Optimizing Ice Thermal Storage To Reduce Energy Cost

Christopher L. Hall, North Carolina Agricultural and Technical State University

Abstract

Energy cost for buildings is an issue of concern for owners across the U.S. The bigger the building, the greater the concern. A part of this is due to the energy required to cool the building and the way in which charges are set when paying for energy consumed during different times of the day. This study will prove that designing ice thermal storage properly will minimize energy cost in buildings. The effectiveness of ice thermal storage as a means to reduce energy costs lies within transferring the time of most energy consumption from on-peak to off-peak periods. Multiple variables go into the equation of finding the optimal use of ice thermal storage and they are all judged with the final objective of minimizing monthly energy costs. This research discusses the optimal design of ice thermal storage and its impact on energy consumption, energy demand, and the total energy cost. A tool for optimal design of ice thermal storage is developed, considering variables such as chiller and ice storage sizes and charging and discharge times. The simulations take place in a four-story building and investigate the potential of Ice Thermal Storage as a resource in reducing and minimizing energy cost for cooling. The simulations test the effectiveness of Ice Thermal Storage implemented into the four-story building in ten locations across the United States.