Computational Fluid Dynamics Simulation on Blade Geometry of Novel Axial FlowTurbine for Wave Energy Extraction
Document Type
Article
Publication Date
7-2024
Abstract
Wave energy converters (WECs) utilizing the Oscillating Water Column (OWC) principle have gained prominence for harnessing kinetic energy from ocean waves. This study explores an innovative approach by transforming the pivoting Denniss–Auld turbine blades into a fixed configuration, offering a simplified alternative. The fixed-blade design emulates the maximum pivot points during the OWC’s exhalation and inhalation phases. Traditional Denniss–Auld turbines rely on complex hub systems to enable controllable blade rotation for performance optimization. This research examines the turbine’s efficiency without mechanical actuation. The simulations were conducted using ANSYS™ CFX 2023 R2 to solve the three-dimensional, incompressible, steady-state Reynolds-Averaged Navier–Stokes (RANS) equations, employing the k-ω SST turbulence model to close the system of equations. A grid convergence study was performed, and the numerical results were validated against available experimental and numerical data. An in-depth analysis of the intricate flow field around the turbine blades was also conducted. The modified Denniss–Auld turbine demonstrated a broad operating range, avoiding stalling at high flow coefficients and exhibiting performance characteristics like an impulse turbine. However, the peak efficiency was 12%, significantly lower than that of conventional Denniss–Auld and impulse turbines. Future research should focus on expanding the design space through parametric studies to enhance turbine efficiency and power output.
Recommended Citation
Uddin, Mohammad Nasim; Gao, Yang; and Akangah, Paul M., "Computational Fluid Dynamics Simulation on Blade Geometry of Novel Axial FlowTurbine for Wave Energy Extraction" (2024). Faculty Publications. 204.
https://digital.library.ncat.edu/facpub/204