Date of Award

2014

Document Type

Thesis

First Advisor

Pai, Devdas

Abstract

This research is focused on the development of a systematic approach to evaluate the selection of materials for Mg-based alloys under wear conditions for biomedical applications. A pilot study was carried out in order to establish an accurate and reliable wear testing technique for magnesium and its alloys. This pilot study was conducted on aluminum (Al) and pure Mg, and showed that aluminum has a lower wear rate compared to Mg. The technique displayed good repeatability and high precision. For the main study, an ERC Mg-based alloy was to be compared with pure Mg. The same technique, when applied to pure Mg from a different vendor, produced up to 90% scatter in the data. Microstructure was studied to see if it had any correlation with the scatter. It was discovered that Mg ingot from the second vendor had outsized grains that contributed to the disproportional scatter in the wear data. Increasing the stroke length during wear testing was required so that the wear data would be averaged over multiple grains and reduces the variation in computed wear rates.

Share

COinS