Date of Award

2013

Document Type

Thesis

Degree Name

Master of Science (MS)

Department

Computer Science

First Advisor

Kateeb, Dr. Ibraheem

Abstract

The advantages of Renewable Energy Sources (RES) are much more than the disadvantages, RES such as solar, wind energy, biomass, and geothermal, which can be used for generating distributed power but cannot directly replace the existing electric energy grid technologies. The latter are far too well established to abandon, while the new RES technologies are not sufficiently developed to meet the total energy demand. Therefore, it is sensible to gradually infuse RES into existing grids and transform the system over time Saudi Arabia (SA) is a semi-developed nation with a population of over twenty nine million people. It is the largest country in western Asia with an area of 2.225MKm2. SA's largest export is oil, owning 1/5 of the world's supply, and producing twelve million barrels a day. However, SA is far behind in developing a smart grid and RES. A lot of this is to do with lack of participation by both the government and the private business sector. Currently SA spends over $13B a year on generating electricity from oil. SA is the largest consumer of petroleum in the Middle East, due to the high demand for transportation and electricity generation. According to the Saudi electrical company, the total amount of generated power in 2011 was 190.280GW. In addition, SA's electricity consumption is currently growing 8% a year. SA aims to generate 55GW of renewable energy by 2020, in order to free up fossil fuels for export. 41GW of the 55GW will be generated from solar energy. Smart grid technologies are also under consideration in SA; this will allow an efficient and reliable way to control the energy in the future. In addition, the potential for wind and geothermal energy is very high. In this thesis, there is a full exploration of RES components which are critical to manage carbon emission and the limitations of the current grid to the new RES technologies, which face barriers to full- scale deployment. A study in Dhahran, SA has been simulated on a installing a Dual-Tariff PV system using HOMER. The result of the simulation has been discussed, analyzed, and plotted. We also give evidence in the thesis how useful the small PV systems can be as oppose to the larger scale system that must deal with location issues.

Share

COinS