y_test, svm_y pred_1std)
svm_conf_mat_1std = metrics.confusion_matrix(y_test,svm_y pred_1std)
svm_agg_acc_1std +=svm_acc_1std

svm_report_1std = metrics.classification_report(y_test,svm_y pred_1std)

X_test_2std =add_2_std_noise(X_test)

svm_y pred_2std = svm_exp_mod.predict(X_test 2std)

svm_acc_2std = metrics.accuracy_score(y_test, svm_y pred_2std)
svm_conf_mat_2std = metrics.confusion_matrix(y_test,svm_y pred_2std)
svm_agg_acc_2std +=svm_acc_2std

svm_report_2std = metrics.classification_report(y_test,svm_y pred_2std)

X_test 3std =add 3 std_noise(X_test)

svm_y pred_3std = svm_exp_mod.predict(X_test_3std)

svm_acc_3std = metrics.accuracy_score(y_test, svm_y pred_3std)
svm_conf_mat_3std = metrics.confusion_matrix(y_test,svm_y pred_3std)
svm_agg_acc_3std += svm_acc_3std

svm_report_3std = metrics.classification_report(y_test,svm_y_pred_3std)

Clean Train Noisy Test ANN

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn import metrics

defadd_1 std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
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noise_zv = np.random.normal(0, std_zv, df.zv.shape)

noisy_zv = pd.DataFrame(df.zv + noise_zv)

std_alt = df.alt.std()

noise_alt = np.random.normal(0, std_alt, df.alt.shape)

noisy_alt = pd.DataFrame(df.alt + noise_alt)

sim_test_1std data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 1std data

def add_2 std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, 2*std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, 2*std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
noise_zv = np.random.normal(0, 2*std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)
std_alt = df.alt.std()
noise_alt = np.random.normal(0, 2*std_alt, df.alt.shape)
noisy_alt = pd.DataFrame(df.alt + noise_alt)
sim_test_2std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 2std_data

def add_3 std noise(x):
df=x
std_xv = df.xv.std()
noise_xv = np.random.normal(0, 3*std_xv, df.xv.shape)
noisy_xv = pd.DataFrame(df.xv + noise_xv)
std_yv = df.yv.std()
noise_yv = np.random.normal(0, 3*std_yv, df.yv.shape)
noisy_yv = pd.DataFrame(df.yv + noise_yv)
std_zv = df.zv.std()
noise_zv = np.random.normal(0, 3*std_zv, df.zv.shape)
noisy_zv = pd.DataFrame(df.zv + noise_zv)
std_alt = df.alt.std()
noise_alt = np.random.normal(0, 3*std_alt, df.alt.shape)
noisy_alt = pd.DataFrame(df.alt + noise_alt)
sim_test_3std_data = pd.concat([noisy_xv, noisy_yv, noisy_zv, noisy_alt], axis=1,
sort=False) return sim_test 3std_data

ann_agg_acc=0

ann_agg_acc_1std=0
ann_agg_acc_2std =0
ann_agg_acc _3std=0
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df = pd.read_csv('C:/Users/bbaity/Documents/Thesis//files/arDroneData.csv')
df.columns = ['xv','yv','zv',"alt’,'label']

for x in range(10):

X_train, X_test, y_train, y_test = train_test_split(df[['xv','yv','zv','alt]], df['label],
test_size=0.3)

X_train = scaler.transform(X_train)

X_test = scaler.transform(X_test)

ann_exp_mod = MLPClassifier(activation = 'tanh’, alpha = 0.0001,
learning_rate = ‘constant’, solver="adam’,
hidden_layer_sizes = (50,100,50))

ann_exp_mod.fit(X_train,y_train)

ann_y pred = ann_exp_mod.predict(X_test)

ann_acc = metrics.accuracy_score(y_test, ann_y pred)

ann_conf_mat = metrics.confusion_matrix(y_test,ann_y pred)

ann_agg_acc +=ann_acc

ann_report = metrics.classification_report(y_test,ann_y pred)

X _test 1std =add 1 std noise(X_test)

ann_y pred_1std = ann_exp_mod.predict(X_test_1std)

ann_acc_1std = metrics.accuracy_score(y_test, ann_y pred_1std)
ann_conf_mat_1std = metrics.confusion_matrix(y_test,ann_y pred_1std)
ann_agg_acc_1std +=ann_acc_1std

ann_report_1std = metrics.classification_report(y_test,ann_y_pred_1std)

X_test_2std =add_2 std noise(X_test)

ann_y pred 2std = ann_exp_mod.predict(X_test_2std)

ann_acc_2std = metrics.accuracy_score(y_test, ann_y pred_2std)
ann_conf_mat_2std = metrics.confusion_matrix(y_test,ann_y pred_2std)
ann_agg_acc_2std +=ann_acc_2std

ann_report_2std = metrics.classification_report(y_test,ann_y pred_2std)

X_test 3std = add 3 std_noise(X_test)

ann_y pred_3std = ann_exp_mod.predict(X_test_3std)

ann_acc_3std = metrics.accuracy_score(y_test, ann_y pred_3std)
ann_conf_mat_3std = metrics.confusion_matrix(y_test,ann_y pred_3std)
ann_agg_acc_3std +=ann_acc_3std

ann_report_3std = metrics.classification_report(y_test,ann_y pred_3std)
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