Date of Award

2014

Document Type

Thesis

Degree Name

Master of Science (MS)

First Advisor

Zhang, Lifeng

Abstract

Phase change materials (PCMs) are generally substances with a high heat of fusion in the process of solid to liquid phase change. The nature of PCMs make them efficient materials to store and retrieve large amounts of thermal energy. Presently, high efficiency thermal energy storage/retrieval in applications where flexibility and space saving are required, such as smart textiles, still remains as a challenge. In this study, lauric acid (LA) and myristic acid (MA) were combined to prepare a specific binary fatty acid eutectic (LA-MA) with a melting point near the operating body temperature of a human being and then encapsulated in polyacrylonitrile (PAN) nanofibers through the electrospinning technique. Functionalized PCM-enhanced PAN nanofibers containing LA-MA at 30%, 50%, 70% and 100% of the weight of the PAN were successfully synthesized. The morphological structures and thermal energy storage capacity of the PCM-enhanced PAN nanofibers were characterized by electron microscopy (EM) and differential scanning calorimetry (DSC). The novel PCM-enhanced PAN nanofibers maintained their cylindrical fiber morphology after multiple heating-cooling cycles and retained their latent heat storage functionality. Thus, it is envisioned that the prepared PCM-enhanced PAN nanofibers will find use in applications such as smart textiles where temperature regulation functionality is required.

Share

COinS